
Real-Time Systems
Prof. Dr. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 08

Event – Driven Scheduling

Let us proceed from where we left last time and we will basically look at event-driven

schedulers. Cyclic schedulers, we had seen to some extent, and some parts we could not

really finish in the last lecture. We will just quickly review those and then we will look at

event-driven scheduling which is the main focus of this hour.

The cyclic schedulers, we had seen that they are driven by clocks and the frame size the

scheduler works up it every frame boundary, and looks at what to do. And then we are

trying to work out examples, trying to find out what can be a suitable frame size, which

can on which the tasks can run satisfactorily. And we said that frame size is a important

constraint, and one thing possibly it did not very convincingly tell you last time was

about the minimum separation of a the frame boundary and the task arrival, which is

equal to gcd f comma p i and I said that see one of your predecessors, he actually says

gave the simplest proof. So let me just redo that proof now, because it was not really

very convincing argument that I did not portray the argument that he had given.

 (Refer Slide Time: 02:03)

So just look at it, what he had said is that we trying to work out the proof which was

worked given by one of your predecessors on a bonus problem. Like, I gave you today

about the bonus problem to find out the frame size is not frame size. I think the schedule

that needs to be stood when the frame size does not divide the major cycle. Similarly, on

a similar assignment somebody had given this proof. So, said that see assume that for

some occurrence of the task and frame occurrence, the separation between the frame

size and the task arrival is less than gcd.

Assume, let me just write that much assume that the minimum separation is less than gcd

is less than g c d. For some let us say a Kth occurrence of the task Kth occurrence of task

and let us say mth occurrence of frame. So, we have a situation where m frames have

occurred and the task has repeated K times and then we have a situation where the task is

starting. The difference between the frame start and the tasks arrival is less than gcd.

So, in that case we will have K into F and m into pi minus K into F is less than equal to

gcd. And this as to be greater than 0, because if it is then they are actually coinciding. I

mean it is the earlier frame if it is less than 0 then it is in the earlier frame. So, gcd

squarely divides pi and F that is the basic definition of gcd so you divide gcd on all sides.

So, from here we can get 0 is less than equal to some I 1 into pi minus I 2 into F is less

than equal to 1. So, we have for all these are integers pi, I 1, I 2, F. So two integers

which makes the value lie between 0 and 1 is not possible. So, it is a contradiction this

cannot occurs. So, that was the proof we had given very nice proof. It is there in the book

is proof that was given by him.

It is cannot be less than, but it can be greater than 1?

No, you are saying that gcd F comma pi gives the minimum separation between the

frame boundary and the tasks arrival. It cannot be less than gcd.

Yes sir, it cannot be less than, but it can be greater not equal to gcd.

See, the worst case of a task scheduling occurs, when the task arrives too near the frame.

(Refer Slide Time: 06:24)

Let us look at the situation. Let us say these are the frames.

Sir, but I am talking about the proof sir. That proof is just saying that, the minimum

separation cannot be less than gcd.

Yes.

It is not saying it is equal to gcd.

 Does not matter. So, if you can or make it run for gcd, if you can schedule it.

That may be…

Then…

The proof just says that it may be, greater than or equal to gcd.

Yes, that is what we are saying gcd is the minimum.

Yeah, gcd is the minimum separation between two tasks. So, if we can take care of that

is you know worst case scheduling condition occurs, when it is less than gcd, more than

gcd is not a problem.

Just look at here. See if you have a task arriving here, then let us say the dead line is

here, then we can run it on this frame. Now if the task arrives here, very close here then

possibly that we do not even have one frame.

So, the worst case for any task scheduling occurs, when it is too near to a frame

boundary. So then the available frames are much less, I mean there may not be even one

frame, if it occurs too near a frame boundary.

So, for large gcd any occurrence separation larger than gcd, even not do not have a

problem.

Sir,

If it is lower than gcd, then we might have a problem.

Yes,

Sir, in the proof.

Yes, yeah.

Sir, we are assuming that it is the K th occurrence of a task.

Yes,

And m th occurrence of a frame.

Yes,

Sir, in that illustration that we have K into pi.

Yes,

That is a I mean, I just trying to give you the line of argument rather than the one.

Actually what he says is that since, you have written K th occurrence of a task we should

have K here and we should have m here, it does not really matter. Because K will also K

into pi will divide gcd and m into F will also divide gcd.

So, these are all the proof. Many came with different proofs actually and these are all the

proof which was the simplest and that we have documented in the book with

acknowledge to him. So, let us proceed what we are seeing.

(Refer Slide Time: 09:00)

Now, the cyclic schedulers have one disadvantage. The disadvantage is that since we

have to tryout various frames sizes and try splitting the tasks and zone. Many times we

will find that we are not able to select a suitable frame size or may be, we are selecting a

frame size, we does not lead to a good schedule. CPU times may be wasted in many

frames.

And therefore, for many situations it we may not even find the schedule. Even though, if

it is possible to run them using a cyclic scheduler we cannot run them. I mean at least we

are not able to find a proper schedule and breaking tasks into many parts will make it still

higher overhead context switches and so on.

(Refer Slide Time: 10:02)

Now, before you look at the event driven scheduler, just a few minute as you are saying

earlier that what we look that till now and the pure cyclic scheduler we just handle

periodic tasks, but there will be situations where it also might be require to handle at

least few aperiodic and sporadic tasks. So, how can this are handled.

We need to use the unused frames and also the slack time that is left out, after a task

completes. So when a sporadic or aperiodic task arises, the scheduler somehow needs to

use the slack times and the unused frames.

(Refer Slide Time: 10:47)

This is the scheduler algorithm modified say earlier, which it was just looking at

schedule table and then each frame size just trying to run the next task. Now it is doing

the same thing actually trying to find out the next task to run, say K is equal to K plus 1

setting it to find the next task. And if it finds the end of the table just starts from the first

task.

And then it runs the current task and if it completes even before the interrupt comes, it

runs the sporadic tasks and even if there is still more time it runs the aperiodic tasks,

otherwise it just idles. So, if there is no task to run in some frame it finds that nothing is

to be run in some frame K, then it will run the current task and so on and similar is the

case when the task completes early, until the clock interrupt comes. The aperiodic time

or interrupt comes it will keep on doing this.

(Refer Slide Time: 12:09)

Now, let us look at the event driven schedulers here unlike the clock driven schedulers,

these can handle both sporadic and aperiodic tasks very easily and definitely used in

more complex applications. It is a necessary to be used the cyclic schedulers have their

limitations only very simple systems they can handle.

For example, we are just discussing about a cell phone many tasks many are a aperiodic

you are sending a message, receiving, making a call etcetera these are a sporadic tasks.

And a cyclic scheduler cannot handle this.

(Refer Slide Time: 12:53)

In an event driven scheduler, the scheduling points are defined by task completion and

arrival events. So, whenever either a task completes the scheduler will wake up and it

will look at what to run next is the case when a new task arrives, it will be woken up and

it will try to see. If the new task is a very high priority, then it can run and preempt the

running task.

So, these are the event driven schedulers are preemptive schedulers. Because, if a higher

priority task comes the current task may be preempted. So, just see here we are not

talking of clock at all, but implicitly a task arrival might be on a clock cycle. The

simplest event driven scheduling that we can think of is a foreground-background

scheduler.

(Refer Slide Time: 14:00)

We will just discuss about the foreground-background scheduler shortly just a minute.

Because that is the simplest and not really used in applications just for a concept.

 (Refer Slide Time: 14:26)

So, the scheduling points or a task becoming ready and a task completing its execution.

Before the foreground background, let us look at something which we had already

discussed in a first level operating system course is a time sliced round robin scheduler.

This is also an event driven scheduler, but it also has a concept of a time cycle I mean a

time slice. So, this scheduler is actually discussed in the operating system books we will

not spent time on this. Excepting just making a passing remark saying that, there are two

types of events that are considered one is a task completing or suspending itself and also

the clock interrupts.

Because after a time slice is over it needs to suspend the task and start the next task. We

will see that these cannot or not suited to real time task scheduling not used. We will

have quite a bit of discussion on UNIX later on and the windows.

We will see that the operating system they cannot really run real time tasks. We will

identify the reasons.

(Refer Slide Time: 15:54)

The event driven schedulers they can they will preempt the currently running tasks, if a

higher priority task arrives and these are also called as greedy schedulers. Because, as

even as there is a task to run it will run them.

Unlike, let us say cyclic scheduler we had some part of a frame idle even though there is

a task it is could have run. So, here as soon as a task is there it will be run. So, that is

why these are also called as greedy scheduler in the literature.

(Refer Slide Time: 16:33)

As, we are mentioning earlier lot of research was done on event driven scheduling on

unit processor in the 1970s, thousands of paper published, but if you know two of these

algorithms.

The EDF and RMA then you know all other algorithms, because these are the optimal

ones. Let us, look at this we will see why these are optimal.

(Refer Slide Time: 17:07)

Before that, let us look at the foreground-background scheduler which is the simplest

event driven scheduler. Here, the real time tasks are run as foreground tasks and non real

time tasks are sporadic and aperiodic task, these are run as background tasks.

Among the foreground tasks say our real time tasks at every scheduling point.

Scheduling point is basically either arrival of a real time task or completion of a real time

task those are the scheduling points. The highest priority foreground task is scheduled

and a background task runs, when no foreground task is ready.

(Refer Slide Time: 17:57)

So, if T B is a background task and its processing task is e B then the time for the

background task to complete, we can find out by finding the amused processor time by

the foreground tasks.

Let us, say the foreground tasks are the periodic tasks e i divided by P i is the utilization

they have on every P i. e i divided by p i is the utilization of the processor, for the task T

i. So far every task, if you consider sigma e i divided by P i is the total utilization is not

it.

So, every 1 millisecond or 1 unit of time sigma e i divided by P i is utilized by the higher

the foreground tasks and one minus sigma e i divided by P i is the time that is available

for the background task to run. And therefore, the background task we will take ct B time

which is e B by 1 minus sigma e i divided by P i does that appear simple result. Is it ok?

Anybody has difficult do this?

(Refer Slide Time: 19:28)

Just a example so if there is one foreground task, periodic 1, 50 millisecond, this would

have an e 1. e 1 is 50 millisecond, P 1 is 100 millisecond, d 1 is 100 millisecond. So, the

foreground tasks consumes 50 millisecond every 100 millisecond and there is a

background task which takes 1020 millisecond.

So, how much time will the background task need to complete. Can somebody do it? See

the problem here, is this has to be corrected, e 1 is 150 and P 1 is 100 and the

background task takes 1020 millisecond.

So, once the background task arrives, how much time will it require to complete?

2040.

2040, How did you get that?

20 divided by e 1 minus 50 divided by 100.

Let us see the answer. We do not have the answer there worked out.

(Refer Slide Time: 20:59)

Let us see here, every 100 millisecond, it gets 50 millisecond. So, it will get 1000

millisecond into 100 in 2000 milliseconds. And then it will need another 20 to run,

another 20 to complete, say 2020.

(())

Why 40? See once it is gets a frame to run it will run. I mean once it starts running it will

take 20. Why 2040?

Sir, we can substitute the values for e i and P i and in that.

No, do not use the formula blindly just assume it runs it the task runs up to sometime. It

keeps on getting time and next time, it just gets time it will complete it.

So, that is the same question as know in high school they use to ask the monkey

climbing, this thing a pool which is do you remember that the problem is something like

this. A monkey climbs a poll and each time the pool is no oily like class to 3 or 4. So,

each time it jumps some 5 meters and it falls down 3 meters and the pole height is let us

say 54 meters.

So, the final time it jumps it does not fall down something similar to that. So, here also at

the last time, it runs see each time it just keeps on getting 50, but the last time it gets it

will run it. So, 20 only it will take is not it does that appear.

(Refer Slide Time: 23:13)

So, let us just make that problem slightly more complicated. Assume that there is a

context switch time of 1 millisecond required. Whenever, there is a switch from one task

to another so what will be the completion time of T B? Now, simple extension of the

previous answer. Yes, anybody would like to answer this question?

When we need to consider the context switch overhead of 1 millisecond every time a

task new task starts, we had said no earlier recaptured the first level operating system

course, when a task starts a context switch time is involved.

2060.

2060. Anybody has any different answer?

Anyone wants to add anything?

(Refer Slide Time: 24:36)

2041. See it is not very complicated see here that each time a task starts, we need a

context switch time and it runs for 50. So, this is the 51. And then the background task

starts and runs up to 100. Then the new task comes here.

So, the background task effectively gets two 1 is taken out here, 1 is taken out here. So, it

is getting every 100 millisecond, it is getting 48, instead of 50 it is getting 48.

So, 2000 divided by 48 20 what is that 1020. So, if we find a multiple of 48. It will be

480,960 and then 1920 and 48 so 21 that becomes 2050 is not it. So, 1968 and we have

another 32 plus 20 so another 52 to run. Now it should have been 2100, is not it 2100

would have made it plus 48, 2016. So, another 4 it needs to run and when it runs 4 it will

also incur. So, the situation is that it has run up to here and then another 4 has not run the

last one is this is 52 times is not it no not 52, 22 times.

And then 21, 2100 times 100 into 21, 2100 and then another 4 is remaining. So, 50 will

run here the task real time task will run 50, foreground will run 50 and this will run

another 4 here. So, this is one taken out one taken out here. So, 52 plus 4 56. So 2156.

So, it is term it is keeping on getting 48, out of 100. So, we will find out when and last

frame we need to be careful little bit, because the foreground task will come and start

running here, and it will involve a context switch and then the remaining part 4 or

something was remaining that will run, but again a context switch will be involved. The

last one you need to be bit careful is that simple problem.

(Refer Slide Time: 28:16)

So, far we did not really discuss about the schedulers that are actually use the event

driven schedulers. So, we will see that we will first look at the static priority scheduler.

We call it static priority schedulers, because the priority will be assigned by the

programmer before the system starts.

And during the run time the priorities do not change. Whatever was assigned by the

programmer, during the design time that will continue to hold and here, this rate

monotonic algorithm is the optimal static priority algorithm, extensively used it is a very

important one.

(Refer Slide Time: 29:09)

So throughout, we will fall back on this basic concept of a static priority computed by the

programmer does not get changed. And then the other is the dynamic priority algorithm,

which is the earliest deadline first.

So here the priorities can change during run time as the task, the system runs some tasks

becomes more higher priority and another one which was earlier higher priority, it is

priority might reduced depending on what is the dead line. So, based on the relative

urgency of completion of tasks the priority is keep on changing as the system runs and

many algorithm exist which a dynamic priority schedulers, but if we know EDF.

We know the best algorithm that is possible, it is the optimal uniprocessor scheduling

algorithm and earlier we had said, optimal is one if it can run some tasks then the other

dynamic priority schedulers they may or may not run it, but if another dynamic priority

scheduler is able to run some task, then definitely EDF will be able to run it.

(Refer Slide Time: 30:29)

So, let us look at the simplest scenario when we have independent tasks, a task does not

need result from another one no resource sharing between tasks and no precedence

ordering, that is one task does not need to wait for another task to complete.

This is not really a practical situation that we have tasks which are independent not

needing results from each other no constraints among them, but to understand the

scheduler, we need to start with this and as we proceed we will make it more complex

where resource sharing etcetera exists.

(Refer Slide Time: 31:12)

So, this is the optimal algorithm if it cannot schedule some tasks then it is no use trying

out other tasks, other schedulers something is not schedulable by EDF, because it is the

optimal algorithm then other algorithms we cannot run this.

(Refer Slide Time: 31:40)

Handles both periodic and aperiodic tasks and given a set of task the check for

schedulibility here is that a sigma e i divided by p i is less than 1. So, the utilization of

the processor due to all tasks as long as it is less than 1 very natural, because you know if

the number of the time require to the run is more than 1. We cannot run on any processor

utilization 1. So, the constraint is actually nothing other than the common sense how

much a processor can run.

So it basically we can say that, if a task set can (()) the run then EDF will be able to run

it. So, this is both the necessary and sufficient condition for schedulability. I think we

can say that, it is a sufficient condition for schedule I think necessary is not there.

 If it is this is satisfied then definitely it will be able to run, but it is not necessary that.

What do we think is it necessary?

This condition is necessary here.

Ok.

Second condition.

It is both necessary and sufficient it is a necessary condition and also a sufficient

condition fine.

(Refer Slide Time: 33:18)

So, let us just look at an example whether EDF can run this. So, there 3 tasks periodic

tasks and the period and deadline are the same, for each of them one is period 4, another

5, another 20 and the time is run time required execution time required is 11 and 5.

So, we just need to check the utilization for each of these tasks. So, this is 1 divided by 4

is 0.25, the first one. Second one is 0.2 and the third one is how much 0.25, say 0.25 plus

0.25 plus 0.2 is 0.7 less than 1.

So, less than 1 and this is schedulable an EDF.

(Refer Slide Time: 34:16)

We said that, EDF is a dynamic priority algorithm and if it were a dynamic priority

algorithm we should be able to tell how the priority values, what is the priority value of a

task, at any instant and also how this change with time and say that see at this point see it

was 10 and then it has become 5 and so on. Then we can call it as a dynamic priority

algorithm, but what about EDF. We just saw that the algorithm is simple that any task

which has the shortest deadline, earliest deadline will be executed.

So, where is the concept of a dynamic priority here, anybody would like to answer this

question?

As the deadline of the as well it will comes even for the task.

Yes.

Then it is priority should be increased earlier said that.

No, but what is that priority?

(()) when a new task arise?

Yes.

If it is deadline is very nearer to the previously into the previous task, but it (()) to a

higher priority, we have the state sir at the every scheduling point.

Yes.

We will find out how much of the execute 12, on time is left (()).

And then what is the priority? How will the priority be computed here?

Sir, whichever task is supposed to scheduled at first.

Yes.

That will be given the highest priority from at every scheduling point.

Suppose all the task has arrive?

So, a task.

So, what basically he says that a task arrives its keeps on waiting, until its deadline is

very near and as it keeps on waiting its priority increases, we can think of it.

Another task which was running and next time it came possibly its deadline was quite far

and then the task which was earlier waiting is running. Because now that task has

become a higher priority is not it.

Yes, the longer task waits in ready queue the higher is the chance being taken up for

scheduling according to the EDF. So, even though we cannot really assign a concrete

value saying that, it is priority is 20 or 30 or something, but we can imagine a virtual

value which keeps on increasing with time until it is scheduled. And the next time it

comes as a lower priority and as its deadline approaches or if it deadline is already low is

less deadline is very less than its priority, will be increased.

(Refer Slide Time: 37:13)

Very simple algorithm just examine the dead line of every task, find out the one which

has the lowest dead line and then run it. And it is also the optimal one, we are not going

to prove, why it is optimal the proof is slightly involved actually will not prove it, but it

is the optimal one, but it is rarely used as you will see the commercial operating systems

and the systems which use any operating system at all.

See that EDF is more of a concept rather than anything actually used. None of the

commercial operating systems actually support EDF schedule directly. So, there must be

some major disadvantages, even though it so nice properties here very simple, efficient,

also optimal must be some disadvantages. Otherwise it could have been used heavily.

(Refer Slide Time: 38:23)

Let us see the disadvantages of EDF many disadvantages, but three main disadvantages:

the first disadvantage is called as transient overload handling, second is the runtime

inefficiency, the third is resource sharing of tasks creates severe complications.

Let us look at each of these point. The first sort coming is the transient overload handling

problem EDF, see transient overload we had said earlier that sometime the events just

occur together. For example, there is a fire situation and then the fire alarm assigns and it

just set up a avalanche lot of events occurred immediately, after that it rang a bell and

then the water this thing sprinkler are switched on and so on. Many events could happen

at the same time.

So, these are the situations where suddenly many tasks need to run and that is called as

the transient overload.

(Refer Slide Time: 39:38)

So, when a transient overload occurs then EDF can miss a deadline. And if it misses a

deadline that is not too bad actually, but the main problem here is that the highest priority

task might miss its deadline. It does not guarantee anything.

A low criticality, low priority task might run to completion, whereas high priority task

might miss deadline. Another situation let us consider this that as for some reason, a low

priority task is getting delayed may be it has gone into a loop or something.

So, in that situation also a higher priority task can miss deadline. So, whenever there is a

transient overload, it is very difficult to predict which task will miss its deadline.

(Refer Slide Time: 40:49)

The second problem is that EDF is not very efficient, just let us consider an

implementation of EDF here you see a simple implementation may be we keep all the

tasks sorted according to their deadline. And then we select that is shortest deadline.

So, each time an event occurs that is task completion or arrival we just adjust the queue

of the tasks and we just select the one at the front of the queue, we can use a priority

queue, on which we maintain the tasks based on their deadline. The shortest deadline as

the highest priority is at the top of the queue.

What is the complexity of maintaining a priority queue? Yes, you have done. How is a

priority queue implemented? Let us say, you are doing a C program or how you

implement a priority queue?

Yes, anybody knows how to implement a priority queue efficiently? The most efficient

way priority queue can be implemented. Let us say you are writing a C program or

something. We can use a heap.

A heap is the most efficient implementation of a priority queue and log(n) to the base 2

where, n is the number of tasks is the complexity of maintaining a priority queue, if you

brush up your knowledge and the basic data structures and algorithms. You will see that

priority queue is implemented using a heaped and that is the most efficient

implementation of a priority queue and log(n) is the complexity of maintaining a priority

queue and each time an event occurs we need to adjust the priority queue. So, it is not

very efficient, because that overhead will be incurred every event occurrence.

The third problem is the most severe one also actually is the resource sharing among

tasks. We had said that it will be very unlikely that you will have a system where the

tasks do not share resources. All practical situations, we will see that the task share

resources as we discuss further we will see that.

And here in this EDF, because very difficult to allow tasks to share resources. For

example, the critical sections if we use EDF and then we have this resource sharing

requirement then we will see that the tasks will miss their deadline. We will have the

discussion little later that how resources be shared, because so far we have been

discussing the tasks are independent do not share resources and so on. We are soon going

to discuss about how resources, can be shared we will generalize our discussion now that

independent tasks not sharing resources etcetera. We will generalize that, and then we

will see that EDF would make it extremely difficult for task to share resources. So, let us

proceed.

(Refer Slide Time: 44:33)

We had seen the situation where the execution time and the period the period and the

deadline were the same, but we can have sometimes a situation where the task period is

different from its deadline and then we need to generalize our earlier expression. That is

sigma e i divided by p i less than 1. We have to make it sigma e i divided by minus of p i

divided by d i.

So, if the deadline is less than p i then we will have to choose the deadline value here,

but if p i is equal to d i it does not really matter. So, this is the new expression when.

What will happen? If p i is greater than.

Ok.

Sorry p i.

p i it is less than d i.

So, that when p i is less than d i then this becomes a sufficient condition that means if

this is satisfied then definitely it will be a schedulable, but not a necessary condition even

if it is not satisfied we will see that it can be schedulable so.

As it is occurring before, the previous instance has completed. No, it has a dead line is

occurred after the next instance has occurred.

d i is greater than p i.

Greater than p i.

So, the deadline is even after the next occurrence is occurred.

So, in that case this is a sufficient condition. If this holds definitely they are schedulable,

but if it does not hold we cannot say that they are not schedulable, we will have to check

out.

(Refer Slide Time: 46:32)

So, this we had seen that not a very efficient implementation. We will have to just to

maintain a queue, first in first out queue, but here each time selecting the smallest task,

the task be the smallest deadline. We will have to scan the queue, once that is log(n) that

is n is not it each time, we have to look at everyone every task n this can do it in log(n)

you need to maintain the queue.

Here, you do not maintain the queue you just have to look up time takes more.

(Refer Slide Time: 47:12)

But, still a more efficient implementation of EDF can be possible where you fix the

maximum number of distinct deadlines, whether it is a 5 or 7 distinct deadlines. You can

give let us say 0 to 10 and then 10 to 20 and so on.

And then a queue is maintained for each distinct deadline and the top of the queue has

the highest. I mean the deadline for that band lowest deadline so when a task arrives its

absolute deadline is computed and inserted into queue. So, you just have distinct set of

deadlines and each time you just need to manipulate only the first few tasks.

(Refer Slide Time: 47:53)

Check it the deadline. So, to run it you just need to take this one, the highest on, the top

here and then you need to look at the top one here, and just put them in the appropriate

levels. So, this will be a much more efficient implementation and of course each of them

will be a priority queue.

(Refer Slide Time: 48:33)

So, we will stop here. If you have any questions we can just discuss about that, otherwise

we will stop here. So, any question so far we looked at the dynamic priority scheduler

that is the EDF and we said that EDF is the optimal algorithm and but it is not really used

very much practically and then we identified the reasons. So, what were the reasons

anybody remembers.

Transient overloading.

Yes, it does not if there is a transient overload then EDF will have problem.

Inefficient planning datas.

Yes, it is inefficient implementation is inefficient if the number of tasks is large then the

time the scheduler will take to look through the task and select the one. That is need to

run is high and also to arrange the queues each time and any other.

Sharing of designing there.

Yeah. So we had said that, resource sharing is a occurs in every practical situation and in

EDF if we try to extend it see. So, far we have been looking at independent tasks, but

when we try to extend this to handle situations where resource is shared we will see that

it will become extremely inefficient and tasks can miss their deadline.

So, we will stop today and in the next class we will discuss about the static priority

algorithm, that is the rate monotonic algorithm the optimal algorithm heavily used simple

algorithm again and we will spent more time on that see EDF. We really did not spend

more time, because after all it is more for our reference and it is the optimal scheduler if

EDF cannot schedule nothing else can schedule.

But RMA is the one which is used extensively every commercial operating system. As I

means to support at least RMA if nothing else or various of RMA. So, we will see the

RMA and how resource sharing is done, how task precedence can be handled and so on.

We will spend at least 4, 5 hours discussing RMA. So, we will stop here, thank you.

