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Today we will start on a new module. Earlier we looked at state space search and we 
also looked at logic; propositional calculus and first order calculus. Today we will 
look at a new module which comprises planning problems. So today we will give an 
introduction to the planning problem. And in the subsequent lectures we will look at 
different algorithms which efficiently solve the planning problem. 
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The instructional objective of today's class is the student will get an introduction to 
planning problems. Given a situation which ((models)) planning they should be able 
to formulate the planning problems in terms of representation formalisms that we will 
discuss. Today we will look at the STRIPS formalisms as well as situation calculus 
and certain other techniques. The students should be able to cast planning problems as 
search problems and they should be able to cast it as a normal state space search 
problems. But we will also explore why state space search solution techniques are not 
ideally suited for solving planning problems and we will discuss what other 
techniques can be used for searching in the planned space. 
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This is a schematic overview of the intelligent agent that we discussed in the 
beginning of this course. If you remember this is the agent, this is the environment, 
the agent interacts with the environment. At least for this course we will assume that 
the environment is static and the environment is fully observable. The agent receives 
perceptions from the environment through its sensory operators and we assume that 
this perception is perfect. That is, the environment is fully observable to the agent and 
the agent can take actions through its effectors which can change the state of the 
environment. 
 
We will consider only deterministic actions. In the planning problem we will assume 
that the agent has a goal or goals that the agent wishes to achieve. And given the goals 
the agent wants to find a sequence of actions that would let him or her achieve the 
goals. And the sort of question we will ask is given the current situation what is the 
next action or what is the next action sequence that agent should take? 
In planning problems the task of the agent is to synthesize goal directed behavior. 
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And the agent has a goal which the agent wishes to achieve and the objective of the 
agent is to select a sequence of actions. Let us say a1 a2 a3 up to an so that as a result of 
executing the actions in this sequence the agent will get to a state where the goal is 
achieved. And while determining the action sequence the agent would have to 
consider the casual dependencies between the different actions. For our planning 
lectures we will primarily restrict ourselves to deterministic and fully observable 
environments. 
 
There are other types of planning problems where the environment may be stochastic,  
the environment may be only partially observable, the actions may have non-
deterministic effects and in stochastic environment it may not be possible or it may 
not be the best situation for the agent to plan a sequence of actions. Rather the agent 
might like to determine a policy so that he can determine his current action and based 
on the feedback received for the next state the agent can decide the subsequent 
actions. But for the deterministic and fully observable situations to which we will 
confine ourselves today the solution to the planning problem would be a sequence of 
actions that achieve the goal. 
 
Now let us try to understand why planning is important and where planning situations 
arise. This course is about intelligent agents and intelligent agents need to operate in 
the world and to operate in the world the agent should be able to take actions. The 
agent should be able to take actions which are appropriate for the situation that is at 
hand. The agent should also be able to take actions that change the state of the world 
so that the goals the agent wishes to achieve can be achieved in the world. And 
additionally the agent will like to compose more than one action or a set of actions 
together to achieve complex goals.  
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In order to change the world to suit the needs agents will need to know the behavior 
of the world they need to know how the world changes as a consequence of the 
different actions that can be taken in the world. And reasoning from this the agent 
should be able to formulate a plan to achieve its goals. And in this case while dealing 
with planning the agent needs to reason about dynamic environments because as the 
agent is taking an action the action is usually changing the state of the world. 
Therefore in the dynamically changing world the agent has to reason about the effects 
of its action sequence. 
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Let us look at a very simple example of a planning problem that we have to often 
tackle. Actually a lot of problems that we tackle in our everyday activity or in the long 
term- goals are planning problems. For example, suppose my plan is to have a 
birthday party in my house tomorrow and suppose the current situation is that I am at 



home, there is flour at home, there is no butter, there is no sugar and I want to find a 
sequence of actions or plan so that I can hold a birthday party tomorrow. And this 
may be the sequence of actions that I wish to perform that would lead to the 
realization of that code. 
 
I invite friends, I go out and buy butter, I go out and buy sugar, I buy balloons, I 
decorate the house, I bake the cake and so on. So this is a sequence of actions I carry 
out which realizes the objective I have in mind. Agents are robots and often they need 
to plan. Their planning is involved in a lot of everyday activities that we do. For 
example, if you want to get to this room I have to plan how I would come to this place 
starting from my office or if I want to deliver this course I have to plan the sequence 
of lecture materials that I will deliver to achieve the objective of teaching this course. 
So planning is a part of everyday activities like communication, like navigation as 
well as many other activities. Let us look at some applications of planning; mobile 
robots.  
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In fact mobile robots were one of the initial goals of AI and mobile robots need to do 
planning on a very large scale for navigation, for task planning etc. Hence different 
types of planning are involved for mobile robots. Autonomous agents also need to 
planning. For example, NASA uses a deep space planning agent. We have earlier 
discussed about the different rovers that have been sent to space to Mars and these 
agents are involved in autonomous planning. In simulated environments goal directed 
agents are needed for training, for playing games, in web and grid environments 
planning is needed for composing queries or services, to deliver a particular service. 
 
In education or tutoring system planning is required to decide what material to deliver 
next to the student. Planning is also used in scheduling problems where we have to 
make choices of action as well as we have to handle different resources. Hubble 
Space Telescope scheduler is an example of a very useful system which uses 
planning. 
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Actually now-a-days planning and scheduling go hand in hand. Workflow 
management is a place where we need planning. Planning is being used in software 
test case generation, in plan based interfaces and many such applications. So let us see 
the essence of a planning problem. In a planning problem we are given a way to 
describe the world we are given a description of the initial state of the world and we 
are given the description of what the goal state should achieve. 
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Our objective is to find a set of possible actions which when executed in sequence 
will change the world so that a goal can be achieved. Or rather we are given the initial 
state description, the goal description and the description of a set of possible actions 
that are there in the world and we also know the effects of these actions. And our 
objective is to find a sequence of actions or prescribe a sequence of actions that will 
change the initial state and take the agent to a state where the goal will be achieved. 



There is a lot of logical structure in the way a planning problem is formulated. And 
our objective in designing planning algorithms is to design algorithms that take 
advantage of the logical structure of the problem description and in order to be able to 
do so we need to be able to represent the problem in a suitable logical language. 
 
Following a very common formalism of representation of planning problems let us 
see how the states, the actions, goals etc are represented. So, in a planning problem 
typically states are modeled in terms of propositions or state variables or features of a 
state. So we have different propositions and in a particular state these propositions 
have different binary values. For example, suppose the propositions are; at home, 
have sugar, have butter, have money etc and the values of these propositions may be 
true or false in a given state. For the initial state we have a complete description of the 
state, we know which are the propositions which are true in the initial state. And 
typically we have a partial description of the goal state. 
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We want to know those propositions we want should be true in the goal state. So a 
state is typically represented as a conjunction of positive literals. So we have to 
specify the propositions which are true in a particular state this will fully represent the 
description of a state. For example, a state could be lighted and hot and made of brass. 
We can use propositions as a conjunction of propositions to represent a state. 
 
We can also use first order literals. For example, we could use at robot 1 kitchen and 
at robot 2 garden. Now notice that this is our predicate, at is a predicate but the 
arguments are ground literals. So we allow first order literals to be used to describe a 
state but these literals must be ground literals and they must be functioned free. So 
literals must be ground and function free which means that we cannot use things like 
at father Fred home. These sort of first order literals are not allowed because here we 
have a function.  
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We also do not allow quantifications that is we do not allow at X home where X is a 
variable which is either existentially quantified or for all quantified. So these sort of 
first order literals are not allowed but we can have ground first order literals as in at 
robot 1 kitchen. In a simple formalism we allow states to be represented as a 
conjunction of propositions or a conjunction of first order literals or a mixture of 
them. Now there could be a large number of literals or propositions that are part of the 
planning problem. We may specify the values of some of the literals.  
 
For example, we may specify that lighted is true, hot is true, made of brass is true. But 
we may not have specified the values of the twenty other literals that occur in this 
planning problem or hundred other literals that occur in this planning problem. In a 
closed world assumption we will assume that any condition we have not mentioned 
are assumed false. So, in a closed world assumption we will say that whichever 
literals we have specifically stated to be true in a particular state will be true but the 
other literals will all be false.  
 
How is a goal represented?  
A goal is represented as a partially specified state. For example, rich and famous and 
stays in Mumbai. This is a description of a goal. We say that a state s satisfies a goal g 
if the state s contains all the propositions of goal g. Suppose the description of the 
state s is lighted and hot and made of brass so this state satisfies the goal lighted and 
hot because the propositions lighted and the proposition hot both occur in the goal 
state.  
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If we take another example if we say that rich and famous and miserable and stays 
Mumbai and acts in movie M1, so that state will satisfy the goal; rich and famous and 
stays in Mumbai. For a goal to satisfy a state all the propositions in the goal must be 
in the description of the state. When we model planning problems states are modeled 
in terms of propositions as we said complete initial state and partial goal state. Now 
we will look at how actions are modeled.  
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Actions are typically modeled as state transformations. To specify an action we 
specify what transformation to the state space will be brought about by the execution 
of an action. So, to represent actions different formalisms have been used. Today we 
will discuss about STRIPS which is a classical formalism for describing actions. We 
will later describe ADL which is a more modeled and less descriptive language which 
has better expressive power than the STRIPS representation formalism. 
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In STRIPS actions are specified by specifying two things. One is the precondition of 
the action the other is the effect of the action. The precondition of an action means the 
condition that must hold so that the action can be executed. Suppose I want to pick up 
an object the precondition is that my hand must be empty and the object which I wish 
to pick up must be portable and must be available in front of me. Therefore 
preconditions denote those conditions that must be satisfied so that the action can be 
executed.  
 
Secondly, we need to describe the effects of an action. What will happen, how will 
the state change as a result of taking the action? 
Suppose the agent is in a state where certain propositions are true and when the agent 
executes an action the state may change. The change can be described by using two 
different things. Some of the propositions which were true earlier would not be true 
after the action is executed and some new propositions which may have been false 
earlier would be true when the action is executed. So let us take an example of an 
action fly which takes three arguments fly p from to. The precondition is that at p 
from can fly p airport from and airport to. If these four conditions are satisfied in the 
previous state then only this action can be executed. And as a result of executing this 
action at p from will no longer be true but at p to will be true in the next state. So the 
effect of an action is described by a conjunction of positive and negative literals. 
 
Negative literals correspond to those propositions which have to be deleted from the 
previous state to get the current state. The positive literals denote those propositions 
that will have to be added to the new state. Now, the other assumption we will make 
is that the rest of the propositions we have not specified in the effect list those 
propositions their status will be unchanged. If the other propositions were true in the 
earlier state they will continue to be true in the current state and if they were false in 
the earlier state they will continue to be false in the next state. 
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Now look at the action fly p from to. Now p from to are not ground literals but these 
are variables. So fly p from to represents an action schema. An action schema can 
represent a number of different actions. For example; it can represent the action fly 
plane one Kolkata Delhi, it can represent the action fly plane 1 Kolkata Chennai, it 
can represent the action fly plane one Kolkata Delhi, fly plane 1 Delhi Kolkata fly 
plane one Delhi Chennai, fly plane 2 Kolkata Delhi and so on. Therefore these actions 
schemata can represent a class of actions and number of different actions. 
 
The precondition of an action is a conjunction of function free positive literals. They 
denote what must be true in a state so that the action can be executed in that state. 
This action fly p from to can only be executed if can fly p is true, p is at from, from is 
in airport, to is in airport. Therefore these are the conditions that need to be true so 
that the action can be executed. All actions cannot be executed at this state. For 
example, if p is at from I cannot execute the action fly p to from in the current state. 
As a result of the action the effect of the action is specified by the effect clause. The 
effect says not at p from and at p to. So the effect is a conjunction of function free 
literals not positive so this is a mistake.  
 
So, effect is a conjunction of function free literals which may contain a set of positive 
literals and a set of negative literals. And they together represent how this state 
changes when the action is executed. If I have a negative literal it means that 
proposition is to be removed from the previous state to get the current state. If we 
have a positive literal it means that proposition has to be added to the new state. Now 
actions represent change in the world and action changes the world. We want to know 
how an action will alter the world. We also want to keep track of the history of the 
world states and answer questions about potential world states and in order to do that 
we need to reason about actions. 
 
Now you have studied first order predicate calculus earlier in this course. Today we 
will briefly talk about situation calculus which is formalism in first order predicate 
calculus which allows us to reason about time and reason about situations. 
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Situation calculus was first discussed by McCarthy. It is a formalism to model 
dynamic worlds within first order logic. So situation calculus is a formalism to model 
dynamic worlds. The key idea in situation calculus is that we represent the snapshot 
of the world which we call a situation explicitly. And these situations index the 
different states of the world. The states of the world change with time. Suppose the 
world is in a situation s0 which has a particular state and when the agent takes some 
action as a result the state changes and s1 becomes the new situation and as a result of 
taking an action the situation changes. That is, actions map situations to situations. 
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Fluents are properties that change from situation to situation. There are certain 
propositions which are independent of the situation but there are certain Fluents 
which are those that change from situation to situation. So in order to specify those 
propositions we need an extra argument to denote the situation. For example; let us 
take a proposition on; suppose we have a blocks world, a blocks world is a world 
where we are dealing with several blocks. Our objective is that suppose we have a 
particular configuration of the block we wish to move these blocks so that we get to 
some other configuration of the blocks. This is the block world.  
 
In block world the typical proposition we use is whether a block is on top of another 
block. For example, we like to say on A B. Now, on A B this proposition holds in this 
state or in this situation it does not hold in this situation. So in this case we will 
specify with an extra argument that on A B, suppose we call this situation s1 and we 
call this situation s2 we can say on A B in situation s1, on B A in situation s2 and not 
on A B in situation s2. Thus, on is a proposition whether on A B is true depends on 
the situation so we use a new situation argument in this proposition. 
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Then let us take the proposition clear. Clear is also proposition and whether A is clear 
or not depends on this situation like in this case A is cleared, clear A in s1 but A is not 
clear in s2, C is clear in s2. So again to continue with the blocks world example here I 
have a situation which we call s0 and we see that in this situation B is cleared. So 
clear B, s0 on B, C, s0 clear A, s0 and this is a robot hand and we have a proposition 
corresponding to hand empty so hand empty at s0. So this is the description of this 
state in the blocks world. 
 
Now let us look at possible actions in the blocks world. Let us take a particular action 
pick up. So the action, pick up x is the action schema, pick up B is a particular 
instance of an action schema. 
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Now suppose the agent executes the action pick up B in the situation s0 so we denote 
it by do pick up B s0 so this action is executed at situation s0. The new situation do 
pick up B, s0 represents a new situation which arises out of executing the action pick 
up B on situation s0. So do pick up B s0 results into a new situation s1. So in the 
situation s1 on B, C will not be true so not on B, C in s1, clear C, s1 so clear B will 
not be true but clear C will hold true in situation s1. So s1 is a new situation which is 
a result of executing the action pick up B in situation s0 and the situation s1 can be 
described by clear A clear C not hand empty and not clear B and not on B, C. This is 
another example suppose the situation s0 corresponds to at home s0 color door red. 
 
Now notice that this proposition color its value does not depend on the situation 
depend on the time. So, for the proposition color we have not added the situation 
argument. At is a proposition whose value changes depending on the situation. So 
here we have added a situation argument but for the proposition color we have not 
added any situation argument. So s0 is described by at home s0 color door red. Now 
s1 is a situation which the agent gets if the action go store is executed so s1 is a result 
of executing the action do go store the action go store in the situation s0.  
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And the situation s1 is described by not at home s1 at store s1. So this is the effect of 
the action go store, not at home and at store. This proposition color door red is not 
affected by this action go store so if color door red holds in situation s0 it will 
continue to hold in the situation s1.  
 
Now in the initial state there could be, the entire problem description could have 100s 
of different propositions and some of which hold in the initial state and some of which 
do not hold in the initial state. Now after every action we get to a state and if we have 
to describe whether each of these propositions are true or false in that state then that 
would be a very laborious process. We also notice that typically an action will only 
have a local effect, it only changes the value of certain propositions. So the vast 
amount of background information remains unchanged. This problem in AI is referred 
to as the frame problem.  
 
For example, suppose I am at home and there are different situations and different 
propositions that hold and the current time. For example, my son is at home, the store 
sells bread, my age is 38, and then so may other things, some of them hold in this 
state and some of them do not hold in this state. Now suppose I execute the action go 
store, now what will change is that, at home will no longer hold and at store will hold. 
However this vast amount of other propositions will continue to have the same value 
as they had earlier. And in this the background information does not change. This is 
known as the frame problem in AI. And we want an efficient representation of this 
frame problem. And if we confine ourselves to the framework of logical reasoning 
then we have to capture the frame problem using a set of rules and these rules can be 
captured by a set of actions called the successor state axioms. So, successor state 
axioms encope the fact that normally things stay true from one state to the next unless 
an action changes them. 
 
For example, suppose you consider the proposition at x. Now at x x will hold at the 
next situation which has a reason out of doing the action A in situation s. So do A, S 
is the new situation which the agent finds itself in after carrying out the action A in 



situation S. At x holds in this situation if and only if either A equal to go x if current 
action is go x then after this action at x will hold or at x will hold if the action is not 
go Y and the agent is already at x in the previous situation. If the agent is already at x 
and it does not execute a go action then the agent will continue to be at x. Or if the 
agent does execute the go x action then at the next situation it will be at x otherwise 
the agent will not be at x. This means that for every action or rather for every 
proposition that depends on the situation for every fluent we have to have one axiom 
like this axiom which recalls this successor state axiom. So in this case the fluent at x 
only changes the action go. There could be a fluent which changes as a result of more 
than one action. Suppose it changes with three different actions the successor state 
axiom for that fluent would involve all these three different actions.  
 
Once we have wrote the problem in this form means we have written the initial states, 
the action representations and the successor state axioms then we can use theorem 
proving to find a solution to the planning problem. We have already seen how 
theorem proving works. Theorem proving can be used to find a solution to the 
planning problem. However, theorem proving may not always be a very efficient way 
of solving a planning problem so what we will do in this class is to explore different 
direct methods of solving the planning problem.  
 
So we will first look at STRIPS. Representation for actions in STRIPS which we 
discussed about earlier, every action is represented by the precondition of the actions 
which is a list of propositions that have to be true for the action to be executed. The 
delete list and the add list so the effects of an action in STRIPS are divided into two 
different lists. The add list is the list of propositions that become true after the action 
is executed and the delete list contains the list of propositions that becomes false after 
the action is executed. In the STRIPS formalism the actions specify all the state 
variables whose values are changed by the action. But STRIPS places certain 
restrictions on the preconditions list as well as the add and delete list. Specifically 
STRIPS does not allow disjunctions in the effect list that is the add or delete list. And 
STRIPS only allow propositional preconditions at affects.  
 
We will later see that there are some other languages like ideal which relax this 
criteria a little bit. So let us look at an example problem; suppose the initial state is 
described by (….40:43) at home, not have banana and not have money. And the goal 
is have banana and have money and at home. And the actions available are by x. the 
preconditions of by x are at store add list is add x. the other action is go X, Y, 
precondition is at x, delete list is at X, add list is at Y. Initially suppose we are at a 
situation S when we go from the home to the store we are at a new situation S prime. 
And in S as I said my son is at home the store sells bread and my age is 38 in the new 
situation S prime these propositions continue to hold. Now we want to know how we 
can efficiently represent everything that has not changed.  
 
STRIPS provide a good solution for simple actions. STRIPS just says that apart from 
those propositions we have listed out in the add list and delete list the rest of the 
propositions are maintained as it is in the next situation as in the previous situation.  
 
Now the ramification is that, suppose as a result of executing the action going to the 
store, suppose I am now in gold bazaar the number of people in the store went by 1 
and the contents of my pockets are now in the store. So this is the effect of my action.  



Now do we have to encode all these when we describe the effects of action?  
In STRIPS you do not have to specify all the effects of the action which can be 
inferred by some other technique. For example, 42:58 the fact that the number of 
people in the store go up by 1 if I go to the store that can be handled by some rules. 
Primitive facts like at home persist between states unless we specifically change this 
by executing a go action.  
 
Inferred facts are not carried over and must be re-inferred. Suppose the store currently 
has 5 people and if I go to the store the number of people becomes 6. So these things 
need not be specifically mentioned in the ‘add and delete’ list but they can be 
inferred. And this use of rules avoids making of mistakes. Now let us see how 
planning can be looked upon as a search problem. We are given a representation of 
the initial state, a set of STRIPS operators and a goal condition as we wish to achieve 
and a planning problem that we have to determine a sequence of actions which we 
apply to the initial state yields a state which satisfies the goal. Now we can look upon 
this as a search problem where the initial state is known to us, the actions or the 
possible operators that map a state to other states so we can have a state space graph 
and the goal is satisfied by any state that satisfies the goal.  
 
Suppose my initial state is at home, not have banana, not have money and the actions 
that I can execute is let us say go store, go office, go movie, go bank, cook dinner and 
so on. And as a result of the go store action we will have the initial state which will 
get transformed to a different state and from this state again different actions can be 
applied. So we see that we have a state space formalism. And we can search in this 
tree until we get a tree where the goal conditions are satisfied. So the planning 
problem is actually a search problem. This is another example of the planning 
problem.  
 
We have this initial state in this blocks world where B is on top of C and A is on the 
table. If we execute the action move A, B then we get to this particular case A is on 
top of B and B is on top of C if we execute the action move B, A then we come to this 
state. If we execute the action move B table we come to this state and if from this 
state we execute the action move C, A then we get to this state. Suppose our goal is 
represented by on C, A now we notice that in this state on C, A is true. So this is the 
state which satisfies the goal condition. Therefore this is the goal of the planning 
problem. The planning problem can be caste as state space search problem and we can 
detect whether a goal situation has been achieved. But the main problem in casting the 
planning problem such as the state space search problem is that the state space can be 
very large because the number of actions we can execute in a state may be very large 
and the state may really explode.  
 
The search tree is generally quite large. Also the description of the planning problem 
suggests some structure of the problem because each action typically only affects all 
set of propositions. And actions depend on each other. Planning algorithms have to be 
designed to take advantage of this special nature of the representation. Normally we 
can start from the initial state and we can do a search in the forward direction which is 
known as forward state space search.  
 
Forward state space search means you search from what is known in the initial state 
and apply operators in the order that they are applied. And alternative to forward state 



space search is the backward state space search. In backward state space search you 
do the search in the other way. That is, you start from the goal state and you try to 
find out the actions that would have led to such a state so you consider the actions in 
the reverse and the states in the reverse direction. So you search from the description 
of the goal and identify the actions that help you to reach the goal.  
 
In forward search the branching factor can be extremely high. All applicable actions 
have to be considered from each state and typically they may include many actions 
which are irrelevant. Suppose my objective is to bake a cake, now going to a movie is 
an action which I can perform at the initial state but whose effects are irrelevant to the 
goal of baking a cake. Therefore if we have a forward search typically search could be 
very inefficient unless we use a very accurate heuristic. If we do backward search 
starting from the goal this allows us to consider relevant actions.  
 
However, in backward search also we can have some actions which are irrelevant in 
the sense that we could not have arrived at the (…..49:47) conditions starting from the 
initial state we have. Actually backward search is also called regression planars. 
Planars that do backward search is called regression planars. In contrast to this the 
forward search planars are called progression planars. So regression planars typically 
have smaller branching factor and for most problems they have a more focused search 
space than planars that search in the forward direction. However both backward and 
forward search may lead to the consideration of a lot of irrelevant action. So if you 
really want to make the planning problem efficient you need to deploy very good 
heuristics.  
 
The questions for today’s lecture is,  
1) Explain how planning systems differ from classical search techniques. 
2) Formulate the blocks world planning problem.  
 
Take a particular description of the blocks world problem, take a description of the 
goal state and represent the initial state, represent the goal state, list out the possible 
actions in the blocks world. For each action you give the precondition list and effect 
list and then you can take this example problem and draw the search space 
corresponding to this problem.  
 


