
Artificial Intelligence
Prof. Anupam Basu

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture # 25
Rule Based Expert System

We will be discussing about Rule-Based Expert System and we will also mention
some things about certainty factors. Although we will have separate lectures on
certainty factors that demands little more discussion. While discussing about Rule
Based Systems we had talked about expert systems. And if we quickly recapitulate
what we learnt about Rule Based Systems then there are some salient points that we
should remember.

First let us quickly have a look at what are the things we need to discuss about Rule
Based Systems. First is the execution cycle. This is just for your recapitalization. This
means that there are three phases; one is match, one is select and the other one is
execute. And after that we come back to the match phase only. The architecture of a
Rule Based System consists of a knowledge base which you can write in short as KB.
There is an inference mechanism which we are writing as IM, inference mechanism
or control structure and there is a working memory. In this working memory all the
current facts are being stored.

There is another user interface as it should be for any system and the user interactions
are through this user interface. And that is communicating through the inference
mechanism and the inference machine reads from and writes to the working memory.
The knowledge base consists of rules in case of Rule Based System. And it is
needless to say at this point that rules are of the structure if antecedent then
consequent. Now what is done in the match phase?
The inference mechanism looks at the data for the current problem from the working
memory and tries to match them with the contents of the knowledge base to see which
rules are enabled to be fired. There may be more than one rule which is enabled to be
fired.

(Refer Slide Time: 04:18)

When is a rule enabled to be fired?
A rule is said to be enabled to be fired when the entire antecedents match or the
consequents match depending on whether we are going to do forward chaining or
backward chaining. If more than one rules match or applicable at a particular cycle
then in this phase the select phase which is also known as the conflict resolution phase
a subset of rules are selected maybe one or maybe two. And those rules which are
selected are only fired and as this rules are fired by the inference machine new facts
are generated which come to the working memory here. That will enable other rules
to match and this cycle will go on until no further rule matches or the goal with which
we started the system is met. These are the two points but besides this there are a
couple of other points which we need to recapitulate. It is about the inference
mechanism.

There are two types of reasoning we talked about; one is forward chaining and the
other is backward chaining. In forward chaining which is also known as data driven
search we have got a rule like this; If a and b and c then p. Now, given a rule like this
and with whatever is there in the working memory say a b c we start matching the
contents of the antecedents and if all of them match then we say this rule is enabled
and if this rule is fired then the firing will produce this p as a new fact in the working
memory and this can enable further search.

(Refer Slide Time: 07:55)

(Refer Slide Time: 8:50)

On the other hand, in the case of backward chaining we start with the goal not the
data. Unlike the forward chaining in the backward chaining case we start with, for
example we have got a rule like backward chaining, If we have got a rule like if a and
b and c then p and there are other rules also and we find that I have to prove p. Then I
start with p and that tells me I have to prove a b c. And maybe in the working memory
a and b are true so these are solved but I have to find a rule which has got c in its
consequent.

Suppose x is also there then c. Then after this since c is my goal then I start with c and
see whether this is proved or not. For that I have to fire this rule c is true if x is true so
in order to prove c you have to prove x but x is already proved so therefore c is
proved therefore p is proved, that is backward chaining. Now all these things we have

discussed in our discussion about Rule Based System. Rule Based Systems have been
applied in expert systems.

What are expert systems?
Expert systems are said to be AI’s greatest commercial success. An expert system
uses knowledge specific to a problem domain. This is a very important point that you
should try to understand that it uses knowledge that is very narrow specific to a
particular problem maybe fault diagnosis of a two wheeler or maybe fault diagnosis of
a particular type of car. So the narrower you make the domain the possibility of a
success of an expert system is more because what we try to do in an expert system is
to capture the human expert’s knowledge in the form of rules.

Human expert knowledge is a little complicated than can be really captured in the
form of rules. So, if we can restrict our domain then probably we can acquire proper
knowledge and encode it in the form of rules and then we will find that for small
domain in order to capture all possible cases we can have a huge number of rules. But
we are not really trying to match the human expertise or the human capability in any
way in expert systems then the question can be asked then why at all we go for an
expert system?
The reason is, human expertise is scarce it is costly for all the aspects of problems you
will not find enough number of experts who can cater to the large number of queries
that come up.

Think of specialist doctors. Now specialist doctors are really scarce in number when
compared to the demand that we have from a large number of patients for example,
really good expert cardiologists. Now all the patients really do not need that level of
expert advice all the time. There are many cases which can be treated by less than a
human expert. So, if it be possible to capture the expert’s knowledge to some extent in
such systems then obviously we can provide better service to the patients. Everybody
need not line up in front of the doctors chamber, need not just wait for weeks and
months to get an appointment. Maybe through some computer system they can be
given routine advices wherever that is good.

Although expert systems aim or attempt to capture human expertise the gap will
always be there. Nevertheless, for many applications for example diagnosing the
situation under a mine when we have put in some sensors and we really want to
interpret the data either I take out the data at an upper level and try to look at it but
proper interpretation of data at runtime may not be feasible for an expert to do.
Therefore an expert system can do that job quite well provided we keep the domain
narrow.

(Refer Slide Time: 14:18)

What is an expert system?
Expert system is a system that uses knowledge specific to a problem domain to
provide expert quality performance in that specific application area. There have been
a number of successful expert systems.

Here we can see some of the names; Dendral which was developed in 1967 is an
expert system that determines molecular structures based on mass spectrograms.
Mycin which is a very popular expert system developed at Stanford University by
doctor E H Shortliffe in 1976 as part of his PhD dissertation. Mycin works for the
area diagnosis and therapy recommendation for blood diseases. And later on Mycin
was done for different infectious diseases, bacteria, infections as well. Prospector
which came very close to Mycin in 1978 is an expert system that was used for mineral
exploration. That means it tried to estimate where a particular mineral is likely to be
there. And it found about a $100M ore deposit successfully.

Xcon is an expert system that was developed in 1984. But the predecessors of Xcon
are known as R1. And that expert system was again developed at a University and
later on it was taken up by the Digital E- Corporation to configure how to install them
large VAX and P D P 11 series computer systems. Installation of such large systems
requires a lot of expertise about the layout, the cabling and other conditions. But that
can be done judiciously by Xcon. And this saved Digital Equipment Corporation DEC
$70M per year. That shows the commercial success. Now let us look at the common
characteristics of expert systems.

What are the common characteristics?
System performs at a level that is generally recognized as equivalent to a human
expert in the field. It is better that you keep the domain narrow, keep the set of
problems that an expert system can address limitedly rather than be too ambitious.
But the success of an expert system would be measured by if I had employed a skilled
person and expert there paying a huge salary he who would have done some particular
work and for that work if the expert system can do and show a performance that is

close to this then the expert system is ok for that domain. The reasons as I said human
expertise is rare or expensive. And there has to be a demand for the solution that
justifies the cost and the effort of building the expert system.

Expert system building although we know the technology now the Rule Based System
is one. But it takes a lot of effort, time, man power, programming time, testing time in
order to make a real successful expert system and so there has to be a demand for it.
The system is highly domain specific because even in a narrow field lots of
knowledge is there and we have to capture that. And it should be narrow enough so
that it does not depend so much on common sense. Now we have to run it using a
machine so it has to be amenable to symbolic reasoning.

(Refer Slide Time: 19:19)

We should be able to reason using symbolic methods like predicate calculus,
propositional calculus where we can represent the facts and rules in the form of
symbols as we have seen earlier. But it should also have a challenge that the solution
is not straight forward. You cannot employ an expert system to sort a file or sort an
array or even do some pure image processing activities for which there are very good
algorithms available. The methodology is absolutely known, you really do not need
much of decision making expertise.

The rules in a Rule Based Expert System are, if the situation is this then this will
provide those critical judgments in an expert system. If those critical judgments were
not there in that case expert system is not required. Again if you recollect that match,
select, execute cycle of a rule based system in the select phase we are doing conflict
resolution that means we are selecting a subset of rules by some judgment by some
heuristics. We may assume that if we select this rule that is bringing me closer to the
goal so let me select this. It is not a straight forward algorithmic decision and so for
all those cases expert systems or expert system approach can be used.

Presently there are systems which are a little hybrid in nature in the sense that they
use some part of rule based expert system and some parts are solved algorithmically
and these two together provide a very good result. System can explain its reasoning.

Think of a scenario that you have gone to an expert and the expert as told you that
you have to undergo a surgery or you have to undergo a set of blood tests. You can
ask the expert why you want me to undergo this blood test. The expert will be able to
explain to you why or what is the reasoning that went behind him. Maybe that he is
suspecting certain results, there are some possibilities in his mind and he wants to
verify that or eliminate some of the possibilities and he will be able to explain that to
you. Just as a human expert will be able to do that it is expected that an expert system
will also provide that sort of explanation at least close to that sort of explanation. We
should attempt that it should give similar explanations. Therefore, in order to be
useful it must be able to justify its advice or conclusions.

(Refer Slide Time: 22:55)

The basic architecture that we had said about Rule Based System
remains unaltered here. Usually expert systems are rule based although there are
expert systems which have been built on frames semantic nets and other technologies
but mostly Rule Based Systems have found its popularity.

What are these rules for?
The rules are to extract the expert knowledge in the form of facts and rules and that is
a real task. Extracting knowledge from experts is really important and critical and this
process is known as knowledge acquisition. In order that an expert system becomes
successful the knowledge as to be acquired properly and it is not a very straight
forward case because no one is sure whether the human thinking moral is rule based
or what sort of structure it maintains so there is a lot of debate about it. So often the
experts talk from a level which may be intuition or which may be very deeply
embedded in their knowledge and they are so habituated they can click upon a
particular suggestion and they say that. But what is the reasoning process that went
through to lead to this inference is often not very clear even to the experts themselves.

Therefore it is necessary that a knowledge engineer as we call it must talk to the
experts, understand the domain and should be able to extract that knowledge and
represent that knowledge in the form of rules so that it can be embedded in an expert
system.

In the blocks there are:
The user interface, one is the inference engine, there is a general knowledge base and
there is a case specific data. Now you can think of where is the working memory. The
working memory is this for the time being. This is the rule interpreter, inference
engine, inference machine, control engine or whatever you call which is the path and
this is the knowledge base. And we have not deviated from the earlier architectures
we showed except for this might be that the case specific data can be directly fed here
but the interactions are the same that the inference machine will read the data, find out
which rules are enabled, apply them and on application new data will be generated
over here and that will come. So, user interface acquires information and displays
results. Inference engine performs deductions on the known facts and rules that
applies the knowledge base. And knowledge base stores the domain specific facts and
rules for solving problems in the domain and case specific data working memory or
working memory stores information about the current deduction. Therefore these are
the four blocks.

(Refer Slide Time: 26:44)

Now, as we know rule based expert systems have many options when applying rules.
At the beginning of this lecture I was mentioning about forward chaining and
backward chaining which is also known as forward reasoning and backward
reasoning. And in forward reasoning we start from the available facts and try to arrive
at the goal. On the other hand, in case of backward reasoning we start with a
conclusion and try to prove the conclusion by finding the sub goals. If x and y and z
then p means that in order to prove p I have to prove x, I have to prove y and I have to
prove z. So p is true if x is true, y is true and z is true. Might be x is already known to
be true but for y and z I have to test them. So again I will have to find a rule whose

consequent has got y as I was explaining at the beginning of the lecture. Similarly,
depth first, breadth first etc are again different ways in which this thing can be done.

What is a search space? For example, I am in a particular state say S0 how is that state
defined?
That state is defined by the state of the working memory that is some of the facts I
know of a, b, c etc. Now, given this state S0 where a b and c are known I may have a
possibility of different rules to be fired R1, R2, R3. And firing each of these rules will
lead me to different states S1, S2, S3 because each of these rules will derive new
inferences might be p will be known to be true if I fire this. Now on this new state I
will again have other rules to fire.

If I had selected this rule then probably I would have had some other different rules to
fire which I have not traversed as yet. So after this I have got these three rules to fire,
I fire this rule and I come to this state and that had three different paths and I select
this state and come to another state etc. And while at every level and some paths I
have left unexplored. So this entire phase is the possible search space in which the
path towards the solution lies and my job is to find that out. And in order to search
that particular path out of these three rules I first take this, then I take this and in this
way I go on. And when I come to a dead end I have not found the solution I backtrack
and follow the other unexplored paths. That is the depth first.

(Refer Slide Time: 31:08)

In the case of breadth first what would be the case?
At this level I will fire all these rules and come to this state. Again at this level I will
fire all the possibilities and come to this state and I will try to explore the space in a
breadth-wise manner. Obviously you know the difficulties of depth first that it will
need a lot of nodes and lot of new children will be generated.

Another option is heuristic search which has been discussed in this course. Heuristics
means with some partial information and knowledge. I would like to find a better way
possibly an intelligent way to explore the path.

Now in that case what do you do?
In that case probably at this level I try to evaluate a heuristic function. Now what that
heuristic function will be is very much dependent on my application and based on the
heuristic function I can select a particular path. For example, I have A on B and C is
here and D is here. It is some particular state say Sj this is the state of this and I want
to come to another state that is my desired state which should be A and on that there
should be C and D to go below B and now that is my objective. Now I have got
different options to do that.

Suppose I want to come to this goal state Sg then one way I can try is I cannot really
take C over here C on top of B. So one rule can be that you come to a state where A is
here, B is here, C is here, D is here that is one possibility. And from there you take C
above this and take B above this. Suppose if this be the case then I can straight away
come to this where A will be here C is here and I directly put D on B. Now, suppose
my rules allow me that I can directly come over here therefore this is another state say
Sm and this is Sn. now which rule I should fire?

(Refer Slide Time: 35:44)

If I have got a distance function then this Sn is closer to this because this part of the
problem is already solved in one move and this will require more number of moves.
So, if that be my heuristic function I will apply this rule instead of this because that
will reduce my distance to the goal. Now these sort of judgments are used in order to
have breadth first search. Therefore applying the best rule is one approach. Another
approach is you can apply all applicable rules. Here is an inference example.

(Refer Slide Time: 36:29)

Consider the following rules about diagnosis of an auto car problem. The rule R1 says
if there is gas in engine and it turns over. That means when you put it in it is making
that sound but it is not starting then the problem is with spark plugs. As you turn the
key it is not turning over so the initial sound is not coming and the lights are also not
on then the problem is with battery. If it does not turn over and the lights are on then
the problem is with the starter. Fourth rule says, there is gas in tank and there is gas
(petrol) in tank and gas in carburetor then there is gas in engine.

(Refer Slide Time: 37:29)

(Refer Slide Time: 38:00)

Suppose these four rules are known to us and this is the status of our database. We
know that there is gas in tank and there is gas in carburetor and that it is turning over
so that sort of sound as been made. Our goal is to find what the problem is. And we
have got all these four rules in our knowledge base so we have to find out what the
underlying problem is.

Is it problem spark plugs, problem battery, problem starter or what is it?
Out of these rules we can always find out which rule will be enabled. Now we can see
that rule R1 is enabled. Given this gas in tank, gas in carburetor and turning over
scenario rule one is gas in engine because rule four says that gas in tank and gas in
carburetor then gas in engine. Therefore you first fire rule R4 then R1 then you know
there is gas in engine and turns over. Then we can find that using rule R1 here the
problem is with spark plugs. Then we come up with a solution that x is spark plugs by
R1 so we fire two rules. That is a very simplistic case of an expert system.

Although we solved this problem with forward chaining we started finding the rule
that was matching with this gas in tank, gas in carburetor so R4 was enabled. And
then in that cycle we came to know the gas in engine. In the second cycle this R1 was
gas in engine and turns over match so R1 is fired. But if we had done with backward
chaining how would you have done it?
To make it more specific, suppose our goal is to prove that the problem is with battery
then with these same set of initial facts and rules provided to us we can try to solve it
with backward chaining. We will see how it works and you will have to draw the
search space based on the rules fired. You need not draw the entire search space but
the path that is traversed.

But how did the problem get solved?
You need to draw the tree structure. Now, as I say a very core part of developing any
expert system is acquiring the knowledge from the expert and that process is known
as knowledge engineering. Knowledge acquisition is the bottleneck in developing
expert systems.

(Refer Slide Time: 41:11)

For different reasons often it is difficult to codify knowledge as facts and rules that is
first of all to extract them. Extracting and formalizing or refining knowledge is a long
difficult and laborious process. This process is known as knowledge engineering.

(Refer Slide Time: 41:44)

The other thing is explanation facilities. These are imperative for acceptance of an
expert system. Now, the MYCIN expert system has nice front end developed known
as TEIRESIAS that supported knowledge acquisition and explanation. And it could
answer questions like, why is that knowledge relevant? How did that system come to
that conclusion? What is it currently trying to show?
This interface also allows because when you start developing an expert system. It will
be too much to expect that at the very initial phase your knowledge base will be so
complete that you would not require any change or you would not need any
knowledge to be put in. We always learnt to do so therefore an expert system should

also learn accordingly. So there should always be a facility by which you can add
knowledge to an expert system. And that addition can be done by TEIRESIAS in case
of MYCIN.

(Refer Slide Time: 43:00)

What is an expert system shell?
This is also another very important criterion. As you can think of that an expert
system consist of the knowledge base, the inference mechanism, the working
memory, user interface etc. Now as we change the domain of application the first
thing we will change for sure is the knowledge base. But may be that when I have
taken so much trouble in developing one expert system and developed its inference
mechanism, its conflict resolution strategy, its working memory structure and
everything then I would not like to throw out everything instead I would rather like to
change the knowledge base and apply in another application area if possible. That will
reduce the development life cycle of an expert system.

In order to meet this end expert system shells have been proposed. Expert system
shells are expert systems where the knowledge base part is empty. So out of that you
just take the knowledge base part make it empty and allow somebody else to put in
some other knowledge base on that and that is expert system shell. And such expert
system shells have got the flexibility of giving you different conflict resolution
strategies from which you can select depending on the domain such as different sorts
of inferencing, forward and backward reasoning etc.

Another thing we have not yet mentioned at all is representation of uncertainties. The
rules we use in an expert system are often very uncertain. The logic is not as simple as
2 plus 2 is equal to 4. For example, given a particular soil quality a particular
vegetable that will grow over there experts can say that this relationship of a
particular soil quality a particular monsoon prediction will yield approximately this
amount of vegetable of a particular crop. But all these are not absolutely certain and
there are some uncertainties always involved. The uncertainties come from different
sources such as uncertainties in data, the uncertainties in our expertise also.

For example, when a patient comes to a doctor or doctor prescribes a medicine, he has
got estimation from this expertise that this medicine will reduce the symptom within
seven days to a particular level. But he cannot always be certain that within these
seven days this will reduce which is one uncertainty and the second thing is to how
much it will reduce is not always possible to quantify. The frequency of fever or
headache will come down but how much?
Therefore there are uncertainties in different levels. But in order to be successful an
expert system shell must provide some means of representing uncertainty.

(Refer Slide Time: 46:49)

Expertise2go: It is a free expert system shell where the shell provides the inference
engine knowledge acquisition and explanation interface. The user must insert the
relevant knowledge base.
Expertise2go Lite version is a java applet where a very nice GUI interface is available
and there are features for knowledge acquisition, explanation, justification etc.

(Refer Slide Time: 47:40)

Here is a typical GUI where the expert system shell has been used to develop an
automobile diagnostic system. This is a GUI which is shown to the user so the user
can select the result of switching on the headlight is: we have just shown the example:
they light up, nothing happens, I do not know. This sort of facility is also given.
Therefore your rule base must be able to capture those also. Either you are certain or
very uncertain you can submit your response. You can also ask the system why you
are being questioned like this and the system should be able to explain it to you.
Therefore these are the typical GUI.

In this expertise2go let us see typical rules that are present. This REM is a remark.
We are showing a sample knowledge base here. REM specifies a comment. We also
put in a comment because this is the rule. The rule is going to check, is the battery
dead?

(Refer Slide Time: 48:55)

Look at these brackets which are the antecedents. If the result of switching on the
headlights is equal to nothing happens. Now this is a peculiar case where we are
allowing disjunctions also. The result of trying the starter equals nothing happens.
Then the recommendation actions are recharge or replace the battery. Now depending
on the shell that you are using the syntax of the rule will change. This is a particular
syntax here. So in this particular case say the shell is providing me with some
operators like equals, not equals, equals one of or comparisons so look at the rule; is
the car out of gas? That is what I want to test.

If the gas tank equals empty then the recommended action is refuel the car. In that
way there are rules. And as the system fires the rules it also prompts for acquiring
information, what sort of information are those?
Prompt: the result of trying the starter.
What happens when you turn the key to try to start the car?
The car cranks normally, the car cranks slowly and nothing happens. This is being
shown to the user and the user selects one as we have shown through the GUI. For
example, it is prompting, a multiple choice like the smell of gasoline is present when
trying the starter, not present when trying the starter so the user is asked to select. And
these sort of prompt actions or (f…) are really activating this sort of GUI as shown
here.

(Refer Slide Time: 50:55)

The inference engine in this e2glite shell is the inference engine works backwards
from a goal, it is backward chaining. Obviously it stops as soon as it finds the rule that
concludes goal with desired certainty. It handles uncertainties via certainty factors.
Now these certainty factors are really important.

(Refer Slide Time: 51:22)

This is a very important method. But before that let me state that there are different
ways of handling uncertainty. In the following couple of lectures we will be dealing
with different techniques of uncertainty management. The different ways of handling
uncertainty: One can be probabilities where we specify likelihood of a conclusion or
apply Bayesian reasoning. And certainty factor is an estimate of confidence in
conclusions. It is an estimate provided by the experts. It is not as mathematically
precise as is the case of probabilities but it is also very effective.

(Refer Slide Time: 52:25)

MYCIN is a medical expert system for analysis of meningitis infections. MYCIN uses
backward chaining rule based expert system. It produces focused questions. It also
produces a natural language like interface for communication with the users.

(Refer Slide Time: 52:55)

Some typical rules of Mycin:
The syntax has now changed compared to the earlier one we saw. If the stain of
organism is gram positive and there is no disjunction law here and the morphology of
the organism is coccus and the growth conformation of the organism is clumps. If
these three are true then remember it is a medical case we cannot serially with
certainty so what we will say is there is suggestive evidence of some value .7 that the
identity of the organism is staphylococcus.
That is a particular organism.

Now this rule in MYCIN can be translated in a Lisp syntax like structure but the
premise of the rule is and there is a conjunction of in the same context that is the
organism and the strain of the organism is gram positive, morphology is coccus and
conformation is clumps. Then action is conclude context and the conclude is the
staphylococcus with a tally .7.

What is this .7?
That is a very key factor the certainty factor of Mycin. But the beauty of MYCIN is
the way it converses with the user.

(Refer Slide Time: 54:50)

What is the patient’s name?
The doctor types in John Doe. Male or female and these italicized parts shown here is
the system’s response. The doctor says male. What is the age?
He is 55. The system also understands this. The doctor cannot write that to my mind
he is approximately 55 so it is not free flowing English but he can realize some
restrictions that he can type in he is 55.
Have you obtained positive cultures indicating general type?
Yes the doctor says.
What type of infection is it?
It is primary bacteremia.
When did the symptoms first appear?
May 5 1985.

(Refer Slide Time: 55:29)

Now it goes on.
Do you know the identity of the organism one?
No
Is organism one a rod or a coccus or something else?
The doctor says rod. In this way a very naturally flowing discussion goes on.

(Refer Slide Time: 55:55)

And ultimately MYCIN comes up with a recommendation. My recommendation will
be based on the opinion that the identity of organism may be, note this may be
Pseudomonas Aeruginosa, E. Coli and other such possibilities. Then it furthers. So
this is my provisional diagnosis. On a scale of 0 to 4 it is asking the doctor where
higher numbers indicate greater severity.

(Refer Slide Time: 56:25)

How would you rate the patient’s degree of sickness?

The doctor says 3 and the MYCIN further goes on asking more questions and then
comes up with a recommendation that there were so many possibilities and just as an
expert doctor it says, in order to cover for items 1 2 3 5 and 6 give Gentamycin using
a dose of 119 milligram 1.7 milligram/Kg for ten days, modify dose in the case of
renal failure and in order to cover for item 4 give Cindamycin using a dose of so and
so for 14 days. Just see how naturally a system can communicate and that is what an
expert system can do in order to come to a reasonable conclusion once it is nicely
built and it is restricted in a proper domain.

Here is a quiz as an exercise.
What is an expert system shell and the second problem is really challenging on your
part.

(Refer Slide Time: 57:55)

Forward chaining and backward chaining concepts are made clear for your
understanding. Now, Think how explanation facility can be incorporated in a rule
based system. By explanation facility find out that if at any particular point a rule has
stated a conclusion. You have got fever, you have got malaria for example. Then if
the user says why then the system explanation facility should be able to present that
rule which really concluded malaria. And might be that had some antecedents which
have been found true then how did these antecedents were evaluated to be true or how
is that these antecedents were found to be true that should also be found out such that
which rules made these antecedents true.

What is the data structure you think will be helpful?
Data structure stack that you know of will be immensely helpful.

