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Welcome, today we start the second part of the lecture on decision trees. In the last class 
we looked at the definition of the decision tree and we also looked at an algorithm ID3 
which helps in constructing decision tree or inducing the decision tree given some 
training data. Today we will further consider the decision tree learning algorithm.  
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The instructional objectives of today’s lectures are as follows. The student will learn how 
to evaluate the learning algorithm in terms of the error obtained on the training set and 
the error obtained on the test set. The student will learn how over-fitting takes place in 
decision trees and how over-fitting can be detected and avoided. We will talk about 
different stopping criteria for decision tree building. We will look at two different 
pruning techniques for pruning of the decision tree. First we will look at reduce error 
pruning and then we will look at rule post pruning.  
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We will discuss how a decision tree can be made to work with continuous valued 
attribute. We will also discuss how missing values are handled in training data where the 
data is incomplete so some attributes have missing values. Before we start let us review 
what a decision tree is and look at an example decision tree that we considered in the last 
class. If you look at this diagram every node in the decision tree the internal nodes in the 
decision tree test the value of an attribute. 
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In this decision tree there are four internal nodes. This node looks at the attribute for test, 
this node for attribute of dry, this node attribute hot and this node attribute dry. Every leaf 
node corresponds to a classification. So this, this and this corresponds to yes values and 
this, this and this corresponds to no values. The branches that come out of an internal 



node correspond to the different values the attribute at its parents can take. Taste can take 
the values sweet, sour and bitter so we have three branches from test, hot can take values 
yes or no so we have two branches from hot. ID-3 is the simplest algorithm for learning 
decision trees. This algorithm was developed in 1989 by Ross Quinlan in the machine 
learning community and parallelly by Brian Minato in the field of statistics. So let us look 
back at ID3.      
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In ID3 we start with input, it is the set of training examples S. We have a set of attributes 
att, we have a training example S and Q is the attribute on which we are trying to classify 
the data. If the training example is empty ID3 does not proceed further. It just returns 
single node with a default plus or with the value failure. If S is not empty but all elements 
of S belongs to the same class, that is f is homogeneous we stop growing the tree and we 
label that leaf node with the class to which all the examples in which S belong to.  
 
Thirdly, if atts is empty that is there are no more attribute left for testing then also we 
cannot grow the tree any further. In that case if S is not empty we label the leaf with the 
majority of the different elements of S belongs to otherwise we carry on this loop. So, 
when does one stop growing the tree? We stop growing the tree when either S 
homogeneous or when atts is empty. We also stop if S is empty. Otherwise if these 
conditions are not satisfied we choose the best attribute A by looking at the examples S 
and the attributes left. And then we branch on the attribute and grow a decision tree 
recursively. There are several practical issues that come up in developing a decision tree 
some of which or not properly handled in ID3 algorithm. 
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Some of these issues are: 
 
1) We have to choose an appropriate attribute selection measure. As we have seen there 
can be different techniques for selecting the attributes the one we have been talking about 
is using information gain and entropy.  
 
2) We have to decide how deep to grow the decision tree. The ID3 algorithm that we 
discussed stops when either S is empty or atts is empty or when S is homogeneous. But 
we might decide to stop growing the earlier based on other criteria. ID3 will also fail if 
we reach a situation where atts is empty and S is not homogeneous. In such situation ID3 
will fail and we have to take care of the situations.  
 
3) So far we have looked at how to handle attributes which have a finite number of 
values. Either they have Boolean values as true or false or they take nominal values, for 
example taste takes the values sweet, sour and bitter. But what about attributes which 
take real values? In most of the cases for many training sets the attributes will take real 
values e.g. the value of temperature, the value of height, value of income. They cannot be 
put in to a small number of classes. How do we handle continuous values? Decision tree 
algorithm can be modified to handle continuous values. 
 
4) We want to handle training data with missing attribute values. Sometimes we get a 
data for which we do not get the values of all the features. Either they are corrupted by 
noise or the features could not be measured or they are unavailable. So we need to often 
deal with missing attribute values. 
 
There are other issues which we will not talk about in this class. For example, sometimes 
attributes have differing causes. For example, in the decision tree once we have a 
decision tree, when we apply the decision tree we take the example and test with the root 
node of the decision tree then we follow the appropriate branch. Therefore, trying to 



classify the example involves testing some of the attributes. Now it could be testing 
certain attributes are cheaper, testing certain attributes are more expensive.  
 
Consider a medical diagnosis system. Each attribute can correspond to some tests which 
have to be carried out. Some tests are cheaper, some tests are more expensive. So we 
would prefer to carry out tests which are cheaper. So, growing a decision tree and apart 
from looking at the simplicity or small decision trees it will also take into account the 
cost of the different tests.  
 
Improve computational efficiency: 
These issues are dealt in the later versions of the decision tree algorithm. For example the 
C4.5 algorithm which was developed by Quinlan in 1993 and there are other versions of 
decision tree algorithm including C5.0 and then there is the cart algorithm. And then 
there are numerous other versions of decision tree algorithms which take care of these 
issues and grow beyond to the basic decision tree algorithm or ID3. Before we discuss 
some of these issues let us discuss the issue of noise which we have not talked about so 
far. When you get the training data the data may not be pure there could be noise in the 
data. The noise can come in because of the error in obtaining the data or error in 
measuring the data or error in processing the data. So due to this error in measuring or 
obtaining the data or data precision process can give us noisy data.  
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For example, if the color is actually white it may appear to us as grey and so on. 
Secondly, sometimes what happens is that we do not choose the feature set properly and 
our data set includes many features which are actually irrelevant to the classification task. 
The values of these features do not affect the actual classification. So such attributes 
actually introduce noise in the classification process. And because of the presence of 
irrelevant attributes or because of the error in measurement we may get two examples 
which have exactly the same values of all the attributes but they belong to different 
classes.  



 
Certain classification problems by themselves are always noisy. If we are not able to look 
at all the features or if we skip some of the relevant features we might get two data sets 
which agree with all the features that we have selected but have different classes. This 
can also happen if some data is noisy. So, in any case there is a situation where no matter 
what decision tree or what classifier we construct that classifier cannot achieve 100% 
accuracy on the training set because the training set contains two examples which have 
identical values of the attributes for different classes. So any classifier that you construct 
will assign the same class will these two instances which will not be correct.  
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Let us review how we would estimate the accuracy of a classifier. As we have mentioned 
earlier we have some data d we divide d into two sets; the training set train and the test 
set test. We train the classifier using the training set and after we have learnt the classifier 
we apply it on the test set and because the classifier was trained as learned on the train 
set. It may be likely that the classifier is fit has been over-fitted to the training set. So to 
get better idea of the true accuracy of the classifier we should look at some unseen 
examples. And in order to get some examples we keep aside a portion of d to evaluate the 
classifier.  
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Issue of over-fitting:  
Typically when we learn any classifier what happens is that as we increase the 
complexity. For example, in decision tree as we increase the decision tree size whereas 
we grow more nodes the training set accuracy increases. We start with a decision tree 
having a single node and we gradually add nodes. As we add nodes usually the training 
set accuracy goes up. However, if we test the accuracy on the test set we see that the test 
set accuracy initially goes up and then it can slowly come down. And this phenomenon is 
known as over-fitting. And we notice that based on the test set this is the point where the 
classifier has highest accuracy on the test set so this is the optimal tree size.  
 
Why does such over-fitting occur?  
Such over-fitting can occur because there could be some regularity which is discovered in 
the data. As we have only a finite amount of data some regularity can be perceived in the 
data due to some random behavior of the irrelevant attributes. They can mislead us in 
making us think there is a pattern. And by taking advantage of this pattern our classifier 
can increase the accuracy of the training set but this pattern may be absent from the test 
set. Therefore the test set accuracy goes down.  
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When the attributes are selected initially near the root of the tree the better attributes gets 
selected immediately. So, the attributes which are highly predictive are already taken care 
of near the root of the decision tree. After we have looked at the more important 
attributes then we look for other attributes to grow the tree and then we try to include 
these attributes which have less productive power and many of them are actually noisy. 
Therefore the highly predictive attributes occur near the root of the decision tree and they 
are able to capture the more general patterns. The less predictive attributes added later 
and they mostly try to capture overfit the tree to statistical noise.  
 
How do we overcome the effect of over-fitting?  
There are two major approaches to take care of over-fitting. Firstly we can stop growing 
the decision tree before over-fitting sort of kicks in and takes over the process. So we 
have to be careful to know how long to grow the tree.  
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We should not grow the tree in all cases till completion as ID3 prescribes rather we might 
to decide stop growing the tree earlier. The second approach involves pruning. So, we 
grow the tree quite deep and then we eliminate some lower portions of the tree as a post 
processing step. Therefore stopping the growth of the tree while growing is one approach 
and first growing the tree and then pruning is the second approach. Therefore these are 
the two approaches used to stop the phenomenon of over-fitting.  
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How over-fitting can be avoided?  



A tree or indeed any classifier is set to overfit the data if we let this tree to grow deep 
enough so that it captures aberrations in the data. It tries to fit in the aberrations in the 
data to get perfect fit and this harms the predictive power on unseen examples. For 
example, suppose there is a feature called humidity and there is another feature called 
size, now we have two types of classes the blue class and the green class. So what 
happens is that in the decision tree the decision tree separates the feature space into 
different classes. In this class there are all blue except this green.  
 
Initially the decision tree gets this node consisting of all the six examples then it further 
divides the set to separate this lone green class. And it may be that this is over-fitting the 
data. Possibly this is just noise but the tree is grown deeper to capture this noise. This is 
another example of data that could be classified as noise. Now the point is that if we treat 
this whole thing as blue, this thing as green, this as green and this as white may be we 
will get a tree which has better generalization power which works better with unseen 
data. But trying to fit all the cases and zero error on the training set may give us a 
classifier which has lower accuracy on the test set.  
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Formal definition of over-fitting:  
We say a hypothesis h in H over-fits the data set. So H is the hypothesis space. We are 
trying to find the hypothesis ball h which belongs to the hypothesis space. We say the 
hypothesis h overfits the data set D. If there is another hypothesis h’ so h is the 
hypothesis that we have obtained and h’ is another hypothesis in the hypothesis space. If 
there exists an h’ which has worse classification accuracy on the data set but which has 
better actual classification accuracy, that is h has better accuracy than h’ on the current 
training set but h does not work very well on unseen data then we say that h has been 
over-fitted. We can see the phenomenon of over-fitting by inspecting the following curve. 
This curve is similar to the curve that we looked at earlier. As we have noted we plot 



accuracy along the y axis. So this is 0.5, this is 0.6, this 0.7, 0.8, 0.9 and 1. So these are 
the values of the accuracy.  
 
Now we see that the accuracy on the training set keeps going up as the size of the tree 
increases. But the accuracy on the test data initially goes up and then it goes down. So 
this illustrates the phenomenon of over-fitting. So beyond this point the decision tree has 
tried to overfit the data. 
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What causes a hypothesis to overfit the data?  
As we have seen it may be due to random errors or noise or it can be due to coincidental 
patterns. So, random errors or noise happens when examples have incorrect class label or 
incorrect attribute values due to error in measurement. Secondly, there can be 
coincidental patterns. By chance the examples may seem to have to have a pattern due to 
the small size of the training sample. If you take a large training sample much patterns 
like to be present. But due to this phenomenon of over-fitting there can be strong 
performance degradation. So we have to deal with the effect of over-fitting for any 
learning algorithm that we inspect.  
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So, as we mentioned there are two ways of over-fitting; stopping and pruning. The 
simplest solution to over-fitting is stopping. We want to stop growing the tree before 
over-fitting takes over. When should we stop growing the tree? There could be several 
things that we can do. First of all we can grow the tree, we have to use ID3 we can keep 
growing the tree until we get a single data point. A single data point obviously has a 
single class and we cannot proceed any further. But instead of doing that we can stop 
when the data contains examples which has identical values of atts. That is, we have 
some data which agree with the values of all the other attributes but they belong to 
different classes.  
 
In this case we do not get a homogeneous class and ID3 will fail but we have reached a 
lead and we cannot grow this tree further. In those situations what we do we is choose the 
majority class to label the node. So, in this node we have examples all of which belong to 
the same features but they have different class. We take the majority class and label it as 
the class of that node. Now, if you want to handle over-fitting we have to do something 
different. We have to stop growing the tree even earlier. In order to do that there are 
several techniques we can employ.   
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So, when we have a node we mention that we find the entropy of examples at this node 
and then for a particular attribute we use at the node we look at the children. So S is the 
data set here S has an entropy, entropy of S. Now due to this attribute A which takes 
values true and false we get the data sets S1 and S2 and S is the partitioned between S1 and 
S2. We find the entropy of S1, entropy of S2 and find the weighted average entropy of S1 
and S2. We ideally stop when the entropy of a data set is 0 that is they are all 
homogeneous. But instead of doing that we can stop when the entropy of the data set is 
low. So we can select a threshold which is likely more than 0 and we can stop growing 
the tree when the entropy is smaller than the threshold then we need not consider this 
division.  
 
Secondly, we can stop growing the tree when number of elements in the dataset is below 
a threshold. If our S contains only three or four data items we do not want to keep 
dividing the tree. So only if s is large then only we consider growing the tree so we stop 
when s is small. When s is small we stop, when entropy is low we stop and thirdly we 
also stop when the best next plate does not reduce the average entropy. So, this plate does 
not reduce the average entropy. Therefore we have reached a point where splitting does 
not help in the short run. So these are three techniques which can be used to stop growing 
the tree.  
 
Instead of stopping when entropy is zero that is the data set is fully homogeneous we stop 
when the data set is low entropy and secondly we stop when the size of the data set at that 
node is small, thirdly we stop when the best plate is not reduce the entropy. However, we 
can see that the third situation is not always wise. There are certain functions for which if 
we look at the immediate the gain in information that immediate gain is not there but 
there can be further gain as we go below the tree.  
 



For example, if we consider the XOR function, suppose you are trying to find a XOR b if 
you either split a or split b at the top level the entropy does not reduce the entropy 
remains the same. The entropy only reduces when after a if you test on b then entropy 
reduces or after b if you test a. after two levels the entropy reduces. So this is not a wise 
decision in many cases. 
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Pruning: 
This is the second alternative. For pruning what we do is, when we prune a tree usually 
the error in the training set will go up. But why do we prune the tree? We prune the tree 
so that the true error should go down. So, how do we test the true error? We test error on 
the test set or call the validation set. So we keep aside a validation set we grow the tree on 
the training set and then prune it and then check it on the validation set. This validation 
set is called the holdout set. This validation set is slightly different from the test set. The 
test set is used to test the final tree after pruning.  
 
We have another set called holdout set of validation set which we use for validating the 
pruning. So we separate the training data into two parts. Most of the training data is used 
to build the tree and the holdout set or validation set is used to validate the accuracy. For 
pruning what we do is we grow tree as for as possible. Instead of stopping early we grow 
the tree quite deep. And then after going the tree we prune the tree until it keeps 
performing better on the held out data.  
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So the idea behind pruning is that the portion of the tree that models general patterns 
should work well on the holdout set but the portion of the tree that fits noise should not 
work well on the holdout set.  
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This is the schematic. We have data set D we divide it into training and testing or the 
holdout and we will consider two different approaches to pruning; reduced error pruning 
and rule post pruning.  
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First we will talk about reduced error pruning. In pruning what we do usually is that we 
grow the tree to learn the training data and then after growing the tree we remove certain 
portions of the tree. So we prune certain portion of the tree and so we get this new pruned 
tree. This is the prune tree that we get. And the expectation is that the pruned tree will not 
overfit the data. So reduce the pruning we the techniques for pruning of decision tree.  
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In reduced error pruning we first grow the tree and then we do the following:  



We consider all the internal nodes of the tree. For each node we check if removing it 
gives us any advantage in accuracy. So we consider all internal nodes in the tree. For 
each internal node we check if removing the node along with the subtree below the node 
and assigning the most common class to the node whether that improves accuracy on the 
validation set. So, we find out those intermediate nodes for which there is an 
improvement in accuracy and let n star be the node for which the increase in accuracy is 
maximum. We prune the tree below n star and then we go back to two until we get a 
situation when none of the nodes can be pruned to better accuracy. So this is the essence 
of the algorithm reduced error pruning. 
 
We consider all internal nodes. For each internal node we check if there is improvement 
accuracy by removing the tree below the node and by replacing it with the majority value. 
And for all such nodes for which there is improvement we choose the node with highest 
improvement which is n star. If no nodes show improvement we stop, if n star shows 
highest improvement that is the positive improvement then we prune below n star and we 
continue this algorithm. Therefore reduced error pruning can be illustrated by this 
diagram.  
 
(Refer Slide Time: 35:45) 
 

 
 
Suppose this is the original tree it has seven nodes and three internal nodes. So what are 
the possible trees we can get after pruning? If we prune below this node we get this tree1. 
If we prune below this node we get this tree2, if we prune below this node we get this tree 
T3. Now T4 involves pruning both below 1 as well as below 2. So we will consider this 
three trees T1, T2 and T3 as possible candidates. We find out whether for these trees the 
accuracy on the holdout set is better than the accuracy of the original tree. Among them 
we find the tree which has a highest accuracy. Suppose T2 has the highest accuracy which 
is better than the accuracy of t then we will choose this tree and then we will proceed. 
Suppose we prune below this node we get this as the prune tree so t’ is the prune tree.  
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Now we will again consider pruning this tree further. We can prune below this node to 
get this tree T1, we can prune below this node to get this tree T2 and evaluate them with 
accuracy, take the one highest accuracy or if both of them have worst accuracy on the 
holdout set than t’ then we retain t’. This is how reduced error pruning proceeds.  
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So, this process continues until there is no improvement in the validation set. So this can 
be illustrated by this curve, this is the size of the tree and as we reduce the size of the tree 



we start with this tree where the accuracy is this as we prune that we see that initially the 
accuracy is going up and then the accuracy goes down so we stop pruning the tree here.  
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Disadvantages of reduced error pruning:  
Reduced error pruning is a very good technique but it cannot be used if the training data 
set is small. If the original data set is small if we keep aside something for the validation 
set the training dataset will be further reduced. So we have seen that cross validation can 
be used to take care of less amount of training data but in general reduced error in 
pruning data is not very good when we do not have enough data. Now we will discuss the 
second pruning method for pruning of decision trees which is called rule post pruning.  
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The basic idea behind rule post pruning is that after you construct the decision tree you 
dismantle the tree and write down a prevalent set of rules of the decision tree. A decision 
tree can be expressed as disjunction of all the paths along with a given class C. So we 
find that for all the leaves labeled by c we take the disjunction of all these paths. For each 
path the formula is the conjunction of all the attributes and the branch that was followed 
to get to this leaf. We can open out this tree in terms of each such path. So we can convert 
the decision tree into rules.  
 
We can have rules corresponding to the positive class as well as rules corresponding to 
the negative class and together we have a set of rules. After we get the set of rules we can 
prune the rules independently. So what we do is that we look at each rule and see if we 
can drop some conditions in that and achieve a higher accuracy on the validation set. 
Therefore we first unroll the tree and we write it in the terms of rules, we sort the rules 
according to the accuracy and then to use the rules first we will use the most accurate 
rules and keep using the rules until we get a rule match and then we get a classification. 
This is the idea of using a rule set on a decision tree. Then we can prune each of these 
trees. So, as an example let us look at this decision tree which has three internal nodes x1, 
x2 and x3 and three classes A which corresponds to x1 is equal to 0 and x2 is equal to 0 
or x1 is equal to 1 and x3 is equal to 0.  
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There is the class B which corresponds to x1 is equal to 0 and x2 is equal to 0. There is a 
class C which corresponds to x1 is equal to 1 and x3 is equal to 1. So, corresponding to 
this decision tree we can write out the rules as NOTx1 and NOTx2 implies class A, also 
NOTx1 and x2 implies class B, x1 and NOTx3 is class A, x1 and x3 is class C. So we get 
this set of rules. 
 
Now, at these four rules we try to see we can drop conditions from these rules and get a 
more accurate classifier. For example, we can drop the condition NOTx2 from this set so 
NOTx1 implies class A, we have not pruned NOTx1 and x2 so we prune this rule and we 
prune this rule so we drop the condition x1 from this rule and we drop this condition 
NOTx2 rule so we get this new set of rules which is smaller than the previous set of rules 
and we evaluate the accuracy of this old rule set on the holdout set. And if this rule set 
has higher accuracy we adopt the rule set. So we drop conditions to the rule so that the 
resulting rule set has higher accuracy on the holdout set.  
 
Can you spot the essential difference between reduced error pruning and rule possible 
pruning?  
In reduced error pruning we only prune the bottom portion. When you prune a node we 
prune everything below that node. If you prune an intermediate node it can be shared by 
different paths. So when we prune the node we prune it along all the parts. When we 
write out a decision tree in the form of a number of rules and we look at each rule 
individually we can prune a variable. For example, we are pruning the variable x1 for this 
rule so we are dropping x1 from this rule. But we are not dropping x1 from the other rule. 
So we can independently drop conditions on different rules. And we can drop a condition 
at the top of a tree and not drop a condition at the bottom. In reduced error pruning when 
we drop a node we drop everything below that node. 
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What are the advantages of rule post pruning?  
The language is more expressive than a decision tree. When we get an arbitrary set of 
rules they cannot always be efficiently expressed using a decision tree. A decision tree 
can express a disjunction of rules. They can be expressed but not very efficiently. So 
when we get the set of rules we cannot reconstruct the decision tree back from the rules, 
we want to use these rules. Therefore this language is very expressive, rules are easy to 
interpret, pruning as we just noted is more flexible than we use rule pruning. And finally 
in practical application this method has been seen to have yielded high accuracy.  
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Now let us look back at the methods of validating the new tree that we get. So, the 
methods we have looked at so far are by using a validation set, the training set and 
validation set approach. So the first method that we have been following involves 
dividing the dataset D into two sets train and test. We build a decision tree using train and 
we test the prune tree using test. The second method does not use a validation set. So this 
method can be used even when you do not have enough data to keep aside a validation 
set. 
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This second method uses a statistical test like the chi square test. The chi square test is an 
example, a statistical method people use than other tests. So, in this method we use all the 
data sets for training. Then we use a statistical test to decide whether we should expand 
the node or not. Suppose you have grown this tree and then you consider the tree 
statically in finding whether there is any benefit in expanding this node.  
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The third method is slightly different. It uses an encoding scheme to capture the size of 
the tree and the errors made by the tree. So we use something like the minimum 
description length principle. So the basic idea is that we use all the dataset D to construct 
the tree and we use the encoding scheme to know when stop growing the tree. Therefore 
this method is known as the mdl principle.  
 
In the mdl principle usually what we do is, we say that the best tree we want is the tree 
where the size of the tree in bits plus the size to represent the misclassified examples. So 
the sum of these two sizes should be minimum. Suppose you have a tree t which is larger 
in size suppose it contains 20 nodes and it misclassifies four examples four 
misclassifications. Suppose t’ has 6 nodes and it has six misclassifications so which one 
would you prefer? In order to compare these two schemes the mdl principle is used. You 
find out for any of these schemes the number of bits you need to represent both the tree as 
well as the misclassified examples. And of the different alternatives you have you select 
the classifier for which this is minimum. So this is the mdl principle which is also 
inspired by the occam’s razor principle.  
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Additional issues concerning decision trees:  
So far we looked at attributes which have either Boolean values or fixed values. Now 
what to do when we have attributes that take continuous values. For example, suppose 
you take the attribute temperature. So temperature can take different values. Now, what 
we do in this case is that we try to discretize continuous attributes and in order to do that 
we select a split. Suppose we say temperature greater than 30, temperature less than equal 
to 30 so we split the values of temperature into two sets. Therefore, in order to find out a 
good split what we do is we order all the values of temperature in the training set.  
 
We have ordered all the values and we find out for each value whether we have positive 
classes or negative classes. So we find that here there is a positive class, positive class 
and a positive class and then these are all negative examples, these are all positive 
examples, these are all negative examples. So these examples are negative whereas these 
examples are positive and these examples are positive. So, when we decide to discretize 
the attribute we select the possible points where we wish to discretize the values. Hence 
we only consider those cut points where there is a change of class. We choose the cut 
point that maximizes this information gain.  
 
To review, what we do is, we order the data set in terms of temperature values. And for 
each instance we note the classification against the temperature value. Now, when we 
discretize the attribute we cut it on one point. At this point if we cut this we find the 
information gain with respect to this cut. So, temperature less than 99.0 will be on this 
side, t less than 99 is on this side and t greater than equal to 99 is on this side. Therefore 
this amounts to getting a Boolean feature and with respect to this Boolean feature we can 
find the information gain. So we consider cutting at different points. We consider cutting 
at these points t less than 97.6, t greater than 99.6, t less than 100, t greater than 100. So 



we can consider cutting at each of these points for which the gain in information is 
maximum.  
 
Secondly, we wish to handle cases where attribute values are missing from the data set. 
For example, we may have a data set for which the value of mass is missing.  
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We have the other feature but the value of one of the features is missing, what we do in 
this case? There are several things we can do.  
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One possibility is to assign the most common value for that attribute in this node. 
Suppose Mars is missing we look at the other examples, we find out what is the most 
common value of Mars in the other examples we put that value in this example. This is 
one strategy. The second strategy is we look at only those examples which have the same 
class as the current example. Suppose the example is n it has a class x we find all other 
examples which belong to class x. For those examples we find which value of Mars is 
most common we use that value of Mars in this example, this is the second strategy.  
 
The third possible strategy is; we assign a probability to each value of the attribute. 
Suppose Mars can take three different values m1, m2 and m3. So, for each of these values 
of Mars we assign a probability and this probability is based on the frequency of those 
values you are going to take. Therefore each fraction is propagated down the tree. 
Suppose we find in the examples that Mars is the value of m1 with probability 0.7, m2 
with probability 0.2, m3 with probability 0.1 we assign these values with this probability 
to the node n and we use that in the decision tree algorithm. This is another example of a 
continuous attribute. We have temperature, we have the class that we are trying to learn 
and it is the play tennis class, we have ordered temperature, sorted temperature and 
ascending order 15 to 18 degrees, 19 degrees, 20 degrees, 24 degrees, 27 degrees and for 
each of these instances we have written down the class. We see that these are the points 
where the temperature value changes. 
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So we will be taking one of these as the cut point. For example, if we take this as the cut 
point then we will test if temperature is less than 18.5 degrees, if we cut at this point we 
will check if the temperature is less than 24.5 degrees centigrade. For each of these we 
will find the information gain and select the one with the higher information gain.  
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Questions: 
1) Given a training set which is noisy how will you decide when to stop growing the tree?  



2) We never test the same attribute twice along one path in a decision tree, explain why?  
3) If you have a continuous attribute do you think you can test the same attribute twice on 
the same path.  
4) Given training data is it always possible to obtain a tree which has zero error on the 
training set? 
 
 
 


