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Welcome, today we will be having our last lecture on planning. We already had taken 
three classes on planning and we have looked at plan formulation and several 
algorithms for planning problems. We have looked at STRIPS, we have looked at 
forward planning as search problem, we have looked at backward planning or 
regression and in the last class we had looked at partial order planning. Today we will 
introduce another way of looking at planning problems and we will introduce the 
concept of planning graphs and the algorithm graph planning. 
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The instructional objective of today’s lecture is: 
We will discuss the data structure of a planning graph. We will discuss the graph plan 
algorithm that uses the planning graph and describes an algorithm for finding a plan. 
Given a planning problem you should be able to construct the corresponding planning 
graph and starting from the last state you should know how to extract a solution plan 
from the planning graph. As you have noted a big source of inefficiency in search 
algorithms is because of the branching factor. 
 
If you are talking about either forward search or backward search what makes search 
algorithms expensive is the branching factor. If the branching was one at every node 
then the algorithm would be a linear algorithm. But otherwise if the average 
branching factor is B and the depth of s search tree is N you know that B power N 
nodes have to be expanded. So, to make a search problem more effective what we 
would like to do is to limit the branching factor or limit the number of children of 
each node. 
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When you look at backward planning you start from the goal and you find all the 
actions that could have produced the goal state. And then from each of the previous 
nodes you do the same thing. The main problem is that you would be considering a lot 
of actions. And many of these actions may not be reachable, we may not be able to 
take the action starting from the initial state. So our objective is to find out a subset of 
the actions which can be activated given the initial state that the agents start from. 
And in this way we will like to limit the branching factor. This was one of the 
motivations for this algorithm. 
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One way to reduce the branching factor is as follows: 
First you consider a relaxed problem. So, given the original problem you take a 
relaxed version of the problem where you let go of some of the constraints. That is, 
you remove some restrictions of the original problem. And the relax problem that you 



get should be easy to solve. And the solution to this relax problem will include the 
solution to the original problem. So once you get this relax problem you can do a 
modified version of the original search. And you restrict the search space to only 
those actions that are applicable in the relax problem. Now the basic idea of graph 
plan is you construct a graph that encodes some constraints on the possible plans. You 
take some of the constraints from possible plans and incorporate them to create a 
graph. Now you will use this planning graph which we will refer to subsequently as 
PG. We will take the planning graph PG to constrain the search for a valid plan. 
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The way we will construct the planning graph or PG is as follows:  
If any valid plan exists it must be a sub-graph of this PG. The partial order plan that 
we have looked at can be expressed in the form of a directed acyclic graph or a 
diagram. And we will construct a planning graph such that a valid plan will be a 
subset of this PG. Now we will show that the planning graph can be built in 
polynomial time. And once we build the planning graph we are able to obtain 
restrictions on actions which will make a search for a valid plan easily. 
 
Now the planning graph we will consider will be a directed graph and it will have 
several levels and in this graph we will have two types of nodes namely proposition 
nodes and action nodes. Therefore in the planning graph we have proposition nodes 
and then we have action nodes. And in fact in the graph we will have several levels 
and the level with the proposition nodes will alternate with a level with the actions. 
And we will also have three types of edges between levels. There will be the 
precondition edges from propositions to actions, this proposition is a precondition for 
this action or these two propositions are the preconditions for this action, these are 
called precondition edges. We have add edges from action to proposition, if this 
action is executed this proposition will be added. Then we have delete edges, if this 
action is executed certain propositions will be deleted. So this may be q and this may 
be r, this may be 0r. 
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So we may have add edges and delete edges from action nodes to proposition nodes 
and we will have precondition edges from proposition nodes to action nodes. And in 
the planning graph the proposition levels and action levels will alternate. The action 
level will include actions whose preconditions are satisfied in the previous level plus 
maintenance actions. The propositions at a particular level will denote those 
propositions that can be valid at a particular state. 
 
In a state where the subset of these propositions will be valid what are the actions that 
one can take from the state? 
The actions that one can take from the state are those for which the preconditions are 
satisfied. Also, certain propositions will get carried over to the next state by virtue of 
the frame axioms as we have discussed earlier. As we have noted that there can be 
many propositions in the world and unless some proposition is explicitly added or 
deleted the other propositions which hold in a particular state continue to hold at the 
next state. So, corresponding to these propositions we will have maintenance actions 
or no-op actions. Let us look at an example of the planning graph and then look at the 
algorithm graph plan. 
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This is an example of a planning graph. This is the initial state or S0, these are the 
propositions which hold at the initial state, these are some actions whose 
preconditions are satisfied in this initial state and this is the set of propositions that 
can hold in the next state. So let P0 be the set of propositions that can hold in state S0 
and let Pi be the possible set of propositions that can hold in state Si. This set is called 
Pi. Pi is the possible literals or propositions that can hold in state Si. This represents Pj 
and Pj represents possible set of literals that can hold in state Sj and ai are the set of 
actions that can be taken at state Si. This is an example of the planning graph. 
 
These pink edges from a proposition to action means this is a precondition edge and 
edges from action to propositions mean they are add or delete edges. They are add 
edges if they go to a positive literal and they are delete edges if they go to a negative 
literal and this grey edges are the maintenance actions or the no-op actions. So this 
proposition continues to hold at the next state if the action does not add or delete that. 
This is an example of a planning graph. 
 
We have come to the procedure graph plan now. In the algorithm for graph plan there 
will be two phases. There will be one phase for graph expansion and there will be 
another phase for solution extraction. We start with k is equal to 0 then k is equal to 1 
and then k is equal to 2 and so on. For every value of k we first do graph expansion 
then we check certain conditions in the graph and if the graph needs those conditions 
we do solution extraction. 
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Procedure for graph plan: 
For a particular value of k in the graph expansion phase we create a planning graph 
that contains k levels. This represents a relaxed problem. This planning graph we get 
incorporates some of the constraints of the problem we have but not necessarily all 
the constraints so this planning graph is a solution to the relaxed problem. And the 
actual plan will be a sub-graph of this planning graph. 
 
Once we have created the planning graph up to k levels we check whether the 
planning graph satisfies a necessary condition for plan existence. Once we have a 
graph we check first by looking at the last level of the plan whether this plan would 
satisfy a necessary condition for the final plan. If it does satisfy then we try to extract 
a solution.   
 
If we succeed in extracting a solution we output the solution. If we do not succeed in 
extracting a solution from the level k graph we increment the value of k and then go 
through the graph expansion phase again. Therefore, in the solution extraction phase 
what we do is we consider only the planning graph that we have and we do a 
backward search from the goal state. So, in this backward search in the planning 
graph we consider only those actions that are present in the planning graph and this is 
what constraints the search space. Now as a result of solution extraction by backward 
search through the planning graph if we find a solution then we return the solution.  
 
And as we have seen earlier this is an example of the planning graph. These pink 
edges denote the precondition edges and the ‘add and delete’ edges, the grey edges 
denote the maintenance edges or the edges corresponding to no-op actions. And Pi is 
the possible literals in state I, Pj is the possible literals in state j so this is the notation 
that we could be using.  
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Therefore in a planning graph there are alternating layers of ground literals and 
actions. So at the action level i we have all actions that might possibly occur at that 
time step and at Pi we have all the literals that are asserted by these actions. So, in the 
planning graph suppose this is the state level i minus 1 which consists of the 
propositions Pi minus 1 and suppose we have the state level i consisting of the literals 
Pi and this is the action level I, now this is state level 0, these are the propositions 
which hold in the initial state which are known to us and these are precondition edges. 
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So this is an action, this action has this and this has the precondition, this action has 
this and this has the precondition and these are the effect edges. So these three are the 
effect edges and these are the precondition edges and these grey lines correspond to 
maintenance actions. That is, this proposition is carried over to the next state if an 
action does not affect that proposition. 



So how do we construct the planning graph? 
At level P1 we have all the literals which are given in the initial state. In a planning 
problem you are given all the propositions that hold in the initial state and you are 
given a partial description of the goal state and you are required to find a plan which 
achieves the goal state. 
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Therefore P1 will include all literals in the initial state. Then we will add an action in 
level Ai. Suppose we have Pi we will see how to construct Ai. We will add an action 
in level Ai if all the preconditions of that action are present at level Pi. We will add a 
precondition in level Pi if it is the effect of some action in level Ai minus 1. So a 
proposition will be added in level Pi if it is the effect of some action in the level Ai 
minus 1. And because we also have these maintenance actions we will carry over the 
propositions from Pi minus 1 to Pi using maintenance actions and due to other actions 
we have some other propositions as effects which we will add to level i. 
 
In addition, we will maintain a set of exclusion relations called mutex relations. So 
these mutex relations will be used to eliminate incompatible propositions and actions. 
And because of these mutex relations we will able to reduce the graph size work. So 
the graph consists of alternate levels. We have a proposition level P1 followed by an 
action level A1 then a proposition level P2 followed by an action level A2 and so on. 
This is a planning graph.  
    
Now what would be the mutual exclusion relations we will consider?  
We say two actions are mutex or two propositions are mutex.So we have mutex 
relations between two propositions and we also have mutex relations between two 
actions. Now two actions are mutex at some stage if no valid plan could contain both. 
So if at a stage we find that both the actions cannot be together present in a valid plan 
we say that those two actions are mutex. 
 
Similarly, at a particular level if we find that two propositions cannot occur in a valid 
plan we will call them to be mutex. Now we will look at certain conditions under 



which we can label two actions as mutex and then we will also find conditions under 
which we can label two propositions as mutex. So we will study three different mutex 
situations between two actions. 
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Two actions are mutex. We will consider inconsistent effects, interference and 
competing needs. First we will look at what we mean by inconsistent effects. So two 
actions a1 and a2 are mutex they cannot occur together. If an effect of one negates an 
effect of the other. Suppose the effect of a1 is P and the effect of a2 is NOTP these two 
actions cannot come at this level of any valid plan. This is graphically illustrated here.
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We have a proposition level Pi and here we have the proposition level Pi plus 1 and 
these are the actions. We say that action a1 and action a2 are mutex which we denote 
by this line between them a1 and a2 are mutex. If the effect of a1 is inconsistent with 



the effect of a2 this could happen. Suppose q is the effect of a1 and NOTq is the effect 
of a2 and since q and q2 are mutex they cannot occur together then a1 and a2 will be 
mutex. Therefore this condition is called inconsistent effect condition. Two actions 
will be mutex if their effects are inconsistent. 
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Secondly, we will say that two actions are mutex under the interference condition. 
That is, one of the actions deletes a precondition of the other action. So this illustrates 
interference so we have these propositions at level Pi and this is Pi plus 1 and we say 
action a1 and a2 are mutex. If action a1 has an effect NOTq that is action a1 deletes q 
where q is a precondition of a2 so in this case we say a1 and a2 interfere. Therefore 
these two actions will be mutex. An example is the two actions Stack (a, b) and 
putdown (a). Now putdown (a) has holding (a) as precondition but Stack (a, b) is an 
action that deletes holding (a). So, Stack (a, b) deletes holding (a) and putdown (a) 
needs holding (a). Hence we cannot have these two actions together so they are 
mutex. 
 
Thirdly, two actions are mutex under the condition of competing needs. That is, if 
these actions have mutually exclusive preconditions, if the preconditions cannot occur 
together then at the next stage we cannot have those two actions together. This is 
illustrated by the following diagram: 
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Suppose we have these two actions a1 and a2 and suppose this is the precondition of a1 
and this it the precondition of a2 we say that if these two preconditions of a1 and a2 are 
mutex then these two actions must also be mutex. For example, consider the action 
stack (a, b) and unstack (a, b), stack (a, b) requires that b must be clear and unstack (a, 
b) requires that a must be clear. So if these two cannot be clear at the same time then 
these two actions cannot be executed in parallel. Therefore under the condition of 
competing needs also these two actions are mutex. So we have three conditions under 
which actions are mutex. Two actions are mutex if they have inconsistent effects, if 
there is interference or if there are competing needs.  
 
Now let us see when two propositions are said to be mutex. These three conditions of 
action mutex can be found easily while constructing the planning graph. So we can 
label these inconsistencies easily. It is also important to note here that these are only 
some of the mutex conditions. But these mutex conditions are easy to find and they 
put some restrictions on the planning graph which goes towards reducing the amount 
of search that we need to carry out. 
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Now two propositions are said to be mutex if all ways of achieving the propositions 
are mutex. Now when would we say this?  
For example, suppose one proposition is the negation of the other so P and NOTP are 
mutex because both of them cannot be simultaneously true at a state. Two 
propositions are also mutex if all ways of achieving them are pair wise mutex. This is 
illustrated by the following diagram: 
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We have these two propositions that we are considering, we say that they are mutex. 
These propositions can be achieved by action a1 or action a2. This proposition can be 
achieved by action a3 or by this maintenance action. Now a1 is mutex with a3, a2 is 
mutex with a3, a1 is mutex with this maintenance action, a2 is also mutex with this 
maintenance action so these two propositions can not be true simultaneously because 
you cannot achieve both of them simultaneously because all ways of achieving them 



are mutually mutex. Hence there are two ways of achieving this proposition, there are 
two ways of achieving this proposition and they are pair wise mutex so each of these 
two ways is mutually exclusive with each of these two other ways so this is a case of 
inconsistent support. Therefore these two propositions will be mutex. Now let us look 
at an example to illustrate the construction of the planning graph and then 
subsequently we will use the same example to run the graph plan algorithm. 
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Now this problem is proposed by Dana Nau. Suppose you want to prepare dinner as a 
surprise for your sweetheart the initial state is as follows: 
There is garbage, hands are clean and is quiet. So garbage, clean hand, quiet is the 
characteristic of the initial state and your goal is to prepare dinner have a present and 
there should be no garbage. So, dinner and present and no garbage is the goal 
condition. 
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These are the actions which are available to you: 
Cook, wrap, carry and dolly.  
Cook is an action whose precondition is clean hands and effect is dinner.  
Wrap is an action its precondition is quiet and effect is present. 
Carry is an action which has no precondition and its effect is no garbage and not clean 
hands. So hands become dirty but there is no garbage. 
Dolly is an action which has no precondition its effect is no garbage and not quiet.  
 
We have these actions; cook, wrap, carry and dolly and with these actions we have to 
see how we can achieve this goal of dinner and present and no garbage. So this table 
has the same thing such as this action, precondition and the effect. 
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Cook has clean hands as precondition and dinner has effect, wrap has quiet as 
precondition and present as effect, carry has no precondition no garbage and no clean 
hands is the effect, dolly has no preconditions no garbage not quiet is the effect. In 
addition to these four actions we also have all the maintenance actions. It is one for 
each literal. Let us see what it signifies.  
 
In the initial state we have garbage and then clean hands, quiet. And you also know 
whatever propositions are not mentioned in the initial state are assumed to be absent. 
So, in the initial state there is no dinner no present. 
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What are the actions that one can carry out in initial state? 
One can do carry, one can do dolly, carry and dolly have no preconditions. One can 
do cook the precondition is clean hands, one can do wrap the precondition is quiet. 
And the effect of cook is dinner, effect of wrap is present, effect of carry is no 
garbage and no clean hands, effect of dolly is no garbage and not quiet. Now let us 
see what sort of mutex hold between the actions. In addition to these four actions we 
also have the maintenance conditions one for each literal.  
 
For example, garbage to garbage there is a maintenance action. From clean hands to 
clean hands there is a maintenance action. Quiet to quiet similarly no dinner to no 
dinner, no present to no present are the maintenance actions. Now we notice that carry 
has no garbage as effect and the maintenance action corresponding to garbage has 
garbage as the effect. Since garbage and no garbage are mutex they cannot occur 
together so carry is mutex with this maintenance action. Therefore carry and this 
maintenance action are mutex.  
 
Similarly, dolly has no garbage as the effect. This no op has garbage as the effect so 
dolly is also mutex with the maintenance action. So dolly has an effect of not quiet 
and quiet has the effect of quiet. Since not quiet and quiet are mutex dolly cannot 
occur along with the maintenance action quiet. Hence dolly and quiet are mutex. 
Dolly is mutex with wrap because wrap requires quiet and dolly has an effect not 
quiet, this is an example of interference. Dolly has effect not quiet wrap requires quiet 
so dolly and wrap cannot occur together. 
 
Not quiet is inconsistent with present, cook is inconsistent with not present 
maintenance action, wrap is inconsistent with not present maintenance action. So we 
start with the initial state garbage, clean hands, quiet, no dinner, no present. And these 
are the four possible actions carry, dolly, cook, wrap and these are the maintenance 
actions. And then we find all the mutex relations between these actions according to 
the three rules that we have looked at. And then carry is mutex with this maintenance 
action for garbage, dolly is mutex with the maintenance action from garbage, dolly is 



mutex with wrap, not quiet is mutex with present, cook is mutex with not dinner, 
wrap is mutex with not present. So at state level 0 we have all the propositions of the 
atoms that are mentioned in initial state. 
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Union {the negations of all atoms which are not in S0} 
At action level 1 we have all actions whose preconditions are satisfied in S0. 
In state level 1 we have all effects of all the actions in action level 1. This is how we 
can construct the planning graph. And by looking at the mutex conditions we can 
specify the mutual exclusive relations between them. 
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Here I have not put the maintenance actions for not dinner and not present but the rest 
we have is this two level planning graph for this problem. So the actions as we have 
noted are carry, dolly, cook and wrap. These are the precondition links and these are 



the effect links. These are the maintenance actions and then we have specified the 
mutex relations between the different actions.  
 
We already saw how to have the mutex relation between the different actions. And 
then we can also have mutex between the different propositions. Therefore this is easy 
garbage mutex with no garb, clean hands is mutex with no clean hands, quiet is mutex 
with not quiet then dinner is mutex with not clean hands because dinner requires clean 
hands and dinner is mutex with not clean hands. Present is mutex with not quiet 
because present requires quiet. So these are the mutex relations between the different 
propositions. 
 
Now, once we have this planning graph where we have state level 0, action level 1 
and state level 1 now we need to check to see whether there is a possible plan of 
length 1 through this planning graph. So the goal is not garbage, dinner and present. 
All these three propositions are present in the goal and we want to see if a plan exists. 
Now, not garbage, dinner, present all are present in state level one and they are not 
mutex with each other so this satisfies a necessary condition that a plan can exist. 
Now we have to do plan extraction to find a solution. 
 
How do we find a solution? 
Not garb requires either carry or dolly, dinner requires cook, present requires wrap. 
So, for present we have to take wrap, for dinner we have to take cook and for not 
garbage we have to take either carry or dolly. Carry is mutex with cook so we cannot 
take carry then we have to consider dolly. Dolly is mutex with wrap so we cannot take 
the action dolly. So in none of these ways we can satisfy the not garb action. 
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Therefore this plan cannot be extracted starting from this planning graph because not 
grab can be achieved in two ways carry and dolly and carry is mutex with cook. Cook 
is required for dinner, present can only be achieved by wrap and wrap is mutex with 
dolly. So neither carry nor dolly can be executed which is consistent with these two. 



So neither of this work and so we have to abandon this plan so this plan does not 
exist.    
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Now what you do if this plan does not exist? 
Now you have to consider expanding your planning graph further. So you have to go 
back and expand the graph further to one more level. So we generate one more action 
level. We had already generated up to this, we generate one more action level action 
level two and then state level two. And then we again try to see if state level two 
satisfies the necessary conditions for plan existence and then we try to extract the plan 
from state level two. This is the planning graph expanded up to state level two. Here 
we see that the carry, dolly, cook and wrap actions are there and we have found all the 
mutex relations between the four actions and we have found the mutex relations 



between the propositions. Before we proceed further let us look at certain 
observations.  
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So the first observation is that a set of propositions in state level zero, these are the set 
of propositions in P1, this is P2, P3 and we observe that the set of propositions are 
always monotonically increasing, the size of the set is increasing. We also note that 
the proposition mutex relationships are monotonically decreasing. Whatever mutex 
relationships we had initially as we proceed further these relations can be dropped and 
no new mutex relations will arise.  
 
Observation two is that since between two levels the number of propositions are 
increasing the number of actions which are applicable will also increase. Therefore 
more actions will be applicable here than in this level. Therefore the number of state 
variables is increasing, the number of propositions is increasing, the number of 
actions is increasing and then the mutex relationships between the actions are 
decreasing as we go. 
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From this we can conclude that as we construct the different levels of planning graph 
after some time the planning graph will level of because we are always increasing the 
propositions and after sometime we cannot increase any more propositions so the 
propositions that we had at level i will be the same as the propositions we will have at 
level i plus 1. Therefore after sometime we will find that all the levels are identical. 
So, because we have a finite space the set of literals will never decrease and no 
mutexes will appear. Hence this means, after sometime our planning graph will reach 
a saturation point so the planning graph cannot go on for ever. 
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Now let us see what a valid plan is. A valid plan is a planning graph where actions at 
the same level do not interfere. Each action’s preconditions are made true by the plan 
and the goals are satisfied. As we have noted a valid plan is a sub-graph of the 
planning graph we have. And it is that sub-graph where the actions at the same level 



do not interfere that is they cannot be mutex. Each action’s preconditions are made 
true by the plan and the goals are satisfied. 
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In the graph plan algorithm as we have noted earlier there are two phases. In the first 
phase grow the planning graph this is called the graph expansion phase and then we 
have the solution expansion phase where we search the planning graph for a valid 
plan. Now if I do not find the valid plan we will add one new level to the planning 
graph and try again. Before we proceed we note that the creation of the planning 
graph is a polynomial time algorithm.  
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The size of a t level planning graph and the time to create the planning graph are 
polynomial in the following:  

• t is the number of levels  



• n is the number of objects 
• m is the number of actions and  
• p is the number of propositions in the initial state 

 
The size and the time of this planning graph is proportional to p plus m into l into n 
power k. So, for k constant this is a polynomial. The maximum action nodes are m 
into n power k where k is the largest number of action parameters we can have and k 
is usually constant, k is the number of actions in the possible actions planning 
problem that we are considering. Once we have got the graph let us look at how we 
do solution extraction. For solution extraction we do a search for a solution plan by 
backward chaining on the planning graph. We first start at the last level of the 
planning graph where the goals are present and we try to achieve goals level by level. 
At level k we pick a subset of non-mutex actions that can achieve the current goals. 
Their preconditions of these actions become the goals for the k minus 1 at level. 
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We build the goal subset by picking each goal and choosing one of the actions to add. 
It could be that one action achieves two different goals. So, if we had a goal g1 for 
which we chose action a1 and if g3 is also achieved by a1 then we can achieve g3 by a1. 
Then we continue on the remaining goals until we find a solution. If we do not find a 
solution we backtrack and we check the alternate ways of achieving the unachieved 
goals. 
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In the plan graph search we are basically going in a loop. If goals are present at the 
current level and they are non-mutex with each other we choose action to achieve 
each goal and add preconditions to the next goal set at the previous level and then we 
continue recursively until we find a solution. So this is what we execute in the 
different phases. Therefore this is an example of a planning graph where suppose this 
and this are the goals these two propositions are the goals that we must satisfy. And as 
you note, this proposition can be satisfied either by executing this action or by using 
this maintenance action. This proposition can only be satisfied in one way. So we 
must take this action it must be selected and out of this action and the no op we have 
to select one of them. So this is the planning graph we start with and corresponding to 
these two possibilities we get two different planning graphs. 
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In this planning graph we have chosen this maintenance action to satisfy this goal. In 
both the planning graph we choose this action. In this planning graph we choose this 
action to satisfy. In this side of the search tree we have taken these two actions but 
here we have taken only this action. Now, in this case at the previous level we will 
require these two conditions to be satisfied and these two conditions are the 
preconditions of this action. In this case where we have this maintenance action for 
this proposition this proposition must have been true at the previous level. So, if we 
choose this maintenance action then my goals are at the previous level. 
 
On the other hand, if I choose this action to achieve here I have these two actions to 
satisfy. This action has these two as the preconditions, this action has these two as the 
preconditions so here I have to satisfy these four preconditions. Therefore this is my 
goal at the next level. Now, for each of these cases we will again consider these new 
set of goals and try to see how we can achieve them. By taking the previous example 
where we had these three preconditions and for this precondition we have only this 
maintenance action, for this proposition this is the only action that achieves this 
proposition, for this proposition this is the only action that achieves this proposition. 
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So we take these two actions and we find that in order to do this at the previous level 
these three propositions are required. Therefore we get the goal at the next level and 
thus we proceed until we come to the zeroth level. If the propositions that we get at 
the zeroth level are a subset of the initial state description of the system then we have 
achieved a plan. If we do not achieve a plan we backtrack and we explore other 
portions of the search tree. Similarly, from the other side we will have some other 
goal and thus we will proceed. So graph plan proceeds like this. 
 
How long will graph plan proceed? 
After sometime graph plan will find that in the graph expansion phase at level k the 
propositions we have got is the same as what we get at level k plus 1 and that is 
saturation and we cannot expand the graph any further.  
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If we have not found the solution then we stop. Also, the graph can record the sets of 
unsolvable goals which can make it more efficient. For solution extraction, in graph 
plan g is the set of goals we need to achieve and j is the level of this current state Sj. If 
j is 0 that is we have reached the initial state we return the solution. Otherwise for 
each literal l in g for each proposition which occurs in the current goal we 
nondeterministically choose an action to use in state the previous state Sj minus 1 that 
achieves l. Once we have chosen actions for each of the literals and the goal if any 
pair of chosen actions are mutex then we backtrack. Otherwise we get g′ which is the 
set of preconditions of the chosen action and then we recursively call solution 
extraction on g′ and j minus 1. Therefore this is the solution extraction algorithm and 
this is the search algorithm but this search algorithm is constraint because the 
planning graph incorporates constraints on the problem. 
 



Now let us come back to the planning graph we obtained. In this planning graph at 
level two we find that the actions not garb, dinner, present are all present so we try to 
find the solution. And then in order to find the solution we see that there are three 
ways to achieve not garbage such as carry, dolly and the maintenance action for not 
garbage. For dinner there are two ways; the maintenance action and cook, for present 
there are two ways; the maintenance action presents a wrap. 
 
Now we choose a way of achieving not garb by carry, we choose dinner to be 
achieved by the maintenance action dinner and we choose present to be achieved by 
the action wrap. This is one possibility by which we can achieve these goals. In order 
to do this for wrap we have the precondition quiet, for dinner we need the 
precondition dinner, for not garb there is no precondition. 
So at the level we have quiet and dinner as our goals. 
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To achieve quiet and dinner; quiet is achieved by the maintenance condition quiet and 
dinner is achieved by the action cook. Cook requires clean hand as a prerequisite and 
quiet requires quiet as a prerequisite so clean hands and quiet are required in the 
initial state. Now, clean hands and quiet are satisfied by the initial state description of 
the problem. Therefore we have found a plan. So this plan which is given in blue is a 
subset of the planning graph. This is a partial order plan which is a subset of the 
planning graph.  
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Now, how does graph plan compare with partial order planning? 
So because of the constraints of the graph plan imposes on the search space it is faster 
than partial order plan. Here is an exercise to try out. So the domain we will be 
considering is a rocket domain where we have the following actions. Move R, X, Y. 
Move rocket R from X to Y. Precondition is at R, X and has fuel R. Effect is at R, Y 
and not at R, X and not has fuel R. The second action is unload C, R, X which is 
unload cargo from rocket at X. 
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Precondition in C, R and R, X, rocket is at X and cargo is in R. 
Effect: not in C, R and at C, X. 
Third action is load C, R, X. 
Precondition is at C, X and at R, X. 
Effect is not at C, X and in C, R.  



So we have three actions; move rocket from X to Y, unload cargo from rocket at X 
and load cargo from rocket R at X. 
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Given this problem you need to apply graph plan to this domain with the cargo b and 
cargo c are in Delhi this is your goal. Initial situation: cargo b and cargo c are in 
Kolkata and rocket r is in Kolkata and r has fuel. Therefore for this you have to 
execute graph plan and on the same problem you execute partial order planning. 
 


