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Today we start with the lecture ten of the course Artificial Intelligence. In the last class 
we introduced what you mean by constraint satisfaction problems and we looked at how 
we cast such problems as search problems and solve them by depth first search with 
backtracking. Today we will explore some more efficient techniques for solving 
constraint satisfaction problems.  
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The instructional objectives of today’s class are as follows:  
In this class the student will be introduced to more efficient search for constraint 
satisfaction problem. We will talk about the following strategies:  
Forward checking and then we will look at constraint propagation algorithms like the 
AC-3 algorithm. Then we will briefly talk about intelligent backtracking or backjumping. 
On taking these topics the student should be able to apply these techniques to constraint 
satisfaction problems.  
 
Before we start let us recapitulate the formulation we did for constraint satisfaction 
problems. If you remember, the sort of constraint satisfaction problems we had a number 
of variables and each variable has a domain. So v1 is a variable and v1 has a domain it 
can take a set of values. v2 is another variable it can take some set of values. So we have 
different variables along with their domains. Our objective is to assign variables to values 



and the value for a particular variable must come from its domain and the constraints 
must be satisfied.  
 
We especially looked at a most common type of constraint called binary constraints. 
Binary constraints involve a pair of variables. Suppose we can have a constraint saying 
that v1 and v2 cannot have the same value this is one type of constraint. We can say that 
the constraint between the variables v2 and v3 is that the value of v3 must be greater than 
the value of v2. So we have a set of variables, each variable has a domain. The variables 
must be assigned values from the domains such that the constraints are satisfied. 
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This is a general class of constraint satisfaction problems. These constraint satisfaction 
problems can be cast as state space search problems and we can do the search in the 
following manner: We pick up a variable, so this is the start, when none of the variables 
are assigned any values so v1 is not assigned a value, v2 is not assigned a value, v3 is not 
assigned a value and so on. So this is the empty state where none of the variables are 
assigned any values. In the next step we look at the assignment of different values to 
variable v1. Suppose variable v1 can take the values 1, 2, 4, 7 we have 4 branches 
corresponding to all the possible values that v1 can take.  
 
In the next state we have to pick up another variable. Let us say we pick up v2 and we 
have to look at all possible assignments of values to v2 that are consistent with the 
assignment that we have so far. For example, if v1 has the domain 1, 2, 4, 7 and v2 has 
the domain 2, 3, 4 then if v1 is already one v2 can be either 2 or 3 or 4. If v1 is 2 then v2 
can be either 3 or 4. We cannot have v2 is equal to 2 because any further assignment after 
we have v1 is equal to 2, v2 is equal to 2 will not undo this constraint. So if we have an 
assignment which is inconsistent we should not proceed further in that direction.  
 



Next, suppose we have another variable v3 which has a domain 1 and 5 and we have the 
constraint that the value of v3 must be greater than the value of v2 then in this case v3 
can only take the value of 5, in this case v3 again can only take the value of 5 and so on. 
So, in this way we can construct the search tree corresponding to the constraint 
satisfaction problem and we note that a solution to the constraint satisfaction problem is a 
leaf in the search tree which corresponds to all variables being assigned to specific values 
that do not violate any constraints.  
 
Therefore, if there are n variables all the leaves at level n are the different solutions to the 
search problem. And the strategy which is appropriate for solving such search problems 
is depth first search. Whenever we find that a constraint is violated we do backtracking. 
This backtracking is called chronological backtracking because we backtrack to the 
previous choice point. So, depth first search with chronological back tracking is a very 
appropriate method for solving constraint satisfaction search problems.  
 
We also discussed that we can try to make this search efficient by looking at a proper 
order in which we choose the next variable that we select next for assignment. So if you 
take a proper order of the variables we might end up in reaching the first solution much 
faster. And then once we pick a variable to assign values too we will be considering in 
what order should we assign values to these variables.  
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Then we will look at other questions like, can we detect inevitable failure earlier?  
 
So, in the general search problem we said that whenever we see that a constraint is 
violated we terminate the search at that point and then backtrack to the previous choice 
point. But it may be the case that future problems can be detected even earlier on. Let us 
see some techniques to handle that and then there is a question whether we can take 
advantage of the problem structure to further prune the search specific to a particular 



problem. One heuristic to choose the next variable is the minimum remaining value 
heuristic. In the minimum remaining value heuristic the variable with the fewest 
remaining values is chosen next.  
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What do you mean by variable with the fewest remaining values?  
Every variable has a domain. So when we have a partial search tree some of the variables 
have been already assigned values and as a result of assigning values to v2 and v3 the 
domain of v1 has become restricted, the domain of v4 has become restricted, domain of 
v5 has become restricted. So we find out the size of the domains of the remaining 
variables and we pick the variable for which the remaining domain is smallest in size. 
The intuition behind this is, since in the constraint satisfaction solutions or constraint 
satisfaction problems all variables have to be assigned values, the variable which is most 
constrained will have the fewest remaining values. So we need less of backtracking in 
order to consider the effect of that on the search. Once you have chosen a variable we 
have to choose the order of value assignment.  
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And here the heuristic is, choose the least constraining value. All variables have to be 
assigned value and the solution but each variable has to be assigned only one value. So 
our intuition is to choose a value which is most likely to take you to a solution. And 
consider that value which constraints the domains of the remaining variables the least. 
That is the value that rules out the fewest values in the remaining variables. Apart from 
the depth first search formulation we are considering we can propagate constraints earlier 
on.  
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Instead of considering variables one at a time we look at the constraints early on to 
reduce the search space. And there are several ideas which people have formulated which 
gave rise to different algorithms for constraint satisfaction search and the simplest of 
these ideas is forward checking.  
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What is forward checking?  
We keep track of the remaining legal values for the unassigned variables. So, when we 
assign values to a variable we suitably constrain the domains of the remaining variables. 
And then if we detect that there is a variable which does not have any legal values left 
then we can immediately terminate that path because finally we have to assign values to 
every variable along a correct solution path. So, if you find that there is a variable which 
does not have any legal values left we will not be able to assign values to the variables so 
that search path is bound to fail. If we can detect this early on we can terminate search at 
that point of the search tree. This is an example of a graph coloring problem where we 
have five nodes and there are three colors red green and blue and these are the links in the 
graph. 
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Corresponding to this problem suppose we show how a constraint satisfaction search 
proceeds.  
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Initially suppose we pick the node MH we can paint is red green or blue we paint MH is 
equal to red then if we pick KN next KN is a neighbor of MH so KN can be either green 
or blue. If we pick KN is equal to green and then we pick KE next KE is a neighbor of 
both MH and KN so KE is a neighbor of KN so it has to have a different color than KN 
so it can be either red or blue. So this way we can construct the search tree and we can do 
a depth first search.  
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Now, if we do forward checking let us see how we will proceed. Initially we have five 
variables MH KN KE AP and TN. Each of these variables can take each of the three 
values red green and blue. When we set MH is equal to red KN and AP are neighbors of 
MH so they can be either G or B, the others can be RGB. If we pick now KN is equal to 
green then AP which is a neighbor cannot be green so it can only be blue, KE and TN can 
be either RB or RB they are also neighbors of KN. Then we pick KE is equal to red as a 
result AP and TN can be only blue. Now if you take AP blue we find that the domain of 
TN is empty because TN is a neighbor of AP. So we detect here that there is a problem 
with the assignment and we backtrack. This is what forward checking does.  
 
Let us look back at the figure. At the 4th step we found that KE and TN have only blue 
left in their domains. Now KE has a legal value left, TN has a legal value left but we also 
know that there is a constraint between KE and TN. KE and TN cannot be of the same 
color. We are talking about AP and TN. They cannot be of the same color because they 
are neighbors. So in this step you see that AP and TN have only one legal value left. Even 
though they are individually legal together AP is equal to blue and TN is equal to blue 
cannot happen. So a smart algorithm might detect this early on and terminate search. This 
is a limitation of forward checking.  
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Forward checking checks that every remaining variable has at least one legal value but it 
does not explore further whether these values can be assigned to this variable subject to 
the constraints between these variables. Forward checking detects some of the 
inconsistencies but it does not detect all inconsistencies. For example, in the previous 
example it does not detect that AP and TN cannot be blue simultaneously.  
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Now let us look at another constrained graph on which we will run the next algorithm. 
Again this is a graph coloring problem. We have 6 nodes which we have numbered 1, 2, 
3, 4, 5 and 6 and this is the connectivity information between the nodes. Each of the 



nodes can be colored red, green or blue but two neighboring nodes cannot be assigned the 
same color. Now, if we do forward checking let us see what happens.  
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Suppose we first pick up 1 and we assign 1 to red. Now, if I assign 1 to red 2 and 3 
cannot be red so we reduce the domains of 2 and 3 we have blue or green. So, for each 
variable which is in constraint with 1 we eliminate the conflicting values from the 
domain. Next is, suppose we assign green to 4 then 2, 3 and 6 cannot be green so we 
remove green from the domains of 2, 3 and 6.  
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Now 2 can be only blue, 3 can be blue, 6 can be red or blue. Next we assign blue to 5 and 
as a result it affects the domains of 3 and 6. So we remove blue from the domains of 3 
and the domains of 6.  
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Now as a result we see that the domain of 3 becomes empty. So this is impossible so we 
have to back track at this point. Let us now find out the weakness of forward checking. 
When we assigned for green we saw that 2 and 3 have only one legal value left which is 
blue but these two legal values cannot be assigned together so we should have detected 
this problem early on, forward checking does not detect this.  
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So this is not detected by forward checking. We should have backtracked at this step.  
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Now let us see what further improvements we can do. There are several things that we 
could do. One is we could try to propagate the implications of the constraint on one 
variable on to the other variables. We propagate not just values but constraints between 
these variables. This is the idea of constraint propagation we will explore next.  
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Secondly what we will see after that is, we can backtrack intelligently which we call 
conflict directed backtracking. So we will save possible conflicts for a variable value 



when we assign that variable value and we will back jump to that assignment which gave 
rise to this conflict.  
 
In chronological backtracking on normal depth first search we backtrack to just the 
previous choice of point.  
 
In backjumping when we detect a constraint violation we backtrack to that assignment 
which led to the conflict which could have taken several decisions earlier. So first, let us 
explore constraint propagation.  
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Arc consistency is a fast method for constraint propagation. This is how arc consistency 
works:  
Given the current domains of v1 and v2 the arc from v1 to v2 is consistent if, for every 
value x of v1 there is some value y of v2 that is consistent with x. In forward checking 
check if the domain of in the remaining legal the legal domain of v1 is empty or not. Here 
we are not only checking whether the domain has a value but we are just checking 
whether for every value left in the domain there is some value y in the domain of another 
variable so that these two assignments of values are together consistent. This is what 
constraint propagation does.  
 
There are several constraint propagation algorithms. We will look at AC-3 and some 
algorithms like that. Let us see an example of the same graph that we discussed earlier.  
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We assign green to 4. After we assigned green to 4 we check all the arcs from 4, 2, 3 and 
6. First we check 2. So when we check 4 is equal to 2 we eliminate green from the 
domain of 2. But we have to check back later with the variables with which 2 has some 
constraint. 
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Next we check the constraint 4 to 3 and eliminate green from the domain of 3. After that 
we check the constraint 4 to 6 and eliminate green from the domain of 6. After we have 
finished checking the neighbors of 4 we go back to those variables whose domains have 



been changed to check if their current remaining values are consistent with the values of 
their neighbors.  
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We now go back to 2 and check the neighbors of 2. First we check 2 with 1 there is no 
violation, there is no problem. Then we check 2 with 3 and then we notice that if 2 is blue 
3 cannot be blue so we eliminate blue from 3.  
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If we do that the domain of 3 becomes empty which cannot happen so we backtrack at 
this point. This is the arc consistency algorithm and we can backtrack when we detect 



that there are variables which do not have domains which are consistent together because 
of the constraints between those variables. This is the idea of arc consistency.  
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Whenever the domain of a variable is revised the other arcs may need further revisions 
until no more inconsistencies remain. One implementation of the arc consistency 
algorithm is the AC-3 algorithm. The AC-3 algorithm uses a queue to keep track of the 
arcs that need to be checked for consistency because when we assign 4 to green it is not 
enough that we check the domains of 2, 3 and 6 which is neighbors of 4 but if these 
domains did change we have to check 2 with its neighbors and do this recursively until 
there is no further constraint propagation. So AC-3 does this constraint propagation so 
whenever the domain of a variable is reduced according to this algorithm you propagate 
the constraints to the neighbors of that variable. This is done recursively in the AC-3 
algorithm. Now let us look at an implementation of the AC-3 algorithm. 
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We have a data structure of a queue. Initially the queue contains all the arcs of the graph. 
So we have all the Vi Vj that are the edges of the graph such that i0 is equal to j. Then 
while q is not empty we select one of the arcs from this queue that is Vk, Vm and we 
delete Vk, Vm from queue. Then we check if revise Vk, Vm is true. That is, when we 
delete this arc we see if the domains get reduced. When we consider this constraint 
between Vk, Vm we check if the domains of these variables get reduced. So as a result of 
assignment of Vm if the domain of Vk gets changed then we find all the arcs in the graph 
of the form Vi, Vk. That is, if Vi is a neighbor of Vk then we have to check those 
constraints. So we append to the queue all the arcs Vi, Vk. If as a result of an assignment 
to Vm the domain of Vk gets changed. 
  
Now let us see what is the complexity of this algorithm AC-3?  
Now, if we have a binary constraint satisfaction problem then the constraints are only 
between pair of variables. So there are utmost n square arcs in the constrained graph.  
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In the algorithm every arc can be inserted utmost d times if the domain of Vi has d values. 
So, when we are putting an arc involving a variable into the queue we are only doing it 
when the domain of the variable is reduced. Suppose initially the domain of a variable Vk 
has b values we consider this arc for revision only when this domain is getting reduced. 
Corresponding to every Vk the arc can be put into the queue utmost d times. Now, 
checking the consistency of an arc can be done in order d square times because we check 
it against all the arcs in the graph. So the worst case time complexity of this algorithm is 
n square times d times d square which is O(n square d cube). So O(n square d cube) is the 
worst case complexity of the AC-3 algorithm. This is what constraint propagation is 
about.  
 
In constraint propagation as a result of reduction in the domain of a variable we look at 
the implications in terms of the constraints of the variables with other variables. And 
there are a set of algorithms which do constraint propagation. One of the well known 
algorithms is AC-3 which we discussed. Next we will consider another technique which 
we mentioned as intelligent backtracking.  
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We have already seen backtracking which has a very important role in solving the 
constraint satisfaction problems. So what you have in plain depth first search is 
chronological backtracking. When the branch of a search fails we need to backtrack to 
the most recent choice point. This is called depth first search. In depth first search we 
backtrack to the previous choice point but intelligent backtracking involves backtracking 
to the point because of which the conflict has arisen.  
 
Suppose we have a search tree like this and we have a constraint violation here, in 
chronological backtracking what we would do is, if there is a violation here we will go 
back here and then go back here which has a choice point. So we will go back to this 
node which is the next choice point. But in chronological backtracking if we find that this 
violation is because of an assignment here we will backtrack directly to this place. This is 
called backjumping or conflict directed backjumping.  
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In chronological backtracking consistency check is performed in the order in which the 
variables were instantiated. If consistency check fails we try the next value of the current 
variable. If the current variable has no more values we backtrack to the most recent 
variable that has a choice left. This is what is done is normal depth first search. 
Backjumping is also a type of backtracking but it is more efficient when there is no 
consistent instantiation to be found for the current variable.  
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And in this case we go to the deepest variable which was constraint checked against the 
current variable. So, when we find that the current variable is inconsistent and has no 
possible instantiation left instead of backtracking only to the previous choice point we 
find out what is the last variable which constrain the current variable. The current 
variable has no legal values left. In order that the current variable does get some legal 
value some constraint which participated with the current variable has to be changed. So 
we find the deepest node in the path from the current variable to the root where a variable 
was assigned a value and that constrains the domain of the current variable, we have to 
find that and that is what intelligent backtracking does.  
 
Backjumping reverts to the deepest variable which was checked against the current 
variable in which introduce the constraints. Now let us look at this example. So here we 
have the 6 queens problem and we have put queen 1 in row 2, queen 2 in row 5, queen 3 
in row 3 and queen 4 in row 6. After that we have put queen 5 in row 4. Now we see that, 
after we have placed these 4 queens the last queen cannot be placed in any of the rows. 
When we cannot put queen 5 we really do not need to look at any further assignment to 
the value of queen 5.  
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We have looked at some efficient constraint satisfaction problems. We have revised 
forward checking then we have looked at constraint propagation for which we looked at 
arc consistency algorithms and then we looked at backjumping. 
 
What is the idea behind these algorithms?  
In forward checking when we assign values to some of the variables we look forward and 
then we update the domains of the remaining variables. And in forward checking we just 
checked whether the domain of any of the remaining variables become empty.  
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If they do become empty then we terminate search at that point. In constraint 
propagation, in the general constraint satisfaction class of problems what we do is that, 
we not only propagate the constraints to restrict the domains of the unassigned variables 
but we also do a consistency check on those variables which have constraints between 
them. That is we check whether every variable whose domain gets affected, whether it 
has a legal value for a legal value of its neighbor with which it has some constraints. AC-
3 is a constraint propagation algorithm which does this recursively. Whenever it reduces 
a domain of a variable it takes up those variables and looks at its constraints with its 
neighbors.  
 
If there are constraints with its neighbors which reduce the domains of the neighbors then 
again it checks those with their neighbors and so on. So AC-3 is quite an efficient 
algorithm and is able to detect constraints earlier. As you make your constraint checking 
algorithms very intelligent you are reducing your reducing the number of nodes in the 
constraint satisfaction tree that you are going to search but you are spending more time at 
every step. So you have to select a right trade off about whether these intelligent 
processing does give you benefit.  
 
Does this take up time? Whether the benefit that you get in terms of reduced search space 
if they warrant that sort of benefit?  
Finally we looked at backjumping. What backjumping does is that, when in your search 
tree some constraint or some conflict is discovered that is the domain of this variable has 
become empty. In backjumping we find the earliest variable which had been checked 
with this variable in which we introduced “  ”. Now we must undo those effects in order 
to get out of this situation. So instead of going to the most recent choice point we jump to 
a conflict point.  
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Now we look at the questions for this lecture:  
The first question: Apply the different constraint satisfaction algorithms we discussed in 
today’s class on the 5 queens problem. In each case you should find out the number of 
nodes that are expanded. So first you will try ordinary depth first search. Second; you 
will try variable ordering heuristic along with ordinary depth first search. In the third 
instance you try forward checking. The 4th instance you work out AC-3 and finally you 
work with backjumping.  
 
Let us look back briefly at the questions we have set for lecture nine. If you remember the 
first question asked you to do the class room scheduling, to look at the class room 
scheduling problem and formulate it as a constraint satisfaction problem. So let us briefly 
look at the class room scheduling problem. We have a number of class rooms. Suppose 
cl1, cl2, cl3 are the class rooms and we have some times slots 43:02  
 
Let T1, T2, T3, T4 be the time slots and we have some teachers. So let P1, P2, P3, P4 etc 
be the teachers. Now for each teacher we have a set of classes which the teacher should 
be able to teach. So let us say P1 should be able to teach cl1 and cl2, P2 should be able to 
teach let us say cl2 and cl3, P3 should be able to teach cl4, P4 should be able to teach cl5 
and cl1. So we have a set of teachers and each teacher should be able to teach a set of 
classes. We have to assign courses so we have a set of courses.  
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Now this is a problem which involves a large number of variables of different types. Now 
let us look at the basic types of constraints which are involved. Now, if a teacher has to 
teach both the courses namely course 1 and course 2 then it means that course 1 and 
course 2 must be in different time slots. If a teacher is teaching c1 and c5 it means c1 and 
c5 must be in different time slots. Now each class room at a slot can have only one class. 
This is something you have to follow. And if a teacher is teaching two classes those two 
classes cannot be of the same time slot. Now what we have to do is, we have to assign 
classes to class rooms and time slots.  
 
So we can start with picking class c1 and assigning it to class room 1 time slot T1. Now, 
if c2 and c5 cannot have the same time slot c2 domain will not have this time slot T1 and 
c5’s domain will also not have T1. So when we consider the next instantiation, when we 
look at c2 we have to look at the choices for c2 in time slots other than T1.  
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When we look at c3, if after c1 we look at c3, c3 can be in time slot T1 but in time slot 
T1 it cannot be in a class room cl1. So any two courses cannot share the same room and 
slot. So both rooms and slots cannot be the same for two courses. And two courses that 
can be taught by the same professor cannot share a time slot. So, based on these 
constraints we have to do the assignment of values. You can work out these for a small 
set of values.  
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The second problem we said was a crypt arithmetic problem. Specifically we were asked 
to work out the values of the different letters for this crypt arithmetic problem.  



I will discuss briefly how you go about the solution to this problem. Sometimes for these 
problems if we are working out manually you can use certain heuristics from your 
knowledge. The value of M in this case cannot be more than 1. So even if S and M have 
the highest values this can be utmost 1. This is not 0 because if this value is 0 we would 
not be putting this here so this is very easy to see that M is equal to 1. So what we can do 
is, we can simplify this problem by putting 1 in this position. Now we have some other 
variables left.  
 
What are the variables we have?  
The variables are D, E, Y, N, R, O and S so we have seven variables in this problem. Let 
us say we first pick up D. 
 
Now what are the values that D can take?  
D can be 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 0 so we try the different values of D. 
There are many possible values of D so we try all possible values of D. Now let us say 
first we try D is equal to 1. Now if D is equal to 1 we have to try the different values of E. 
We first try the value E is equal to 1. Now if E is equal to 1 then Y has to be is equal to 2 
if D is 1 and E is 1 and Y is 2. So Y is fixed and here we have E is 1, this E is 1, these are 
the values we have assigned and Y has become 2.  
 
Now we have to choose N and R so that we have 1 here. Suppose so we choose the 
different possible values of N, suppose you first choose N is equal to 1, if N is equal to 1 
then R has to be 0 to satisfy this constraint so we have this assignment. And then E is 1 
along this path and we do not know the value of O and N is 1 so E is 1, O is not known, 
N is 1 so it must be is equal to 0. So here we have o is equal to 0 and we have this is 1 so 
S must be is equal to 9. Therefore a solution to this problem is S is equal to 9, E is equal 
to 1, N is equal to 1 and D is equal to 1, M is 1, O is 0, R is 0, E is 1 and M is 1, O is 0, N 
is 1, E is 1 and Y is 2 and you can verify whether this is correct.  
 
It is 1 plus 1 is equal to 2, 1 plus 0 is equal to 1, 1 plus 0 is equal to 1, 9 plus 1 is equal to 
10. So this is a solution to the crypt arithmetic problem send plus more is equal to money. 
And we have solved this problem by simple depth first search and in this case this is a 
simple problem with many solutions so we could get this problem by only exploring one 
path.  
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