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Welcome, today we start with second lecture on learning. In the last class we had given 
introduction to machine learning. Today we will look further at the problem of concept 
learning. And in the subsequent classes we will look at some machine learning 
algorithms. The instructional objectives of today’s class are as follows:  
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We will be reviewing concept learning or classifiers. We look more closely into the 
inductive learning hypothesis and explain the various types of inductive bias and also 
discuss why inductive bias is regret to select hypothesis. We will look at the definition of 
version space. We will discuss the concept of over-fitting and we will also look at the 
issue of Cross-validation in order to find out the accuracy of classifier. And we will look 
at some versions of the version space learning algorithm. In the last class we discussed 
about concept learning or inductive learning for classification.  
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According to this problem the assumption is that you have a goal concept that you are 
trying to learn and we call this a target concept. And as we discuss the target concept 
could be something like a description. You want to know whether the given object is an 
apple or not or if you are given an image you want to know whether this is an image of 
zero or not.  
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So your objective is to learn a description of the target concept. And what you are given 
is a set of examples which we call the training set. An example or an instance x is 
described by a vector of features also called attributes. For example, suppose x is an 



instance x consists of n values x1 x2 xn then x1 is the value for attribute 1 for this 
instance, xn is the value of attribute n for this instance. Therefore, for the learning 
problem we have a number of attributes or features and each instance is described by its 
value for each of its attributes.  
 
Our training set consists of a set of such training examples. And there is an underlying 
labeling function f that maps an instance to a class. Sometimes we will be interested in 
two class learning problems. In those cases we will say that some of those instances are 
positive example of class and others are negative examples of the class. So there can be 
two classes positive and negative and in general there can be a finite set of k classes and 
each instance is labeled to belong to one of these classes. So, f is a function which maps 
an instance to one of the classes from 0 to k minus 1. 
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Now our objective is, given a set of training examples that is a set of instances x and for 
each instance its label effect which is given to us we want to learn the target concept f. 
The function f is not known to us but we know f applied to the training instance. So we 
guess something which can possibly be f and these guesses are called the hypothesis that 
we form. So we talk about a hypothesis space. 
 
We are going to search for f and where are we going to search for f?  
We define a hypothesis space. Once we have decided what are the attributes or features 
that we are using we will define a hypothesis space. And a hypothesis space is a 
collection of possible hypothesis. We will try to find good hypothesis out of those in the 
hypothesis space. So the hypothesis space h is a space of all possible hypothesis h1 h2 hn 
so h1 h2 hn are the different hypothesis in the hypothesis space. So, in the set of 
hypothesis suppose there are n hypothesis h1 h2 hn and we want to find one of these 
hypothesis which is possibly close to the target concept f that we are going to learn.  
 



Now it may be the case or it may not be the case that the target concept f is exactly one of 
the hypotheses in this space. So, if you do not choose the hypothesis space well or if the 
hypothesis space is not expressive enough the target concept f may not belong to the 
hypothesis space. Nevertheless your objective is to find a hypothesis of the hypothesis 
space which is close enough to the target concept. So the objective of the learner is to 
find a hypothesis h which is a member of the hypothesis space H which fits the training 
data the best. Therefore in order to identify a good hypothesis or the best fit hypothesis 
from the hypothesis space the learning algorithm has to carryout some form of search 
through this hypothesis space that is through the space of possible hypothesis.  
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Now, this concept learning problem is schematically represented in this figure. So we 
decide a hypothesis representation which defines the hypothesis space h. the way we are 
going to represent the hypothesis defines the hypothesis space. Our objective is to find 
the desired hypothesis by searching from this hypothesis space. And the desired 
hypothesis is one which best fits the training example that we are given. The training 
examples are input to the learning algorithm. The learning algorithm searches through the 
hypothesis space to find one of the hypothesis which best fits the training example.  
 
How do we get the hypothesis space?  
We have got a set of attributes or features let us say a1 a2 an are the n attributes. So the 
hypothesis space is defined in terms of these attributes. And the representation we choose 
to represent the hypothesis defines the hypothesis space. For example, if we consider that 
a hypothesis is a simple rule which can be expressed in predict calculus and the 
antecedent of the rule is a conjunction of literals so that could define an hypothesis space.  
 
Suppose that we have three features a1 a2 a3 then what is the possible hypothesis? The 
possible hypothesis could be a1 which is a possible hypothesis, a2 is a possible 
hypothesis, a3 is a possible hypothesis, a1bar is a hypothesis, a2bar is a hypothesis, a3bar 



is a hypothesis, a1 and a2 is a possible hypothesis, a1 and a2bar is a hypothesis, a1bar and 
a2 and a3bar is a hypothesis. So we can find out the number of such hypotheses. These 
are the possible hypothesis and we want to find one member of this hypothesis space that 
fits our training example.  
 
Now, if we consider a different class of hypothesis, suppose our hypothesis is a 
disjunction of exactly two literals then our hypothesis space will be different. What could 
be the possible hypothesis in this space? a1 or a2 is a hypothesis, a1bar or a2bar is a 
hypothesis, a1 or a3bar is a hypothesis, a2 and a3bar is a hypothesis and so on. So we will 
have a different set of hypothesis. So the attributes that we use and the way we represent 
a rule determines the hypothesis space. The hypothesis could also be describing other 
forms. For example, the hypothesis can be represented as a decision tree, the hypothesis 
can be represented as a neural network and so on.   
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Some more definitions to review: 
A training set is a set of all training examples that are given to the learner. And on the 
basis of the training set the learner forms the hypothesis. Now after this hypothesis is 
formed it has to be evaluated. If you evaluate the hypothesis using the same examples on 
which you have trained you are likely not to get a good reflection because your 
hypothesis may try to fit the training data perfectly well but it may not work well for 
other the data that you have not seen. So it is good if you can use a different set of 
examples for testing. So the set of examples that you use for testing is called the testing 
set. This example in the testing set should ideally be not known to the algorithm before it 
has learned the hypothesis. So the testing set is the set of all examples given to the learner 
after it has learned the hypothesis. 
 
 
 



(Refer Slide Time: 13:03) 
 

 
 
This set is used to test the accuracy of the learned hypothesis over the unseen example.  
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Here the oval represents the set of all possible instances and instances are described in 
terms of the values of the attributes. A concept is a subset of the instance space. So, only 
a subset of instance space belongs to the concept class and the other instances do not 
belong to the concept class. So the concept can be represented as a set which is a sub set 
of the instance space. And our objective is to learn this concept.  
 



Now we find a hypothesis and this hypothesis in general may not be exactly the same as 
the concept. So when we have a hypothesis we see that there are some examples which 
are correctly classified by the hypothesis. For example, these examples are correctly 
classified by the hypothesis because they are positive according to the concept and they 
are also positive according to the hypothesis. Whereas if you look at these examples, for 
these instances they are actually members of the concept path but they are not members 
of the hypothesis. So these are called false negative instances.  
 
Similarly, these instances are classified as positive by the hypothesis but actually 
according to the concept they do not belong to the concept so they are called false 
positives. So this is the region of false negatives and this is the region of false positives 
and the middle region is labeled as positive by both the hypothesis as well as the concept 
and the rest of the instances are also labeled as negative by both the concept and the 
hypothesis. Therefore the false positives and false negatives are the two regions of error 
for the hypothesis. Now our objective as we said in inductive learning is given for a set of 
training examples we have to learn a description or we have to learn a hypothesis. And as 
we have noted that we cannot learn this deductively because we do not have access to 
information about all the instances we use the principle of inductive inference.  
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The inductive learning hypothesis states that any hypothesis which is found to 
approximate the target function well over the training examples will also approximate the 
target function well over the unobserved examples. Now let us see the assumption behind 
this. If the training set and the test set belong to the same distribution, that is, if there is 
some similarity between them then by looking at the training set if we can identify a 
pattern we can infer inductively that such a pattern actually exists and it will be true of all 
instances. Therefore this is the principle of inductive inference which helps us to make an 
inductive leap. 
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Now you are given a set of training examples. On the basis of set of hypothesis you want 
to learn a hypothesis. There could be several competing hypothesis. Now what is the 
basis on which you decide which of the hypothesis to choose? The hypothesis you must 
choose is the one which has the minimum error and the highest accuracy. But you cannot 
measure the true accuracy of the hypothesis because you do not have access to all the 
training examples. Therefore you must use some sort of bias which is called inductive 
bias. There are many biases which have been used. For example, simplicity of hypothesis 
is a possible bias. Therefore a learning task is not always well formulated so there could 
be many functions that are consistent with all the training examples. And the algorithm 
must have an inductive bias on the basis of which the algorithm will decide one of the 
hypotheses.  
 
There are several types of bias which could be used. There could be a bias while 
designing the hypothesis space. The set of hypothesis is defined by the hypothesis space 
and hypothesis space is defined by the data structure or representation that we used to 
describe the hypothesis. By restricting the language for the hypothesis space you have a 
restriction bias.  
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Also, given a hypothesis space even in this hypothesis space there could be several 
competing hypothesis and the one which you choose among them would depend on your 
preference bias. For example you might say that if I have rule whose size is 1 then I will 
prefer that rule to a rule with size 3. So I might say I prefer a simpler hypothesis. So we 
might also have a preference path. There could be two types of biases. One is the 
restriction bias which restricts the hypothesis space and preference bias which selects 
among the possible hypothesis in the same hypothesis space. So, in hypothesis space 
restriction bias we restrain the language of the hypothesis space. For example, we might 
consider that hypothesis of monomials.  
 
What is a monomial?  
Monomial is a conjunction of positive or negative literals. So monomials are a 
conjunction of literals. We might say that our hypothesis space must only be a monomial 
such as a1 and a2, a1 and a2bar and a3, a1bar and a4 and a3 and so on. These are examples 
of monomials. If we have a monomial we cannot have disjunctions. We cannot have 
hypothesis like a1 or a2, we cannot have hypothesis like a1 or a2 and a3. So, if we decide 
that our hypothesis space is the space of monomials we are ruling out other types of 
hypothesis. 
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What is the advantage of choosing a restricted hypothesis space?  
If we have a smaller hypothesis space the process of learning will be simpler. The size of 
the hypothesis space is smaller and the algorithm may be simpler. The disadvantage of 
choosing a small hypothesis space is that a small hypothesis space may not capture all 
possible hypotheses so it may not be able to express all types of hypothesis. If you take 
an unrestricted hypothesis space we can represent all type of functions but then there will 
be a lot of functions which are consistent with the training examples and we have to give 
strong preference bias to choose one of them. And trying to search from a large 
hypothesis space we will not get a good algorithm to do that. 
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In preference bias we try to use a bias to decide which hypothesis is more useful. There 
are several types of preference bias that have been considered. One very popular type of 
preference bias is called the occam’s razor principle. So, occam’s razor is a very old 
principle and it actually means that things should not be multiplied unless it is necessary. 
So what it translates to is that we prefer simpler formula for our hypothesis. So if you 
have two competing formula and one is simpler we will prefer them. And there is some 
intuitive explanation of occam’s razor.  
 
There are fewer simpler hypothesis simpler patterns than more complex patterns and if a 
simpler pattern can fit our training data it has a better chance of fitting unseen data. And 
the second type of preference bias which is also very similar is the principle of minimum 
description length mdl which states that the best hypothesis is the one that minimizes the 
total length of the hypothesis and the description of the exceptions to the hypothesis. 
These are the some of biases that people have used.  
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When we have a hypothesis space which consists of a set of hypothesis how do we search 
for the hypothesis that we want. The search could be carried out in many ways. We will 
just mention two simple possibilities. One possibility is, you consider one hypothesis at a 
time which you call your current hypothesis. If the current hypothesis is not good enough 
you choose another hypothesis which is your next hypothesis. So this is the previous 
hypothesis and you try to go to a neighboring hypothesis using some operators. So we 
could use certain operators and we can try to make the hypothesis general or more 
specific.  
 
Therefore our current best hypothesis search looks at one hypothesis at a time and if it 
goes to a point where there are no good alternatives then it might backtrack to the 
previous job. Therefore several algorithms have been suggested to do current best 
hypothesis search. But the thing to note is that if the hypothesis space is very large this 



search will take a long time. The other type of search which has been advocated for 
theoretical learning algorithms is Least Commitment Search.  
 
Least Commitment Search considers multiple search at a time so it maintains a set of 
possible of hypothesis and as it gets more training examples it tries to restrict the set of 
hypothesis or adds some more. 
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So, one type of such algorithm uses the notion of what we call a version space. Suppose 
our original hypothesis space is H and H consists of n hypothesis H1, H2, Hn, some of 
these hypotheses is consistent with the example and some of them are not. If we remove 
these hypotheses that are not consistent with the examples we get the remaining 
hypothesis consistent with the current example. The hypothesis which is consistent with 
all current examples constitutes the version space. As we look at more examples the 
version spaces is further restricted. So our algorithm might maintain the current version 
of space and as it sees more examples the version space can get slowly restricted. This is 
called version space learning.  
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Formally a hypothesis h is consistent with a set of training examples D if and only if h(x) 
and c(x) where c(x) or f(x) is the target concept that we trying to learn, c is the target 
concept. So, if a hypothesis h agrees with the target classification c for every training 
example that we have seen then that hypothesis is consistent with the training example. In 
other words h is said to be consistent with the training set d if for all instances x c(x) 
belonging to the training set D h(x) is equal to c(x). 
 
What is the version space?  
The version space is denoted by VSH,D so the version space with respect to the hypothesis 
space H and the training set D is the subset of hypothesis from the hypothesis space that 
are consistent with all the training examples. This is called the version space.  
 
In other words, version space VSH,D is a set of all hypothesis belonging to the hypothesis 
space such that it is consistent with the training example. With this definition we can 
outline a theoretically simple algorithm called a list then eliminate algorithm. In list then 
eliminate algorithm when we have not seen any examples when d is null we say that a 
version space is the entire hypothesis space. So we list the entire hypothesis in the 
hypothesis space. Then as we take one example at a time we throw out all the hypotheses 
that are inconsistent in the training example and then we continue. Now this algorithm is 
very simple to describe but actually it is unrealistic because usually for any reasonable 
complex hypothesis the hypothesis space is really large and it is not practical to store the 
entire hypothesis in the hypothesis space.  
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Nevertheless the list then eliminate algorithm can be theoretically described as follows: 
We maintain a area of structure called the version space which is a list containing every 
hypothesis in the hypothesis space initially. Then we process each training example one 
at a time. We remove from the version space any hypothesis with the current training 
example. And at the end we output the list of the hypothesis is remaining in the version 
space. So this is the basic version space algorithm. 
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Obviously this algorithm is not practical because the number of such hypothesis is very 
large. Now we will just briefly discuss a variation of the algorithm which instead of 
keeping the entire list of consistent hypothesis tries to represent them in a succinct 
manner.  
 
A version space can be represented by keeping a list of all consistent hypotheses. 
Additionally a version space can be represented by keeping the set of general hypothesis 
or a set of hypothesis. There are some hypotheses in the hypothesis space and there are 
inconsistent hypothesis. This inconsistent hypotheses is either more general than one of 
the hypothesis in the hypothesis space or more specific than one of the hypothesis in the 
hypothesis space.  
 
In many cases the version space can be succinctly represented by a set of most general 
hypothesis in the version space and by a set of more specific hypothesis in the version 
space. Any hypothesis will belong to the version space. The specific set is called the s set 
and the general set is called the g set. If a hypothesis is less general than one element of g 
set and most general element of s set then the hypothesis belongs to the version space. 
With this idea an algorithm called the version space algorithm or candidate elimination 
algorithm has been formed which maintains the g set and s set.  
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Now let us see what we mean by choosing the best hypothesis. We are given a set of 
training examples but our real goal in learning is to find a hypothesis f’ belonging in h 
that will correctly classify all examples. So the ideal thing would be to choose that 
hypothesis f’ that minimizes this probability that f’ misclassifies the concept.  
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So f is what we are trying to learn, f’ is what we have so we want f and f’ to be very 
close. But we cannot compute this probability because we do not have all the guesses 
with us.  
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How do we measure the success of a learning algorithm? 
We have to measure how well the learned hypothesis predicts the classification of unseen 
examples.  
 
How do we therefore evaluate a classification?  
We have to measure the predictive performance of the hypothesis. If we learn on the 
basis of a training set and we test the performance on the same set we are cheating in 
some sense because our hypothesis may very well classify the training set but may not do 
so well on the test set because already we have seen the training set and we can be biased 
towards the training set. Therefore, in order to make a better judgment of the accuracy of 
the classifier we must measure it using unseen example and this set of unseen examples is 
called the test set. And do the extent possible we must keep the training set and the test 
set disjoint.  
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When we test the accuracy of the classifier we will get some sort of curve like this. So 
what we expect is as the size of the training set increases the accuracy of the classifier 
may increase. So we plot on the y axis the accuracy of the classifier and we measure the 
accuracy of classifier on the test set which is disjoint from the training set. And as we 
include more and more training examples we plot the accuracy of the classifier so we 
may typically get some curve like this and the accuracy may increase or decrease as the 
number of training set increases. So this sort of curve is called a learning curve.  
 
(Refer Slide Time: 35:01) 
 

 
 



So we want to fit the hypothesis to the training data. So we have some training examples, 
we have a space of possible hypothesis and we have an error function and we try to find a 
hypothesis which minimizes the error function.  
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There could be several error functions that we could use. For example our error function 
could be the number of examples which have been misclassified or our error function 
could be the sum of squared errors between f(x) and f’(x). If you test the accuracy on 
your training data you will usually note that as you train more and more the accuracy on 
the training data increases. 
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However, if you try to go on increasing the accuracy on the set of training data what 
might happen is that the accuracy on unseen data increases up to a point and then 
reduces. This is a common phenomenon you can observe that as your algorithm is tuned 
more and more the accuracy on the training set may go on increasing but after a point the 
accuracy on the test set might decrease. This is a typical behavior you might notice with 
many learning algorithms.  
 
What is happening usually is that your algorithm is over fitting the data. It is fitting itself 
to all the idiosyncrasies in the training data which makes it incapable of generalizing over 
unseen data. This phenomenon is called over fitting because more you train the better you 
fit the training data. Ultimately all the examples might be memorized. The data that you 
get may not be pure data there may be noise in the data. For example, suppose the color 
of apple is green it might appear as yellow. So, if you try to fit in the noise in the training 
data the algorithm will over fit the training data and work very well on the training data 
but it will not work well on the test data. This is an example to illustrate over fitting.  
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These black things here are the training examples and the curve you have got fits all the 
training examples. The green balls are the test data and this curve does not fit the test data 
very well, it has zero error on the training data but it has some error on the test data.  
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For the same examples we have another curve which has from finite error on the training 
data but it fits the test data in a better fashion. 
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How are you going to properly test the accuracy of your classifier? 
You are given a set of examples. Now what you should do is that instead of using all the 
examples for training you should keep aside some of the examples for testing. So you 
hold out some of the examples. You divide the total set of examples you have into two 
sets as the training set and the test set. On the basis of the training set you train your 
classifier and then you measure accuracy with the test set. So the hold out method 



advocates splitting the available data into two sets. The training set is used to train the 
classifier and after the classifier is trained testing set is used to estimate the error of the 
classifier. 
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Of course this hold out method requires that enough number of examples are available so 
that even after keeping aside some test set you have enough data remaining use for 
training. Usually for most algorithms, the more data you use for training the better the 
accuracy of the classifier will be which you can expect. So this sort of hold out will only 
work well if there is sufficient amount of data. But some times what happens is that lot of 
data is not available. In certain fields it is not very easy to get data. 
 
In those cases you have to use some intuition to optimally use the data that you have. So, 
one of the techniques is called the k-fold Cross-validation. The k-fold Cross-validation is 
useful when you do not have a large amount of training data. So what you do is you 
partition the available data into k classes. For example, this is the case of four fold Cross-
validation.  
 
We have divided the data into four classes and then we ran four experiments. In 
experiment one we keep aside the first class for testing and the remaining three we used 
for training. In the second experiment we keep the second data aside for testing and used 
the remaining three for training and so on. So we have four experiments and for each 
experiment we get accuracy and we get the estimate the accuracy of classifier an average 
of this accuracy. So this is called k-fold Cross-validation. It could be used to conserve 
training data and make the best use of the training data. And one extreme case of k-fold 
Cross-validation is Leave One Out Cross-validation where if you have m data you divide 
the data into m sets of one example each and you run m experiments, in experiment i you 
leave aside one of the data i and use the rest for training and on the trained data you test 



one. So this sort of approach is used when you do not have a large amount of examples 
available to you.  
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Therefore in k-fold Cross-validation the true error estimate is obtained as the average. 
You have k estimates of error and you take the average to obtain the average estimate of 
the error.  
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Leave-one-out Cross-validation will often be referred to as LOOCV that stands for 
Leave-one-out Cross-validation. It is a case of k-fold Cross-validation where k is chosen 



as the total number of examples. So, if you have a data set of N examples N experiments 
are to be performed. For each of these experiments one example is kept aside for testing 
and N-1 examples are used for training.  
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Here are some questions: 
1) Suppose you have a2 class learning problem so the classes are plus and minus, the 
classes are referred to by q so q is the target concept that you are trying to learn. And you 
have got seven different examples and there are four attributes to this learning problem a1 
one a2 two a3 three and a4 four and these attributes are Boolean attributes. And you have 
got these seven examples so you assume that there is a bias in favor of simpler 
hypothesis. So your objective would be to find a good hypothesis for this particular 
concept q. So the training data r first example is, true true false false it is negative, the 
second example is, A1 one is false A2 two true then false, true its class is negative.  
 
Third example: false true true true class positive.  
Example 4: true true true false class is positive.  
Example 5: false true true true class is positive.  
Example 6: false true false false class is negative.  
Example 7: true true false true class is negative.  
 
So, given these examples you try to find a simple hypothesis for q. And you can also try 
to find several hypotheses which are consistent with these training examples and find the 
simplest of them. Use your own measure of simplicity.  
 
2) Again you are given another training set. Now this training set is slightly more 
complicated. We have again four attributes A1 A2 A3 A4 and we have a target concept q. 
So, again for these training examples you must try to figure out different hypothesis and 



propose one of the hypothesis which is a good hypothesis which is consistent with all the 
training examples. Here again we have a ten training examples.  
 
Example 1: A1 is high A2 is red A3 is in A4 is NV and classification is positive.  
Example 2: A1 is high A2 is green A3 is out A4 is V and classification is positive.  
Third example: A1 low A2 green A3 in A4 is V and classification is negative.  
Example 4: A1 is high A2 is red A3 is in A4 is NV and Q is positive.   
Example 5: A1 is low A2 is green A3 is out A4 is NV Q is negative.  
Example 6: A1 is low A2 is red A3 is in A4 is V and Q is negative.  
Example 7: A1 is high A2 is red A3 is out A4 is NV and Q is negative.  
Example 8: A1 is low A2 is green A3 is in A4 is NV and Q is positive.  
Example 9: A1 is high A2 is red A3 is in A4 is V and Q is negative.  
Example 10: A1 is low A2 is blue A3 is in A4 is NV and Q is positive.  
 
Therefore your exercise would be given these training examples, find some competing 
hypothesis and choose one hypothesis.  
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Then the last question: 
3) You state whether true or false: 
a) Overfitting is more likely to occur when the training set is large.  
B) A hypothesis is found that achieves 80% accuracy on the training set. The hypothesis 
is guaranteed to have a lower accuracy on any test set. State whether true or false, 
whether the accuracy on any test set will always be lower than the accuracy on the test 
set.  
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Some questions from the previous lecture: 
Consider the problem of trying to recognize handwritten digits. Formulate this as a 
concept learning problem.  
a) Clearly specify what can be the possible features. 
b) How do you get the training set and the test set?  
c) How will you measure the performance of your learning algorithm?  
 
In order to recognize handwritten digit what is the input that you get? The input is an 
image. Suppose you write this digit 1 or write this digit 7 the input is an image containing 
this digit. And in this input usually when you are trying to recognize digits this image 
will be only in black and white in two colors, the background color and the pixel color of 
the digit. So, from this image your objective would be to find out whether this is 1 or 7 or 
2 or 3 and so on. Therefore your raw input is an image like jpeg or bitmap etc. It is true 
from what you can get is the pixel value. Therefore you get the pixel value and you can 
do some sort of image processing so that you ultimately get the black and white image. 
So you binaries it and you get a black and white image where some pixels are black and 
some are white and from this image you want to know the identity of this digit. So the 
raw input is the set of pixels. But the number of pixels will depend on the size of the 
window. Suppose this window is 20 pixels by 20 pixels so you have 400 pixels where 
each pixel is either white or black, this is the raw image.  
 
Now you can try to get a hypothesis using these raw features. Therefore if you use these 
raw features your algorithm may not be able to get a good hypothesis unless all the 
possible ones are written exactly in the same way. Some people might write 1 like this, 
some people write 1 like this, some people write 1 like this some people write like this so 
all these have different pixel representations. Now if you want to do a very good job of 
recognizing these digits may be it will help if you can extract some more sophisticated 



features from this raw image that is available to you. For example, you could try to find 
whether there is a vertical line.  
 
You can try to look at the image and you can try to detect all vertical lines in the image or 
all possible lines in the image. You can try to get different transforms and you can find 
the moment of the image. So you can get set of more sophisticated features which can be 
used by a learning algorithm. So the raw input to this learning problem is a set of pixels 
whether it is white or black.  
 
Initially you put with an image which consists of colored and pixels after you do some 
preprocessing or binarisation you get some raw pixels and you can further make more 
pixels indicated by getting more sophisticated features. For example, the value of the first 
moment, the result of half transform, the different lines that are present in the image, you 
can use different masks. So those are the inputs to your learning problem.  
 
Now how would you get the training set and the test set? If handwritten digit recognition 
is the problem that you wish to address you should get several of your friends or to write 
down the different digits in their own handwriting. The style of writing the digits differs 
from person to person. Different digits may be expressed in different ways. So if you get 
different types of digits written by different people or friends then you can try to use 
these as your training set or the test set. Or you could take certain places where you have 
access to handwritten digits, for example in the post office you could scan the pin code 
on the letters written by various and try to recognize those digits. So you collect a set of 
such samples. And once you have collected sufficient number of samples you use some 
for training and the rest for testing.  
 
To measure the performance of learning algorithm you use a training set on the basis of 
which you train your classifier and evaluate the accuracy on an unknown set.  
 
(Refer Slide Time: 55:07) 
 

 



2) Consider the problem of trying to play a game of Ludo, formulate this as a learning 
problem. Clearly specify what your system will try to learn. How can you get the training 
examples for this system?  
Now, in order to learn to play a game of Ludo there are the two things you could do. 
Either you could work it out in the supervised learning framework or you could work it 
out in the reinforcement learning framework. In supervised learning framework you 
might get a set database of boards, actually in Ludo you have at least two or more players 
and suppose there are two players player one and player two and there is a board and 
different pieces are in different positions and when it is your turn to play you roll a die 
and depending on the score of the die you have to play your move. So basically what you 
are trying to learn is, given the board and given the die what should be your next move is 
what you need to know.  
 
Now, in order to learn this if you have a set of training examples where for different 
board positions and for different rolls of die you have the recommended move to make 
given by an expert then you could try to learn the move from the board. In Ludo the 
number of possible board configurations is very large and for each configuration you 
have several possibilities of what the die throw turns out so the number of possible 
situation is very large and this is not a very easy learning problem unless you are able to 
generalize in some sense. So using these raw features is not really very practical. 
Therefore you have to generalize the board in some manner.  
 
The second way by which you can learn is you can play automated games against each 
other by random moves and you can generate a huge number of database of such games 
and you can use reinforcement learning to learn. But even in the first case what you really 
need to do know is in order to make this learning program practical the raw board 
configuration is not very easy to deal with because there are so many raw board 
configurations. So, to handle games like Chess, Ludo, Backgammon where there are so 
many configurations what you try to do is you try to get certain features from analyzing 
the raw board. For example the features could be the number pieces of the opponent 
which are in his home base, number pieces of opponent which are in unprotected 
situations, whether your die roll is able to capture an opponent. Therefore like this you 
can set up some features.  
 
For example, if you have twenty or thirty features then for your current board position 
you can evaluate the values of these features and then from the examples you have you 
can abstract them in the features phase. For each instance you can find the values of these 
features and then you can see what the possible moves are and from this you can learn.  
 


