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In the earlier lecture we discussed about reasoning with uncertainty and there we
discussed about certainty factor algebra. And we had also shown how MYCIN uses
certainty factors in order to deal with uncertain reasoning. A very powerful tool for
reasoning with uncertainty is the probability theory and probabilistic techniques. In
another term that is called statistical reasoning. Many of you might be familiar with
probability and we will have a brief recapitulation of the basics of probability theory
today and then from there we will proceed towards reasoning using probability of
events. We are having some confidence associated with some rules. However, these
confidences or the certainty factors or the measure of beliefs or disbeliefs were being
attributed by subjective decisions taken by experts.

However, if we had actually conducted a number of experiments, for example, a
particular rule a implies b, out of thousand times when a is true how many times did b
become true?

If we could make a through experiment about this and based on the frequency of the
times when a implies b really holds we could have really given a much more realistic
value or a more realistic strength of belief to the rule. That is the basic idea of
probabilistic reasoning. However, there are associated problems and complications as
well. Before going towards the probabilistic reasoning we will re-look on the issue of
uncertainty in decision making problem.
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In the earlier lecture we had talked different sources of uncertainty, here we are
looking at the same issues but they are being presented in a different way. One issue
is expressiveness. We have to deal with uncertain situations because of our inherent



limitation of expressing very concretely some of the facts that we deal with. So the
question is can concepts used by humans be represented adequately? Can the
confidence of the experts in their decisions be expressed?

The experts take some actions. When they are faced with the situation they apply their
intuition, their common sense, their experience and take some actions. But what really
led them to take that action is often not very clearly expressed. If you recall while
discussing about knowledge acquisition we mentioned the same thing that it is very
difficult to extract expertise from the experts.

Now when the experts take a decision under an uncertain situation how do we ensure
to extract the exact mechanism or confidence or the probability whatever the expert
applies. The second issue is comprehensibility. How do we represent the uncertainty?
First of all that uncertainty has to be represented and secondly that representation
must be such that we will be able to utilize that in the standard reasoning method like
Modus ponens or rule based inference or whatever. If you recall we will not call an
organization of information to be knowledge unless that is usable to perform
inferencing. The same is true here.

We have to represent the uncertainty in a way which can be reasoned with it. The
third factor is correctness, how correct is it? When we take probabilities obviously
anything that is having a probability of 0.7 is not known with certainty. So if | take
this 0.7 probability as a measure or as a key factor to take any decision how correct
would my decision be? A probability of 0.7 means, in 70% of the cases it is true but
in 30% of the cases it is not. So obviously there is a chance that the decision that |
take will not be correct if it falls in that 30%. Therefore the probability must be very
reliably calculated and gathered from a huge set of data.

The other thing is relevance ranking and long inference chains. We have seen in our
earlier discussion about certainty factors that as we propagate through rule chaining
for example a implies b, b implies c. As we propagate or proceed through a longer
chain and when our starting point a is known with some uncertainty which means not
100% certain and a implies b is also an uncertain rule then obviously b is inferred
with a lesser certainty. So some error may have got in when | assigned that
uncertainty in the rule or in the fact a, we will propagate b. Then when | use the rule b
implies ¢ and take a uncertain decision about ¢ with some belief then if there were
some error that error will be propagated. Therefore that is another issue.

Another important thing is the computational complexity. We may like to represent
uncertainty in different ways but ultimately the computer will have to take the
decisions. So the computational complexity maybe of the order n or n square whether
it is polynomial or whether it is exponential all these issues will rise because we have
to take the decision in sometime. In some cases we have to take it in real time but in
some other cases also there must be a finite time we cannot spend a lot of time to just
make a computation for one uncertainty handling and there will be so many other
uncertain cases and for every time we will not be able to devote that much
computational time. Therefore computational complexity becomes an issue because
we want to have fast decision making.
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The other source of uncertainty is data. Missing data: Some data may not at all be
available. That is, suppose we have got sensors put in different places but there are
some very difficult places where it is very difficult to approach and put in a sensor
then we will not get data from there. There may be that we are collecting data from
hundred sensors but some of the sensors fail and we are not getting data. But in the
absence of that data also we have to carry out the reasoning. This is known as missing
data.

The other thing is unreliable data. The data may be unreliable because when we
receive the data the data is propagated through some channel and that channel may be
noisy. For example, you are carrying out a blood test and whatever machine you are
using for the blood test is not very reliable so you get a gross idea of the blood report
but that is unreliable. In some cases it is ambiguous and imprecise. We do not very
clearly specify those.

We have already seen some expressions like very tall, quite big, sometimes,
frequently, seldom etc are some of the statements we make which are not precise,
seldom, often, how often? How many times in a day? How many times in a week?
Sometimes the data may be inconsistent. You may get the data or the information
from multiple sources and the data may be inconsistent. Sometimes the data may be
subjective and sometimes the data may be derived from defaults. Now this requires a
special mention.

What do we mean by default?

Default means assuming something when nothing is known to the contrary. If you
recall in the passing | mentioned about abductive reasoning, and deductive reasoning
has been discussed. We have also mentioned about abductive reasoning. There is
another very interesting type of reasoning called default reasoning.
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What does this default mean?

Default means assume something like x to be true when nothing is known to the
contrary. That means | do not know, | do not have any evidence, no evidence is right
now available is right now available that contradicts x that says not x, there is nothing
such. So when nothing is known to the contrary then assume something. That is called
default reasoning.

Here is an example; Fido is a dog and you know dogs have four legs. Therefore | can
infer that Fido has four legs. Now if | know that Fido met with an accident and had
one leg amputated then obviously this reasoning will fail. Now I am feeling tempted
to ask you what is this sort of reasoning?

Fido is a dog so | can say dog Fido and dog x implies four legs x from there I infer
four legs Fido.

What is this form of reasoning?
This example relates to Modus ponens which looks like P implies Q and P is true so
we assume Q is true.



(Refer Slide Time: 16:02)

Fida w & M‘a 'iaa(hb)
Do haw four lap “ﬁ{"-z :
" Fide don fowr Ly S

P a ——
b Hodus Jovem

Now if | had known that Fido met with an accident and had one leg amputated then
obviously this would have failed. But in the absence of that knowledge I will certainly
apply this rule and assume that Fido has four legs. Now say | have got some facts
from the domain of cricket matches, so | want to know about batsman x and | have
got some details about batman X, I know average runs scored by him, number of
centuries he made etc.

Suppose in my knowledge base I do not know whether he is a right handed batsman
or a left handed batsman, it is not known nothing is there. Now on a sudden a query
comes as which hand does x uses while batting?

Normally given these facts | will not be able to answer these questions because | do
not have that information.

However, if my reasoning mechanism says that for any such query if nothing is
known if not known assume right handed. Then with this power | will be able to
answer this question and I will say right handed x. However, this may not be true but
this is the default reasoning that we do because might be now if here it is said left
handed x then obviously this information which is present will overwrite this default
and this information will not be holding any longer. This is what is known as default
reasoning. So whenever we take some conclusion based on default reasoning
obviously some amount of uncertainty mixed in that.

The second point we are coming to is expert knowledge. As we are mentioning time
and again there may be an inconsistency between different experts. Often the experts
talk about plausibility that is a best guess of experts, best guess so again it is not a
certainty.
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The other important factor is the quality the causal knowledge. If we know the
causality the cause effect relationship, for example the resistance of an electric circuit
affects the current that is flowing and also the voltage causes the current to flow. Now
this is the effect and if we really know for example this causality is known by the well
known law of Physics the Ohms law. We have got a deep understanding of the
causality the relationship between the cause and the effect. But in many cases that is
not true. We do not know the area to such depths.

For example, psychology we are still trying to model the human brain. We do not
have any clear grasp on how the mind or how the psychology works so we cannot
make a very strong causal commitment over there. Instead in many cases where the
causal knowledge of the deep understanding is not available we go through statistical
associations which are observations. We look at several cases and based on that we
carry on our decisions.

Knowledge representation: This is another issue. How do we represent knowledge?
When we discussed about knowledge base systems we said that we cannot really
make a complete knowledge base. Therefore in order to make it really good we have
to narrow down the domain so that we can go deep into it. Hence we actually work
with a restricted model of the real system. The actual system may be very diverse but
we are working with a restricted version a narrow version of that and limited
expressiveness of the representation mechanism.
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Inference process is also another important issue. We know what deductive reasoning
or deduction is. We know that there is sound so the derived result is formally correct
but we may find that it is wrong in the real system because the rule may itself be
wrong. There is a subtle difference, my reasoning is right but my rule is wrong. So
again coming back to our Modus ponens P implies Q and P | infer Q this inference
process is fine, this inference rule is correct but the correctness of this result depends
on the correctness of this rule. If this rule is not correct then obviously this inference
also will not be correct. So there is a difference between the soundness of the
inference process and the correctness of the result. Even if the inference process is
sound the result may not be correct unless the axiom or the theorem or the rule that |
have written over here is not correct.

Inductive reasoning: The new conclusions that we get are always not well founded.
Again the different inference mechanisms with which we are by now familiar is
deductive the other one is abductive.

Now | introduce another one that is inductive reasoning. And actually it is not new
because you will see that day-to-day we often use this. For example, to a child I show
one ball a particular ball that is a round shaped object. So, a; is some round shaped
object and | tell the child that it is a ball so the child associates the round shaped
object with ball. Next I show him another ball which is another round shaped object
of a different color and I say this is a ball. I show him another might be a football but
the earlier two were smaller balls like cricket ball, hockey ball etc, now I show him a
football which is also a round shaped object but only the size is different and | say this
is a ball. In this way | go on.

Gradually the child learns that for any round object that is shown to him is a ball.
Therefore all these are instances and based on that the child learns a rule that is for all
a that is round for all round objects a; implies ball. Now I show him an apple or an
orange which is round a well shaped orange and the child will infer it as a ball
because he has inferred that all the round shaped objects is a ball because | have



shown him large number of instances n number of instances and from there | have
made a generalization. Now if these instances are proper then for most practical
purposes this will be a very useful way of reasoning.

How do we infer? How do we learn?
Actually most of the things we do is through induction. This is the process that goes
on. So this is known as inductive reasoning.
(Refer Slide Time: 28:18)
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However, as we have shown here this is not sound because there may be counter
examples. The same unsoundness was there in the case of abductive reasoning also.
So inductive reasoning in that the new conclusions that we arrived at are not always
well-founded.
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The other thing is individual rules. There can be errors in the individual rules, there
can be representation errors, inappropriate application of the rules etc. Now we have
already seen this case that the likelihood association of the evidence we have seen just
as we did in the case of certainty factors we had put in several certainty factors with
the premise for the conclusion and the combination of evidence from multiple
premises. All these examples we have already seen while discussing about certainty
factors.

In Rule Based System there can be another issue like uncertainty can come up when
we have got multiple parts and there are multiple rules to use. Therefore here we
bring in conflict resolution which means from the set of multiple rules we select one
or two and apply them. Now, the one which is selected might give rise to some sort of
uncertainty. The compatibility, the contradiction between rules, the subsumption
where one rule may be more general than the other one, there may be missing rules.
When we collect the data from multiple sources of different reliability we will again
get a varied result, the reliability of the ultimate fused data set will not be the same.
Now, in order to handle such complicated scenario a probabilistic approach is
required.
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Basics of probability theory:

Probability theory is a mathematical approach for processing uncertain information.
And we talk about a sample space. What is a sample space?

A sample space is the set of all possible events. For example, when we deal with a
dice when you toss a die which has got six faces the possible outcomesare 123456
so that is a set. It can be discrete or continuous. For example, when | think of the
possible temperatures that can be there tomorrow the typical weather report what will
be the maximum temperature?

It can vary in a continuous range. So this sample space can be considered as a set.

What is a probability?

Probability is a real number P(xi) where xi represents any of these events. So we call
these to be the events and any of these events is associated with a real number which
denotes the likelihood of the event to occur. And as you know it is a non negative
value between 0 and 1 and total probability of the sample space is 1. These are the
basics and here is an example. We can always think about it as a set. It is a set of
possible events in the case of a dice throwing. The possible events are 1 2 34 5 6. So
when | throw a die any of these discrete events will occur. Either 4 will occur or 5
will occur and each of them have got a probability associated with it. Here this is Xi
and if the dice is fair then you know that the probability of an event xi is 1 by 6 in this
case because all of them are having equal probability. And the total probability of the
sample space is 1. That is, when all these are added together that will be 1.
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Now for mutually exclusive events, what is meant by mutually exclusive events?

Two events cannot take place together. When | throw a coin it cannot be head and
tail, it will be either head or tail. The probability of at least one of them is the sum of
their individual probabilities. The probability can be of two types namely
experimental probability or subjective probability.

Experimental probability is based on the frequency of events. If | carry out a fair
experiment of throwing the die or if | take a biased coin and throw it ten times may be
it will not be five times head and five times tail. If it is biased then may be I will get
seven times head and three times tail. But with that experiment being done quite a
number of times we can come to a fair degree of association of the frequency of the
events. The other thing is the subjective probability that is based on the expert’s
assessment of the whole thing. The next thing is compound probabilities.

(Refer Slide Time: 35:25)
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In the last lecture we tried to explain the idea of independent events. Suppose there
are two sets here the possible outcomes are 1 2 3 that is my space X and there is
another space Y, when I press the bell 1 as this is a sort of a button or I can press any
one of them, and here there are some other events say a b ¢ that will appear as | press
a button. Now if there be a direct association, that if 1 is pressed then (a) will be
displayed, when 2 is pressed (b) will be displayed then there is a direct causal
relationship between these two and they are not independent.

On the other hand, if it be the case that both the appearances of 1 2 or 3 ora b c are
absolutely random based on their own probabilities, there are some probabilities of
P(A) may be 0.6, most of the time A occurs P(B ) is 0.3 and P(C) is 0.1 so all these
are adding up to 1 for this space. Most of the times probably | will get A irrespective
of whether | press 1, 2 or 3. So in that case the appearance of the pressing of the
button 1, 2 or 3 and the appearance of the symbols a b ¢ are absolutely independent,
there is no causality among them. In such cases the probabilities do not affect each
other in any way.

The joint probability of two independent events A and B is given by P

probability of A and B that is the number of intersections A and B divided by the total
number of elements in the set and that can be computed as the probability of A times
probability of B. For example, again thinking of this same example 1 2 3anda b ¢
this is the display that will be displayed and this is the key that will be pressed. Now |
can compute the number of times that 1 as been pressed and a has appeared. Now, if
this be random it has got its own probability. here we said that P(a) was 0.6, P(b) was
0.3 and P(c) was 0.1 and similarly here we have said P(1) is 0.6, P(2) is 0.2 and P(3)
where 3 is being pressed is also 0.2 because that should also add up to 1. Then the
joint probability of that 1 will be pressed and a will appear will be probability of 1
multiplied by probability of a occurring that will be equal to .6 times 0.6 is equal to
0.36.
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Now this will hold only if this and this are independent. They are absolutely
independent, this is coming from one set and this is coming from an independent set.
That is known as the joint probability or compound probability. Similarly, A or B,
that is the union probability of two independent events will be P(A) plus P(B) the
probability of A plus probability of B minus the joint probability when they are
occurring together. In the earlier example they have got their probability 1, 2 and 3.

What is the probability that 1 will be pressed or a will appear?

Obviously 1 will be pressed has got the probability to be 0.6 as we have done earlier.
The fact that a will appear has also got a probability 0.6. But there is a joint
probability in that 1 am already considering the cases where 1 and a have jointly
occurred so that was 0.36 so minus 0.36. Therefore it will come to 1.2 minus 0.36 and
that will be the union of this. Basic axioms of probability:



Probability is a value between 0 and 1. P(E) denotes the probability of the event E. If
the event is always true then P true is 1 that it is a certain event. There is no
uncertainty involved in it.

(Refer Slide Time: 41:48)

Probability - Basic Axioms
+ A value between 0 and 1.
P(E) denotes the probability of the
event E.

P(True) =1, i.e. certain event

P(False) = 0, i.e. impossible event
P(A) = 1 - P(-A)

P(AvB) = P(A) + P(B) - P(A~B)
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Similarly, P(false) is O that is it is an impossible event. P(A) there is a probability of A
occurring is equal to 1 minus probability of OA occurring. Since the total space is 1
then obviously the probability of A occurring must be 1 minus this. Similarly, again
this example will tell you a b ¢ and P(a) is 0.6, P(b) is 0.2, P(c) is 0.2 so what is the
probability of 0a?

Probability of Oa is either probability of b or probability of ¢ so that will be the union
of this so it is 1 minus the probability of a. That is, basically if you look at the
probability of b in this case the probability of ¢ taken together so it will be 1 minus
0.6 is equal to 0.4. The basics are P, A or B. These are the basic axioms of probability




which will lead to use. Till now we were discussing about independent events. Now
let us look into dependent events.

(Refer Slide Time: 43:48)
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Dependent events mean they affect in some way. One of the ways they can affect is
the causality. If the voltage across a circuit is increased the current flow will increase.
There are other ways also in which our reasoning can affect. For example, if there is a
murder then there will be some blood stains, so, if we see blood stains from there we
can also reason back towards murder. So evidences also sometimes help in reasoning
and that is very useful in the case of diagnosis. When we look at some fault we try to
reason out the cause of the fault.

Now, if two events are dependent then that is the fact that one event has occurred will
certainly influence the occurrence of another event. This is known as conditional
probability. That is, conditional probability of an event A given that event B has
already occurred that is given by P(A by B). Now here you will again find some
similarity with our certainty factor case where we are time and again writing MB(h by
e). Similarly, here we are saying that the probability of an event A occurring if B has
occurred.

What is the probability of this?

Now B has occurred or B has got a particular probability of occurrence. In that case
what is the probability of A’s occurring?

That is known as conditional probability. And that is given by P(A) AND B. That is A
has occurred and B has occurred divided by probability of B. It is P(A by B) is equal
to P(A AND B) by P(B). Now there are two types of probability. Here you can see
that the probability of A and B occurring is being divided by the probability of B.
Now the probability of B is known A-Priori.

Here we have to talk about two types of probabilities. One is A-Priori probability.
That is the probability of A-Priori and we also write as apriorie that is known before
hand. P(B) we have computed irrespective of A. Irrespective of A | have computed



the P(B) through experiment. And suppose | find that in general B occurs with a
frequency of 0.6. You go to a village and carry on some experiments just on the
occurrence of malaria in that village. So P(malaria) you find that out of every ten
persons six persons are inflicted with malaria. So the probability of malaria is 0.6.

Now we would like to see probability of fever P(fever by malaria). This may not be a
very good example when they had malaria. When they had given they have malaria
what is the probability of fever? How many of these people had fever? Assume that
all malaria cases are not giving rise to fever. So in that case what we are trying to say
it is the probability that somebody will have fever, he has fever and malaria and | find
that the probability is 0.9 in those cases where he had fever and malaria. Now out of
these malaria has got an independent probability A-Priori probability that every six
people will have malaria. So they got fever because of malaria not be right. People
can have fever for some other reason also. So we compute this by dividing with the
A-Priori probability of malaria. That is because they are not independent | divide it
with 0.6 and whatever value comes up that is my conditional probability of fever
given malaria.

(Refer Slide Time: 49:44)
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This is known as conditional probability. A-Priori probability:

The prior probabilities of events A and B suppose we know P(A) and P(B) we know
the prior probabilities. We know the prior probabilities of P(A) and P(B). But if we
know A for sure then probability of B might change. If we know A for sure then this
is represented as the conditional probability of B by A.

Now let us go back to the doorbell problem we had seen earlier. Doorbell rings at
midnight so it is D. W is Mohan wakes up at midnight. And suppose the A-priori
probability of the doorbell ringing at midnight is 0.001 as the probability is really less
and Mohan is waking up at midnight for different reasons such as for the doorbell or
for some other reason maybe feeling very hot or uncomfortable etc is 0.01. And we
say that the probability of Mohan’s waking up with doorbell when the doorbell rings
is 0.8. Now this is a conditional probability. These are A-Priori probabilities that
doorbell or no doorbell the probability of Mohan’s waking up is 0.01.

For any reason the A Priori probability of the doorbell ringing is 0.001. And this is a
conditional probability that if the doorbell rings then Mohan will wake up that is 0.8.
So there is a difference between the types of probabilities. Now, in order to handle
this sort of cases there is a very interesting and famous rule that is known as Bayes’
rule that is used for computing the conditional probabilities. Probability of an event A
by B that is if B is known then the probability of A can be computed by this formula
as, here we are trying to find out the conditional probability.
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Probability - Bayes’ Rule
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Example:

Conditional of probability of A occurring when B is known. Now, if we know the A-
Priori probability the reverse relationship | know the A-Priori P(A) and | know the A-
Priori P(B) and I also know the A-Priori P(B) occurring when A occurs. What we are
trying to do is a cause effect relationship. Then this is the formula that gives me P(A
by B) that can be derived with P(B by A) multiplied by the A Priori P(A) by A Priori
P(B).

Now this can be easily derived like this:

P(A AND B) is, what is this? It is P(A by B) times P(B) and again P(A AND B) is
P(B A) (P A) if I just change it. Now from this | can say this one is P(A AND B) by
P(B) and P(A B) is P(B A) by times P(A).

What is the implication of this?

Before going to the implication of this here is an example. A Priori probability of
doorbell ringing is 0.001, A Priori probability of Mohan’s waking is 0.01, A Priori
probability we know that if the doorbell rings Mohan will wake up is 0.8 then what is
the probability that when Mohan woke up?

He woke up because the doorbell rang. I want to find the reverse thing. Then by
Bayes’ rule we will simply use this P(W D) multiplied by the A Priori probability of
this denominator. This is the event and this is the hypothesis. The event is 001 and
that is divided by the A Priori probability of waking up because | have to divide by
this because anyway that would have happened so | get a normalized probability of
P(D W) which is 0.08. This is a very important technique and it has got far reaching
implication. We will see what it really implied. We are given some event and from
there we try to come to a hypothesis. And | really want to find out the probability that
this hypothesis is true given this event.
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For example, if this event is fever and if he has fever he had malaria. What is the
probability that if he has fever he will have malaria?

I want to find that out that fever is implying malaria. | want to find out the probability
of this. Now I know P(e by h). What does it mean?

This means that somebody who had malaria had fever also, how many times it
happened?

I find that this probability is something like 0.4 so | know this thing A Priori and |
also know the probability of fever in a particular locality, | also know the probability
of malaria in a particular locality and these are the A Priori probabilities. So using this
one, this one and this one | am trying to find out this. So I know these A Priori
probabilities and | also know that if somebody has malaria then he has fever this part
is known. So, from the knowledge of this | am trying to derive this and that is being
done using exactly what is being done in the case of Bayes’ theorem. And this
conditional probability is very important for all purpose for the simple reason as we
will realize that it is a way of dealing with these rules that e implies h. This is nothing
but a rule and | will have to reason through these implications and if I know the
probability of this then it will be a much stronger measure than what we had in the
case of certain defectors which was rather a subjective measure. So, Bayes’ theorem
forms a basis of probabilistic reasoning.

In the next lecture we will start with the Bayesian reasoning techniques using this
Bayes’ theorem. And one very popular powerful tool that has been designed for
reasoning in the probabilistic domain is the belief network. But this forms the basis of
the basic probability theory requirements. The main thing is the idea about the
conditional probability and the Bayes’ theory.



