
Artificial Intelligence
Prof. Sudeshna Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture # 24
Planning - 4

Welcome, today we will be having our last lecture on planning. We already had taken
three classes on planning and we have looked at plan formulation and several
algorithms for planning problems. We have looked at STRIPS, we have looked at
forward planning as search problem, we have looked at backward planning or
regression and in the last class we had looked at partial order planning. Today we will
introduce another way of looking at planning problems and we will introduce the
concept of planning graphs and the algorithm graph planning.

(Refer Slide Time: 01:44)

The instructional objective of today’s lecture is:
We will discuss the data structure of a planning graph. We will discuss the graph plan
algorithm that uses the planning graph and describes an algorithm for finding a plan.
Given a planning problem you should be able to construct the corresponding planning
graph and starting from the last state you should know how to extract a solution plan
from the planning graph. As you have noted a big source of inefficiency in search
algorithms is because of the branching factor.

If you are talking about either forward search or backward search what makes search
algorithms expensive is the branching factor. If the branching was one at every node
then the algorithm would be a linear algorithm. But otherwise if the average
branching factor is B and the depth of s search tree is N you know that B power N
nodes have to be expanded. So, to make a search problem more effective what we
would like to do is to limit the branching factor or limit the number of children of
each node.

(Refer Slide Time: 03:33)

When you look at backward planning you start from the goal and you find all the
actions that could have produced the goal state. And then from each of the previous
nodes you do the same thing. The main problem is that you would be considering a lot
of actions. And many of these actions may not be reachable, we may not be able to
take the action starting from the initial state. So our objective is to find out a subset of
the actions which can be activated given the initial state that the agents start from.
And in this way we will like to limit the branching factor. This was one of the
motivations for this algorithm.

(Refer Slide Time: 04:44)

One way to reduce the branching factor is as follows:
First you consider a relaxed problem. So, given the original problem you take a
relaxed version of the problem where you let go of some of the constraints. That is,
you remove some restrictions of the original problem. And the relax problem that you

get should be easy to solve. And the solution to this relax problem will include the
solution to the original problem. So once you get this relax problem you can do a
modified version of the original search. And you restrict the search space to only
those actions that are applicable in the relax problem. Now the basic idea of graph
plan is you construct a graph that encodes some constraints on the possible plans. You
take some of the constraints from possible plans and incorporate them to create a
graph. Now you will use this planning graph which we will refer to subsequently as
PG. We will take the planning graph PG to constrain the search for a valid plan.

(Refer Slide Time: 05:55)

The way we will construct the planning graph or PG is as follows:
If any valid plan exists it must be a sub-graph of this PG. The partial order plan that
we have looked at can be expressed in the form of a directed acyclic graph or a
diagram. And we will construct a planning graph such that a valid plan will be a
subset of this PG. Now we will show that the planning graph can be built in
polynomial time. And once we build the planning graph we are able to obtain
restrictions on actions which will make a search for a valid plan easily.

Now the planning graph we will consider will be a directed graph and it will have
several levels and in this graph we will have two types of nodes namely proposition
nodes and action nodes. Therefore in the planning graph we have proposition nodes
and then we have action nodes. And in fact in the graph we will have several levels
and the level with the proposition nodes will alternate with a level with the actions.
And we will also have three types of edges between levels. There will be the
precondition edges from propositions to actions, this proposition is a precondition for
this action or these two propositions are the preconditions for this action, these are
called precondition edges. We have add edges from action to proposition, if this
action is executed this proposition will be added. Then we have delete edges, if this
action is executed certain propositions will be deleted. So this may be q and this may
be r, this may be 0r.

(Refer Slide Time: 08:18)

So we may have add edges and delete edges from action nodes to proposition nodes
and we will have precondition edges from proposition nodes to action nodes. And in
the planning graph the proposition levels and action levels will alternate. The action
level will include actions whose preconditions are satisfied in the previous level plus
maintenance actions. The propositions at a particular level will denote those
propositions that can be valid at a particular state.

In a state where the subset of these propositions will be valid what are the actions that
one can take from the state?
The actions that one can take from the state are those for which the preconditions are
satisfied. Also, certain propositions will get carried over to the next state by virtue of
the frame axioms as we have discussed earlier. As we have noted that there can be
many propositions in the world and unless some proposition is explicitly added or
deleted the other propositions which hold in a particular state continue to hold at the
next state. So, corresponding to these propositions we will have maintenance actions
or no-op actions. Let us look at an example of the planning graph and then look at the
algorithm graph plan.

(Refer Slide Time: 11:33)

This is an example of a planning graph. This is the initial state or S0, these are the
propositions which hold at the initial state, these are some actions whose
preconditions are satisfied in this initial state and this is the set of propositions that
can hold in the next state. So let P0 be the set of propositions that can hold in state S0
and let Pi be the possible set of propositions that can hold in state Si. This set is called
Pi. Pi is the possible literals or propositions that can hold in state Si. This represents Pj
and Pj represents possible set of literals that can hold in state Sj and ai are the set of
actions that can be taken at state Si. This is an example of the planning graph.

These pink edges from a proposition to action means this is a precondition edge and
edges from action to propositions mean they are add or delete edges. They are add
edges if they go to a positive literal and they are delete edges if they go to a negative
literal and this grey edges are the maintenance actions or the no-op actions. So this
proposition continues to hold at the next state if the action does not add or delete that.
This is an example of a planning graph.

We have come to the procedure graph plan now. In the algorithm for graph plan there
will be two phases. There will be one phase for graph expansion and there will be
another phase for solution extraction. We start with k is equal to 0 then k is equal to 1
and then k is equal to 2 and so on. For every value of k we first do graph expansion
then we check certain conditions in the graph and if the graph needs those conditions
we do solution extraction.

(Refer Slide Time: 13:18)

Procedure for graph plan:
For a particular value of k in the graph expansion phase we create a planning graph
that contains k levels. This represents a relaxed problem. This planning graph we get
incorporates some of the constraints of the problem we have but not necessarily all
the constraints so this planning graph is a solution to the relaxed problem. And the
actual plan will be a sub-graph of this planning graph.

Once we have created the planning graph up to k levels we check whether the
planning graph satisfies a necessary condition for plan existence. Once we have a
graph we check first by looking at the last level of the plan whether this plan would
satisfy a necessary condition for the final plan. If it does satisfy then we try to extract
a solution.

If we succeed in extracting a solution we output the solution. If we do not succeed in
extracting a solution from the level k graph we increment the value of k and then go
through the graph expansion phase again. Therefore, in the solution extraction phase
what we do is we consider only the planning graph that we have and we do a
backward search from the goal state. So, in this backward search in the planning
graph we consider only those actions that are present in the planning graph and this is
what constraints the search space. Now as a result of solution extraction by backward
search through the planning graph if we find a solution then we return the solution.

And as we have seen earlier this is an example of the planning graph. These pink
edges denote the precondition edges and the ‘add and delete’ edges, the grey edges
denote the maintenance edges or the edges corresponding to no-op actions. And Pi is
the possible literals in state I, Pj is the possible literals in state j so this is the notation
that we could be using.

(Refer Slide Time: 16:18)

Therefore in a planning graph there are alternating layers of ground literals and
actions. So at the action level i we have all actions that might possibly occur at that
time step and at Pi we have all the literals that are asserted by these actions. So, in the
planning graph suppose this is the state level i minus 1 which consists of the
propositions Pi minus 1 and suppose we have the state level i consisting of the literals
Pi and this is the action level I, now this is state level 0, these are the propositions
which hold in the initial state which are known to us and these are precondition edges.

(Refer Slide Time: 17:11)

So this is an action, this action has this and this has the precondition, this action has
this and this has the precondition and these are the effect edges. So these three are the
effect edges and these are the precondition edges and these grey lines correspond to
maintenance actions. That is, this proposition is carried over to the next state if an
action does not affect that proposition.

So how do we construct the planning graph?
At level P1 we have all the literals which are given in the initial state. In a planning
problem you are given all the propositions that hold in the initial state and you are
given a partial description of the goal state and you are required to find a plan which
achieves the goal state.

(Refer Slide Time: 18:55)

Therefore P1 will include all literals in the initial state. Then we will add an action in
level Ai. Suppose we have Pi we will see how to construct Ai. We will add an action
in level Ai if all the preconditions of that action are present at level Pi. We will add a
precondition in level Pi if it is the effect of some action in level Ai minus 1. So a
proposition will be added in level Pi if it is the effect of some action in the level Ai
minus 1. And because we also have these maintenance actions we will carry over the
propositions from Pi minus 1 to Pi using maintenance actions and due to other actions
we have some other propositions as effects which we will add to level i.

In addition, we will maintain a set of exclusion relations called mutex relations. So
these mutex relations will be used to eliminate incompatible propositions and actions.
And because of these mutex relations we will able to reduce the graph size work. So
the graph consists of alternate levels. We have a proposition level P1 followed by an
action level A1 then a proposition level P2 followed by an action level A2 and so on.
This is a planning graph.

Now what would be the mutual exclusion relations we will consider?
We say two actions are mutex or two propositions are mutex.So we have mutex
relations between two propositions and we also have mutex relations between two
actions. Now two actions are mutex at some stage if no valid plan could contain both.
So if at a stage we find that both the actions cannot be together present in a valid plan
we say that those two actions are mutex.

Similarly, at a particular level if we find that two propositions cannot occur in a valid
plan we will call them to be mutex. Now we will look at certain conditions under

which we can label two actions as mutex and then we will also find conditions under
which we can label two propositions as mutex. So we will study three different mutex
situations between two actions.

(Refer Slide Time: 22:11)

Two actions are mutex. We will consider inconsistent effects, interference and
competing needs. First we will look at what we mean by inconsistent effects. So two
actions a1 and a2 are mutex they cannot occur together. If an effect of one negates an
effect of the other. Suppose the effect of a1 is P and the effect of a2 is NOTP these two
actions cannot come at this level of any valid plan. This is graphically illustrated here.

(Refer Slide Time: 22:18)

We have a proposition level Pi and here we have the proposition level Pi plus 1 and
these are the actions. We say that action a1 and action a2 are mutex which we denote
by this line between them a1 and a2 are mutex. If the effect of a1 is inconsistent with

the effect of a2 this could happen. Suppose q is the effect of a1 and NOTq is the effect
of a2 and since q and q2 are mutex they cannot occur together then a1 and a2 will be
mutex. Therefore this condition is called inconsistent effect condition. Two actions
will be mutex if their effects are inconsistent.

(Refer Slide Time: 23:25)

Secondly, we will say that two actions are mutex under the interference condition.
That is, one of the actions deletes a precondition of the other action. So this illustrates
interference so we have these propositions at level Pi and this is Pi plus 1 and we say
action a1 and a2 are mutex. If action a1 has an effect NOTq that is action a1 deletes q
where q is a precondition of a2 so in this case we say a1 and a2 interfere. Therefore
these two actions will be mutex. An example is the two actions Stack (a, b) and
putdown (a). Now putdown (a) has holding (a) as precondition but Stack (a, b) is an
action that deletes holding (a). So, Stack (a, b) deletes holding (a) and putdown (a)
needs holding (a). Hence we cannot have these two actions together so they are
mutex.

Thirdly, two actions are mutex under the condition of competing needs. That is, if
these actions have mutually exclusive preconditions, if the preconditions cannot occur
together then at the next stage we cannot have those two actions together. This is
illustrated by the following diagram:

(Refer Slide Time: 24:44)

Suppose we have these two actions a1 and a2 and suppose this is the precondition of a1
and this it the precondition of a2 we say that if these two preconditions of a1 and a2 are
mutex then these two actions must also be mutex. For example, consider the action
stack (a, b) and unstack (a, b), stack (a, b) requires that b must be clear and unstack (a,
b) requires that a must be clear. So if these two cannot be clear at the same time then
these two actions cannot be executed in parallel. Therefore under the condition of
competing needs also these two actions are mutex. So we have three conditions under
which actions are mutex. Two actions are mutex if they have inconsistent effects, if
there is interference or if there are competing needs.

Now let us see when two propositions are said to be mutex. These three conditions of
action mutex can be found easily while constructing the planning graph. So we can
label these inconsistencies easily. It is also important to note here that these are only
some of the mutex conditions. But these mutex conditions are easy to find and they
put some restrictions on the planning graph which goes towards reducing the amount
of search that we need to carry out.

(Refer Slide Time: 27:44)

Now two propositions are said to be mutex if all ways of achieving the propositions
are mutex. Now when would we say this?
For example, suppose one proposition is the negation of the other so P and NOTP are
mutex because both of them cannot be simultaneously true at a state. Two
propositions are also mutex if all ways of achieving them are pair wise mutex. This is
illustrated by the following diagram:

(Refer Slide Time: 28:11)

We have these two propositions that we are considering, we say that they are mutex.
These propositions can be achieved by action a1 or action a2. This proposition can be
achieved by action a3 or by this maintenance action. Now a1 is mutex with a3, a2 is
mutex with a3, a1 is mutex with this maintenance action, a2 is also mutex with this
maintenance action so these two propositions can not be true simultaneously because
you cannot achieve both of them simultaneously because all ways of achieving them

are mutually mutex. Hence there are two ways of achieving this proposition, there are
two ways of achieving this proposition and they are pair wise mutex so each of these
two ways is mutually exclusive with each of these two other ways so this is a case of
inconsistent support. Therefore these two propositions will be mutex. Now let us look
at an example to illustrate the construction of the planning graph and then
subsequently we will use the same example to run the graph plan algorithm.

(Refer Slide Time: 30:00)

Now this problem is proposed by Dana Nau. Suppose you want to prepare dinner as a
surprise for your sweetheart the initial state is as follows:
There is garbage, hands are clean and is quiet. So garbage, clean hand, quiet is the
characteristic of the initial state and your goal is to prepare dinner have a present and
there should be no garbage. So, dinner and present and no garbage is the goal
condition.

(Refer Slide Time: 30:44)

These are the actions which are available to you:
Cook, wrap, carry and dolly.
Cook is an action whose precondition is clean hands and effect is dinner.
Wrap is an action its precondition is quiet and effect is present.
Carry is an action which has no precondition and its effect is no garbage and not clean
hands. So hands become dirty but there is no garbage.
Dolly is an action which has no precondition its effect is no garbage and not quiet.

We have these actions; cook, wrap, carry and dolly and with these actions we have to
see how we can achieve this goal of dinner and present and no garbage. So this table
has the same thing such as this action, precondition and the effect.

(Refer Slide Time: 31:55)

Cook has clean hands as precondition and dinner has effect, wrap has quiet as
precondition and present as effect, carry has no precondition no garbage and no clean
hands is the effect, dolly has no preconditions no garbage not quiet is the effect. In
addition to these four actions we also have all the maintenance actions. It is one for
each literal. Let us see what it signifies.

In the initial state we have garbage and then clean hands, quiet. And you also know
whatever propositions are not mentioned in the initial state are assumed to be absent.
So, in the initial state there is no dinner no present.

(Refer Slide Time: 32:25)

What are the actions that one can carry out in initial state?
One can do carry, one can do dolly, carry and dolly have no preconditions. One can
do cook the precondition is clean hands, one can do wrap the precondition is quiet.
And the effect of cook is dinner, effect of wrap is present, effect of carry is no
garbage and no clean hands, effect of dolly is no garbage and not quiet. Now let us
see what sort of mutex hold between the actions. In addition to these four actions we
also have the maintenance conditions one for each literal.

For example, garbage to garbage there is a maintenance action. From clean hands to
clean hands there is a maintenance action. Quiet to quiet similarly no dinner to no
dinner, no present to no present are the maintenance actions. Now we notice that carry
has no garbage as effect and the maintenance action corresponding to garbage has
garbage as the effect. Since garbage and no garbage are mutex they cannot occur
together so carry is mutex with this maintenance action. Therefore carry and this
maintenance action are mutex.

Similarly, dolly has no garbage as the effect. This no op has garbage as the effect so
dolly is also mutex with the maintenance action. So dolly has an effect of not quiet
and quiet has the effect of quiet. Since not quiet and quiet are mutex dolly cannot
occur along with the maintenance action quiet. Hence dolly and quiet are mutex.
Dolly is mutex with wrap because wrap requires quiet and dolly has an effect not
quiet, this is an example of interference. Dolly has effect not quiet wrap requires quiet
so dolly and wrap cannot occur together.

Not quiet is inconsistent with present, cook is inconsistent with not present
maintenance action, wrap is inconsistent with not present maintenance action. So we
start with the initial state garbage, clean hands, quiet, no dinner, no present. And these
are the four possible actions carry, dolly, cook, wrap and these are the maintenance
actions. And then we find all the mutex relations between these actions according to
the three rules that we have looked at. And then carry is mutex with this maintenance
action for garbage, dolly is mutex with the maintenance action from garbage, dolly is

mutex with wrap, not quiet is mutex with present, cook is mutex with not dinner,
wrap is mutex with not present. So at state level 0 we have all the propositions of the
atoms that are mentioned in initial state.

(Refer Slide Time: 37:18)

Union {the negations of all atoms which are not in S0}
At action level 1 we have all actions whose preconditions are satisfied in S0.
In state level 1 we have all effects of all the actions in action level 1. This is how we
can construct the planning graph. And by looking at the mutex conditions we can
specify the mutual exclusive relations between them.

(Refer Slide Time: 37:44)

Here I have not put the maintenance actions for not dinner and not present but the rest
we have is this two level planning graph for this problem. So the actions as we have
noted are carry, dolly, cook and wrap. These are the precondition links and these are

the effect links. These are the maintenance actions and then we have specified the
mutex relations between the different actions.

We already saw how to have the mutex relation between the different actions. And
then we can also have mutex between the different propositions. Therefore this is easy
garbage mutex with no garb, clean hands is mutex with no clean hands, quiet is mutex
with not quiet then dinner is mutex with not clean hands because dinner requires clean
hands and dinner is mutex with not clean hands. Present is mutex with not quiet
because present requires quiet. So these are the mutex relations between the different
propositions.

Now, once we have this planning graph where we have state level 0, action level 1
and state level 1 now we need to check to see whether there is a possible plan of
length 1 through this planning graph. So the goal is not garbage, dinner and present.
All these three propositions are present in the goal and we want to see if a plan exists.
Now, not garbage, dinner, present all are present in state level one and they are not
mutex with each other so this satisfies a necessary condition that a plan can exist.
Now we have to do plan extraction to find a solution.

How do we find a solution?
Not garb requires either carry or dolly, dinner requires cook, present requires wrap.
So, for present we have to take wrap, for dinner we have to take cook and for not
garbage we have to take either carry or dolly. Carry is mutex with cook so we cannot
take carry then we have to consider dolly. Dolly is mutex with wrap so we cannot take
the action dolly. So in none of these ways we can satisfy the not garb action.

(Refer Slide Time: 41:18)

Therefore this plan cannot be extracted starting from this planning graph because not
grab can be achieved in two ways carry and dolly and carry is mutex with cook. Cook
is required for dinner, present can only be achieved by wrap and wrap is mutex with
dolly. So neither carry nor dolly can be executed which is consistent with these two.

So neither of this work and so we have to abandon this plan so this plan does not
exist.

(Refer Slide Time: 41:38)

(Refer Slide Time: 42:33)

Now what you do if this plan does not exist?
Now you have to consider expanding your planning graph further. So you have to go
back and expand the graph further to one more level. So we generate one more action
level. We had already generated up to this, we generate one more action level action
level two and then state level two. And then we again try to see if state level two
satisfies the necessary conditions for plan existence and then we try to extract the plan
from state level two. This is the planning graph expanded up to state level two. Here
we see that the carry, dolly, cook and wrap actions are there and we have found all the
mutex relations between the four actions and we have found the mutex relations

between the propositions. Before we proceed further let us look at certain
observations.

(Refer Slide Time: 42:54)

(Refer Slide Time: 43:00)

(Refer Slide Time: 43:18)

So the first observation is that a set of propositions in state level zero, these are the set
of propositions in P1, this is P2, P3 and we observe that the set of propositions are
always monotonically increasing, the size of the set is increasing. We also note that
the proposition mutex relationships are monotonically decreasing. Whatever mutex
relationships we had initially as we proceed further these relations can be dropped and
no new mutex relations will arise.

Observation two is that since between two levels the number of propositions are
increasing the number of actions which are applicable will also increase. Therefore
more actions will be applicable here than in this level. Therefore the number of state
variables is increasing, the number of propositions is increasing, the number of
actions is increasing and then the mutex relationships between the actions are
decreasing as we go.

(Refer Slide Time: 44:00)

(Refer Slide Time: 44:11)

From this we can conclude that as we construct the different levels of planning graph
after some time the planning graph will level of because we are always increasing the
propositions and after sometime we cannot increase any more propositions so the
propositions that we had at level i will be the same as the propositions we will have at
level i plus 1. Therefore after sometime we will find that all the levels are identical.
So, because we have a finite space the set of literals will never decrease and no
mutexes will appear. Hence this means, after sometime our planning graph will reach
a saturation point so the planning graph cannot go on for ever.

(Refer Slide Time: 45:00)

Now let us see what a valid plan is. A valid plan is a planning graph where actions at
the same level do not interfere. Each action’s preconditions are made true by the plan
and the goals are satisfied. As we have noted a valid plan is a sub-graph of the
planning graph we have. And it is that sub-graph where the actions at the same level

do not interfere that is they cannot be mutex. Each action’s preconditions are made
true by the plan and the goals are satisfied.

(Refer Slide Time: 45:45)

In the graph plan algorithm as we have noted earlier there are two phases. In the first
phase grow the planning graph this is called the graph expansion phase and then we
have the solution expansion phase where we search the planning graph for a valid
plan. Now if I do not find the valid plan we will add one new level to the planning
graph and try again. Before we proceed we note that the creation of the planning
graph is a polynomial time algorithm.

(Refer Slide Time: 46:25)

The size of a t level planning graph and the time to create the planning graph are
polynomial in the following:

• t is the number of levels

• n is the number of objects
• m is the number of actions and
• p is the number of propositions in the initial state

The size and the time of this planning graph is proportional to p plus m into l into n
power k. So, for k constant this is a polynomial. The maximum action nodes are m
into n power k where k is the largest number of action parameters we can have and k
is usually constant, k is the number of actions in the possible actions planning
problem that we are considering. Once we have got the graph let us look at how we
do solution extraction. For solution extraction we do a search for a solution plan by
backward chaining on the planning graph. We first start at the last level of the
planning graph where the goals are present and we try to achieve goals level by level.
At level k we pick a subset of non-mutex actions that can achieve the current goals.
Their preconditions of these actions become the goals for the k minus 1 at level.

(Refer Slide Time: 47:44)

We build the goal subset by picking each goal and choosing one of the actions to add.
It could be that one action achieves two different goals. So, if we had a goal g1 for
which we chose action a1 and if g3 is also achieved by a1 then we can achieve g3 by a1.
Then we continue on the remaining goals until we find a solution. If we do not find a
solution we backtrack and we check the alternate ways of achieving the unachieved
goals.

(Refer Slide Time: 48:44)

In the plan graph search we are basically going in a loop. If goals are present at the
current level and they are non-mutex with each other we choose action to achieve
each goal and add preconditions to the next goal set at the previous level and then we
continue recursively until we find a solution. So this is what we execute in the
different phases. Therefore this is an example of a planning graph where suppose this
and this are the goals these two propositions are the goals that we must satisfy. And as
you note, this proposition can be satisfied either by executing this action or by using
this maintenance action. This proposition can only be satisfied in one way. So we
must take this action it must be selected and out of this action and the no op we have
to select one of them. So this is the planning graph we start with and corresponding to
these two possibilities we get two different planning graphs.

(Refer Slide Time: 50:02)

In this planning graph we have chosen this maintenance action to satisfy this goal. In
both the planning graph we choose this action. In this planning graph we choose this
action to satisfy. In this side of the search tree we have taken these two actions but
here we have taken only this action. Now, in this case at the previous level we will
require these two conditions to be satisfied and these two conditions are the
preconditions of this action. In this case where we have this maintenance action for
this proposition this proposition must have been true at the previous level. So, if we
choose this maintenance action then my goals are at the previous level.

On the other hand, if I choose this action to achieve here I have these two actions to
satisfy. This action has these two as the preconditions, this action has these two as the
preconditions so here I have to satisfy these four preconditions. Therefore this is my
goal at the next level. Now, for each of these cases we will again consider these new
set of goals and try to see how we can achieve them. By taking the previous example
where we had these three preconditions and for this precondition we have only this
maintenance action, for this proposition this is the only action that achieves this
proposition, for this proposition this is the only action that achieves this proposition.

(Refer Slide Time: 52:40)

So we take these two actions and we find that in order to do this at the previous level
these three propositions are required. Therefore we get the goal at the next level and
thus we proceed until we come to the zeroth level. If the propositions that we get at
the zeroth level are a subset of the initial state description of the system then we have
achieved a plan. If we do not achieve a plan we backtrack and we explore other
portions of the search tree. Similarly, from the other side we will have some other
goal and thus we will proceed. So graph plan proceeds like this.

How long will graph plan proceed?
After sometime graph plan will find that in the graph expansion phase at level k the
propositions we have got is the same as what we get at level k plus 1 and that is
saturation and we cannot expand the graph any further.

(Refer Slide Time: 53:08)

(Refer Slide Time: 53:18)

If we have not found the solution then we stop. Also, the graph can record the sets of
unsolvable goals which can make it more efficient. For solution extraction, in graph
plan g is the set of goals we need to achieve and j is the level of this current state Sj. If
j is 0 that is we have reached the initial state we return the solution. Otherwise for
each literal l in g for each proposition which occurs in the current goal we
nondeterministically choose an action to use in state the previous state Sj minus 1 that
achieves l. Once we have chosen actions for each of the literals and the goal if any
pair of chosen actions are mutex then we backtrack. Otherwise we get g′ which is the
set of preconditions of the chosen action and then we recursively call solution
extraction on g′ and j minus 1. Therefore this is the solution extraction algorithm and
this is the search algorithm but this search algorithm is constraint because the
planning graph incorporates constraints on the problem.

Now let us come back to the planning graph we obtained. In this planning graph at
level two we find that the actions not garb, dinner, present are all present so we try to
find the solution. And then in order to find the solution we see that there are three
ways to achieve not garbage such as carry, dolly and the maintenance action for not
garbage. For dinner there are two ways; the maintenance action and cook, for present
there are two ways; the maintenance action presents a wrap.

Now we choose a way of achieving not garb by carry, we choose dinner to be
achieved by the maintenance action dinner and we choose present to be achieved by
the action wrap. This is one possibility by which we can achieve these goals. In order
to do this for wrap we have the precondition quiet, for dinner we need the
precondition dinner, for not garb there is no precondition.
So at the level we have quiet and dinner as our goals.

(Refer Slide Time: 55:25)

To achieve quiet and dinner; quiet is achieved by the maintenance condition quiet and
dinner is achieved by the action cook. Cook requires clean hand as a prerequisite and
quiet requires quiet as a prerequisite so clean hands and quiet are required in the
initial state. Now, clean hands and quiet are satisfied by the initial state description of
the problem. Therefore we have found a plan. So this plan which is given in blue is a
subset of the planning graph. This is a partial order plan which is a subset of the
planning graph.

(Refer Slide Time: 56:44)

Now, how does graph plan compare with partial order planning?
So because of the constraints of the graph plan imposes on the search space it is faster
than partial order plan. Here is an exercise to try out. So the domain we will be
considering is a rocket domain where we have the following actions. Move R, X, Y.
Move rocket R from X to Y. Precondition is at R, X and has fuel R. Effect is at R, Y
and not at R, X and not has fuel R. The second action is unload C, R, X which is
unload cargo from rocket at X.

(Refer Slide Time: 57:18)

Precondition in C, R and R, X, rocket is at X and cargo is in R.
Effect: not in C, R and at C, X.
Third action is load C, R, X.
Precondition is at C, X and at R, X.
Effect is not at C, X and in C, R.

So we have three actions; move rocket from X to Y, unload cargo from rocket at X
and load cargo from rocket R at X.

(Refer Slide Time: 58:11)

Given this problem you need to apply graph plan to this domain with the cargo b and
cargo c are in Delhi this is your goal. Initial situation: cargo b and cargo c are in
Kolkata and rocket r is in Kolkata and r has fuel. Therefore for this you have to
execute graph plan and on the same problem you execute partial order planning.

