
Real-Time Systems 
Prof. Dr. Rajib Mall 

Department of Computer Science and Engineering 
Indian Institute of Technology, Kharagpur 

 
Module No. # 01 
Lecture No. # 11 

Deadline Monotonic Scheduling and Other Issues 
 

Good morning, let us get started. So, so far we have discussed about the rate monotonic 

scheduling and the schedulability criterion; given a set of tasks, how do you know that the task 

set is schedulable, and then we had looked at few properties of rate monotonic algorithm, and 

yesterday, towards the end we were discussing about implementation of the rate monotonic 

scheduling. 

So, today let us start from that point onwards, and towards the end of the last lecture, we are 

looking at harmonic harmonically related set of tasks. So, let us start from that point. 

(Refer Slide time: 00:59) 

  



So, we are saying that we call a set of periodic tasks as harmonically related, if for every task T i 

and T k, if as long as the period of the task T i is greater than P k, then P i will be an integral 

multiple of p k. So, wherever the period of a task is greater than the period of another task, then 

the period will be an integral multiple. So, this is a harmonically related set of tasks. The periods 

are 10, 20 and 60. So, 20 is a multiple of 10 and 60 is a multiple of both 20 and 10.  

Now, for set of harmonically related tasks, the schedulability criterion is that the sum of 

utilization due to the tasks is less than 1. So, even 100 percent utilization is possible, even if 

there are large number of harmonically related set of tasks, it is not very hard to... So that the 

utilization achievable is 100 percent. 

(Refer Slide Time: 02:26) 

 

Let us just review the completion time theorem. So, we were testing the schedulability of a task 

set, by checking whether the expression, this expression, holds for every task t i. Now, for a 

harmonically related set of task, the ceiling can be removed, because whenever the period is 

larger than another period, it is an integral multiple, so, the ceiling is not required here, the 

ceiling can be removed. 



So, if we remove ceiling, then we get, e i by p i from this expression, we get e i by p i plus sigma 

k equal to i minus 1; e k by p k is less than equal to 1. So, we have arranged the set of tasks in 

increasing order of that periods.  

So, the first task i equal to 1 is the task which is having… k equal to 1; when k equal to 1, the 

task has a lowest period or the highest frequency and we are checking for the i th task. So, for the 

i th task, we need to check whether e i by p i plus sigma k equal to 1 to i minus 1, e k by p k is 

less than equal to 1 or since the ceiling is removed, we can bring this inside and we can just 

change the limits here. We can write i equal to 1 to n, e i by p i is less than equal to 1; does that 

appear ok? 

Should have been k equal to 1 to i, is it not? But what you have written is i equal to 1 to n, this is 

for the task t n - the last task - and we do not have to check this for every task, is it not? What do 

you think - is this enough or is this check enough, or we need to check this expression for every 

task? 

So, for the n minus oneth task, we need to check i equal to 1 to n minus 1, e i by p i is less than 1; 

for n minus 2, we have to check i equal to 1 to n minus 2, e i by p i is less than 1. What do you 

think - should we check for all tasks? Not necessary, because those are part of this expression, is 

it not? As long as this holds, all those will hold, because this utilization also includes the 

utilization of the later tasks, the nth task n minus 1 task and so on. 

So, check here that the schedulability condition from the completion time theorem just reduces to 

the utilization due to all the tasks is less than 1. So, even if we have a large number of tasks, 

which are harmonically related, we can have even 100 percent utilization. 



(Refer Slide Time: 05:51) 

 

Now, let us look at a variation of the rate monotonic algorithm, which is the deadline monotonic 

algorithm. The rate monotonic algorithm, so far, we have been telling that it is the optimal 

scheduling algorithm, but we had made some assumptions. It is optimal scheduling as long as the 

period and deadline are the same, but when the task deadline and the periods are different, rate 

monotonic analysis algorithm is not really an optimal algorithm; the deadline monotonic 

algorithm is actually the optimal one. 

The...As I was saying, that the deadline monotonic algorithm is based on the rate monotonic 

algorithm. Here, we do not assign priorities based on the task frequencies. Here, we assign 

priorities based on the task deadlines, that is the only difference; otherwise, rest everything is 

similar. 

Now, let us see some properties of the deadline monotonic algorithm, have we checked 

schedulability and so on. And then, we will make few comments in this. So, when do the rate 

monotonic... See here, deadline monotonic algorithm, based on the task deadlines the priorities 

are allocated. Here, based on the rate or the frequency, the priorities are allocated. So, when 

should they produce identical schedules? What do you think? 



P divided by of course. So, when p i equal to d i, they are actually the same algorithm. So, 

whenever the deadline is the same as the period, both are identical algorithms and produce 

identical schedules. 

But, when the deadlines are arbitrary, it is possible that the deadline monotonic algorithm can 

produce a feasible schedule, when the rate monotonic algorithm fails. But, the rate monotonic 

algorithm will always fail, if the deadline monotonic algorithm fails. Please construct an 

example, where the deadline monotonic algorithm produces a feasible schedule, when the rate 

monotonic algorithm fails. 

Is DMA static algorithm?  

Of course, everything else is similar; see it is also a static algorithm. Everything else is similar to 

the rate monotonic algorithm, which is static priority algorithm, but only thing is the priority is 

assigned based on the deadline rather than the rate. 

Previously, you have said that RMA is optimal static algorithm. So, when RMA fails, then all 

other should also fail.  

No, that is what I have been trying to tell, that to start with we had told it in very simple words, 

that rate monotonic algorithm is optimal algorithm, what we left unsaid is that, when the 

deadline and the period are the same, it is the optimal algorithm; that we left it unsaid, just for 

simplicity, but now we are slightly making it more complicated. 

We are saying that see, there will the possibility that there are some tasks, which might have 

their deadlines and periods different. Normally, we will see that for a large set of tasks, the 

deadline is the same as the period, but it is possible that for few tasks, deadline can be different 

from the period. So, for that rate monotonic algorithm is no more optimal.  

So, here we are saying that it is possible that deadline monotonic algorithm can produce a 

feasible schedule, when the rate monotonic algorithm fails to provide a schedule. It is not 

difficult to construct an example, but please construct an example for this. We will not really 

wait for this one, we will just leave you as as a work; it is very simple to do it.  

Deadlines are less than the period probably, that will be the case.  



No, deadlines are less than period, but the still rate monotonic might produce a feasible schedule, 

is it not? 

Yeah, but… 

So, just show that something which is where the deadlines will not be met, using rate monotonic, 

but it will be possible to meet them using deadline monotonic, but the rate monotonic will 

always fail, if the deadline monotonic fails. 

(Refer Slide Time: 10:44) 

  

So, let us just check this set of tasks. Let us say, the task one, execution time is 10 millisecond, 

period is 50 millisecond, and the deadline is 35; e 2 is 15, execution time period is 10 

millisecond and deadline is 20 millisecond; and for e 3 the period and the deadline are the same. 

So, let us check the schedulability of the task set, under RMA first. Please, try that. Find the 

utilization for task 1, which will be 10 by 50, is it not? 



(Refer Slide Time: 11:47)  

 

So, let us not wait for your answer, because those who have already done, we can, they can 

crosscheck the answer. To check the Liu-Layland, we find that the utilization is greater than 1, 

but let us do the completion time check for the deadline monotonic algorithm. See here, 

implicitly, see for even for applying RMA, we have taken that the 10 must be completed within 

35; 15 must be completed by 20 and so on.  

(Refer Slide Time: 10:44)  

 



So, here, see here, one thing is according to the rate monotonic algorithm, T 1 has higher priority 

compared to T 2, is it not? Because of their periods, but according to the deadline monotonic 

algorithm, T 2 has higher priority than T 1, is it not? So, possibly that makes the difference and 

we are checking whether T 2 will meet its first deadline. So, 15 is the execution time, and 

deadline is 20 and it meets it. 

(Refer Slide Time: 11:47)  

 

For T 1, which is the next priority, that is the second highest priority, 15 plus 20 is 35, it will just 

meet and for T 3, both T 1 and T 2 we will have to consider their occurrences. See here, the 

occurrences have to be with respect to the period, is it not? Implicitly, we in the calculation, we 

have used that; how many times they occur is based on their period, not on the deadline. See, 

here, this is 20 is the deadline, but actual period is 200. Is it not? 



(Refer Slide Time: 10:44)  

 

No 100, actual period is 100. So, the deadline is 20, but the actual period is 100. So, we have 

used those to compute this, and we find that 90 is less than 200. So, all the three tasks will meet 

their first deadlines. 

and it will be...  

p i; no…  

See, we are trying to find out, how many times the task will occurs in that interval, and whenever 

it occurs, it will start executing the higher priority tasks. 

There in the Liu-Layland, we had checked e a by d a is sigma e i by d i. Here you have said, e i 

by d i. 

Yes. It should be e i by d i. 

No, see if we can check e i by p… Here, you are saying this would be d i, is it? So, minimum of 

p i and d i; minimum of p i and d i. Here, we should have made this correction. So, the task set is 

unschedulable by the rate monotonic, but is schedulable on the deadline monotonic. 



(Refer Slide Time: 15:53) 

 

But, just one question - that why do then people use rate monotonic in programming and not 

deadline monotonic? As you are saying that majority of the schedulers are rate monotonic 

schedulers, not deadline monotonic schedulers. So, what do we think? 

Deadline may be difficult to anticipate sir.  

No, deadline can be found out; for every task deadline can be found out.  

Relative deadline sir, probably because of real-time distance over deadline flow, periods are 

same. 

Yeah. So, in most of the situations, majority, worst majority of the tasks, the deadline and the 

period are the same; it is very unusual to find tasks for which the deadline and period are 

different, and for that we need to tailor the rate monotonic algorithm to handle those issues, 

rather than trying to use the deadline monotonic algorithm.  

But, if we use the DMA itself, then if p and e are equal, it will behave like RMA. 

So, what he says is that the deadline monotonic, if the rate and the, the period and the deadline 

are the same, it is actually the RMA, but the thing is that DMA is much more complex to 

understand and implement. So, can you please try to investigate. What is the what is the 



complexity in implementing the deadline monotonic algorithm, what is the complexity? And 

please investigate, if there are any other reasons, why DMA is not as popular as rate monotonic 

algorithm? 

Whenever you talk to a real time programmers, if you ask him that - what is the algorithm you 

are using? He will say, using rate monotonic algorithm. So, why this situation, please investigate, 

and submit me a report if you find something important or significant. Let us proceed. 

Sir, what is the difference between earliest deadline versus DMA.  

So, there is the question here - that how is earliest deadline first and deadline monotonic 

algorithm different? 

It must be the dynamic be p 1, p 2, p 3 is used. 

Yes yeah. So, earliest deadline first, as he says, that at each instant, at each scheduling point to 

find the nearest deadline, and that is taken up for execution, at each instant or each scheduling 

point, at each scheduling point, the scheduler determines which is the task having the nearest 

deadline and then takes it up. Whereas, in a deadline monotonic algorithm, you just find the 

relative deadline of all the tasks beforehand, not at every instant, and then, find out, assign 

priorities based on that. So, here the priority does not change in a deadline monotonic algorithm; 

whereas, e t f e t f depending on at which scheduling point you are talking of, different tasks 

might be considered at higher priority. Is that ok? Let us proceed from that point. 

So, let us look at few other issues. One is that since the task execution times are very small, most 

of these tasks complete in few milliseconds and also their periods are also small. So, it should 

not ignore the context switching time. So far, for simplicity, we have been ignoring the context 

switching time. So, during the schedulability analysis, we should also consider the overhead due 

to context switching. You should take the pessimistic, because context switching also takes 

different times. It is not a constant time actually. So, it might take between a range of values, but 

we should take the pessimistic value. 

Now, let us assume that the context switching time, at the worst-case, take some time. So, we 

need to consider that even though, so far we have been neglecting that for simplicity. Now, let us 



see, when does the context switch occur? One is that when it preempts the currently running task. 

So, task - higher priority task - which has a reason, which has come in, will preempt the lower 

priority task, or if the CPU is idle, there will be no preemption; the task will start running. But 

for both these cases, there will be a context switch, does not matter whether it preempted or it did 

not preempt the CPU was idle, or both these cases, the context need to be loaded, is it not? The 

context switching has to occur. 

(Refer Slide Time: 21:13) 

 

So, if you consider that, in the worst case, each task incurs at most two context switches. See, 

here we will have to consider the worst-case scenario, not the average case or the best case; 

because, we want to guarantee that the tasks will be schedulable under the worst situation. 

Unlike in our normal, traditional operating systems, where we are more concerned about the 

average case behavior, here, we are concerned about the worst-case behavior and at the worst-

case, each task incurs at most two context switches, when it preempts the currently running tasks 

and when it completes. But what if a task is… before it could complete, it is preempted again; I 

mean its preempted, and then, once it starts running again, it is preempted by some other task; 

again starts running and again preempted. So, is this assumption holding for this, at best. 

For every run, it will have to do.  



No, no just look at the question; I am saying that, irrespective of how many times a task has been 

preempted, at most we can consider that it has undergone two context switches. Every task has 

undergone two context switches. Is that assumption valid? 

 (( )) because as and when higher priority process come, then as (( )) the process will be 

preempted more than two number of times; two level of time. 

No, suppose see we are trying to consider, how many times the preemption we need to consider 

for every task.  

Sir, at least once, because it was…  

No, not at least, at most.  

At most twice, because it has not created, some other task that will have higher priority.  

Yes exactly. Yes exactly. 

So that will complete fully. 

So, let us see his answer, let us look at the diagram here.   

See here. So, a higher priority task has come in here, and this has two contexts, which has taken 

care here right. Two context, one is… see this task started coming in here, at this point, there was 

a one context switch. Now, next time, this task has preempted it and this context which will be 

counted towards it, and which will be in our expression taken care, because it is a higher priority 

task and then it started running again right. So, the higher priority task has undergone two 

context switches, and these had undergone one context switch at this point, and now, after it 

completes, there is one more context switch. 

So, just think about it, that at most every task incurs two context switches. If we develop our 

expression by that, that every task incurs at most two context switches, we will be doing all right, 

because the higher priority task context switches will be taken care of. They will be added to the 

lower priority tasks, completion time. So, let us see the expression, possibly that will make more 

sense. 



(Refer Slide Time: 21:13) 

 

Let us, assume that the worst-case context switching time is equal to c millisecond. Now, if we 

consider, the overhead due to context switching in effect, we can say that the execution time of 

every task increases by two context switches, because at most two context switches are involved 

for every task. So, the execution time instead of e i, if we make it e i plus 2 into c, you should 

have taken the overhead due to context switching. 

(Refer Slide Time: 25:11) 

 



So, let us use that concept here. You have three periodic tasks, whose execution time is 10 

millisecond, and the period equal to deadline is 50 millisecond; for T 2 it is 25 millisecond and 

150 millisecond; and for T 3 it is 50 millisecond and 200 millisecond; and the context switching 

time is 1millisecond. See, 1 millisecond is very comparable to 10 millisecond, 25 millisecond, 50 

millisecond. So, if we ignore it, the context switch time here, we may not be doing all right. We 

might arrive at a decision about schedulability, which can turn out to be wrong, because the 

context switching time is comparable to the task execution times. 

Now, let us see how we need to determine the whether the task set is schedulable. So, what we 

need to do? Can you please tell, what we need to do?  

Need to increase the execution time to 10 plus 2 seconds.  

Exactly, for each of the task, we need to increase it by 2. So, this will become 12, this will 

become 27 and this will become 50. Now, when we apply the completion time theorem, we will 

see that for these to complete, the first task to complete is 12 less than 50; for the second task to 

complete it will be 27 plus 3 into 12. See here, the context switch times are taken care. The 

number of times it was interrupted, those context switches are taken care by the higher priority 

task; your factoring here those context switches. So, considering just 2 for this is all right. 

Similarly, for this task, we will factor in the context switches due to this T 2 and T 1. Now, let us 

see the solution. 



(Refer Slide Time: 27:17) 

 

So, the execution times for each task becomes 12, 27 and 52, as we are saying and 12 is less than 

50. So, the first task satisfies the completion time theorem; task T 2, 27 plus 12 into 3, this also 

satisfies; and the third task, also satisfies the completion time theorem. So, even after factoring in 

the context switch times, the task set is schedulable. Does that appear all right? Any difficulties 

here? 

Should we always assume that context is trying to be constant? 

Yeah see, we are taking the worst-case scenario. So, if we say that a task set is schedulable under 

all situations, the task sets will be schedulable, that is why we are taking the worst-case context 

switch time.  



(Refer Slide Time: 28:26) 

 

Let us proceed. Now, let us consider self suspension. This is another issue, which we have so far 

been ignoring. A task when it starts running, the execution time is given, we have been assuming 

that it runs to completion, but it might self suspend, even though it is the highest priority, still it 

might relinquish the CPU and suspend itself; why is that so? What do you think?  

Waiting i o.  

Yeah exactly, a task might self suspend waiting for i o or may be some events. So, these are two 

conditions, under which a task might self suspend. So, let us look at that, that the task when it 

performs input-output operations or it is waiting for some events to occur, itself suspends. 

Now, what is the impact of self suspension on the schedulability? We need to analyze that, 

because if a task self suspends, and runs at later instant, it can affect the schedulability of the 

lower priority tasks, is it not? It will not affect the schedulability of higher priority task, because 

it has to anyway yield the CPU to higher priority task, but lower priority tasks might be affected. 

So, let us see what is the impact. Again, we will make a simplistic assumption here, we will 

restrict the number of self suspensions. So, we have... So far, restricted to considering only two 

scheduling points; is it not? What were the two scheduling points?  

Minus z (( )).  



No, these are event driven schedulers. See, what you are talking of is cyclic schedulers. 

(Audio not clear) 

Yeah. So, in an event driven schedulers so for, we have been considering two scheduling points. 

One is when a task arrives, the scheduler needs to check whether it is a higher priority task than 

the currently running one, and whether it should be scheduled; and the second is when a task 

completes, it will check which is the highest priority now, and take that upper execution. So, two 

scheduling points, we have so far considered for event driven scheduling.  

Now, we have to consider, a third scheduling point, which is at the self suspension. When a task 

self suspends itself, it is placed on the blocked queue, removed from the ready queue and placed 

in the blocked queue; from a traditional operating system, we know this much, and out of those 

tasks which are in the ready queue, it dispatches the next highest priority task.  

(Refer Slide Time: 31:27) 

 

So, in addition to task completion and task arrival events, we also need to consider the self 

suspension events. And let us assume that every task undergoes at most a single self suspension. 

We will have to restrict it to a single suspension or two suspension or something like that, 

because if it suspends arbitrary number of times, doing a schedulability analysis will become 

extremely difficult.  



(Refer Slide Time: 32:11) 

 

So, let us denote these two delays. One is the delay that the task T i, incurs by its own self 

suspension, and also, that of its all higher priority tasks; we will denote it by b T i; and b i is the 

worst case as self suspension time of the task T i. 

So, b i is the is the self suspension time of the task T i and b t i is the self suspension, is the 

delay, that the task incurs due to its own self suspension, which should include b i, and also, the 

effect due to the self suspension of all higher priority tasks right. We are implicitly assuming 

here, that the tasks are arranged in order of their periods. 

So, we have written this expression that b t i, the worst case delay that the task T i will incur is its 

own self suspension, which is obvious, that its completion will be delayed by the time itself 

suspends itself ,right. And now, just look at the second expression. We are saying that for the 

higher priority tasks, which is the minimum of the task’s execution time, and the self suspension 

time. So, what about this one - the second term? Since we have written, just summation of b k; 

what do you think? Anybody would like to comment on this? This is the question clear. You see 

for the first term, in the delay due to self suspension which is b i is obvious, because if a task has 

suspended for some time, its completion time will be delayed by that much, but for the higher 

priority tasks when they self suspend, we are saying that we need to consider the maximum the 

execution time and the self suspension time sorry minimum of the… sorry. 



Sir, the effect of the higher priority versus will only incur on this terms of this delay or to the 

lower, one they will not have. They will not… (Audio not clear) 

Not clear, anybody would like to answer any other way? Yes, anybody like to comment on this - 

That why is it that we are considering the minimum of the self suspension time and execution 

time of the higher priority task? The answer is not so complicated.  

See here, a lower priority task T i gets delayed due to a higher priority task, when after a higher 

priority task self suspends and it blocks the execution of the lower priority task right. Now, even 

if itself suspends for arbitrary number of point of time, the maximum over lap that can occur is e 

k or b k right. See, if it a self suspended, and by b k the task has got delayed. So, the maximum 

time on which it will overlap on the execution of the lower priority task is minimum of e k and b 

k. 

See, even if it is clearly overlapping on the lower priority task, it will delayed by maximum e k 

right. Now, the delay is also restricted by b k, if b k is smaller then due to the self suspension, it 

will at best overlap for b k is it not? From the earlier case, where there was no self suspension 

and when the self suspension occurs for a higher priority task, the maximum change in the 

overlap will be b k, if b k is smaller or e k is the… If e k is smaller that is the maximum overlap 

that can occur. So, the maximum delay that a lower priority task will incur, due to self 

suspension, is its own self suspension and minimum of e k, b k for all higher priority task for 

single suspension sorry.  

Is not clear, sir.  

Not clear. Confusion in e k.  

See, a lower priority task gets delayed due to self suspension, when there is a higher priority task, 

which has become after self suspension ready or something like that right. So, the higher priority 

task will be taken up and this will not be executed. Now, if let us say, let us assume the case 

when b k is less than e k right. So, what will be the maximum overlap that will occur with the 

lower priority task? b k. Now, let us say e k is less than b k. So, even if it has no delayed it by b 

k, but the maximum overlap that will occur is e k, is it not? Because it will complete by e k, it 

can prevent the lower priority task from executing by maximum e k, is it not? Even if it has self 



suspended for large number of time, the maximum overlap due to this task will be e k, because 

after e k, it will anyway complete. 

But, e k should be the execution time of the lower priority tasks, not the completion time of 

the… is the suspended 

No, e k, no, e k is the higher priority task which is blocking a lower priority task T i. So, e k 1 

when it is executing, T i will not be able to execute when t k is executing, T i will not be able to 

execute and it will complete in anyway by e k, right? e k is the execution time. So, the maximum 

it will, it can delay is by e k, but when b k is less than e k, it can at most delayed by b k right. 

Just think over it.  

If b k is less, then it is obvious sir. 

Yes.  

But, when e k is less, even then the task T i may not get executed in between the waiting of this 

other high priority.  

No, once it self suspends, the CPU is relinquished; any task will start executing.  

But, still the wait in delay time, you have to consider as b a, complete b a. 

No, see b k it has the higher priority task self suspended itself, and that time the CPU is 

available. So, that is not a problem. The problem is that when it self suspends and then starts 

executing in phase or when the lower priority task is executing and it preempts it, is it not? So, 

that we are saying is that, it can at least prevent the lower priority task from executing by 

maximum e k time, because by e k time the t k will complete; think of it. So, the maximum delay 

due to self suspension is b t i which has two components. One is its own self suspension and 

other is minimum of e k, b k for every higher priority task, that is k equal to 1 to i minus 1. 



(Refer Slide Time: 39:53) 

 

Now, we need to change the Lehokzky’s completion time theorem as follows. So, earlier we are 

just writing e i sigma k equal to 1 to i minus 1, ceiling of p i by p k into e k. Now, we need to add 

this term b t i, because this time will also be the task will be delayed right. And, of course, this is 

a single self suspension that we have considered. If we consider, two self suspension or so, or 

maximum n self suspensions, we need to change this expression here. 

(Refer Slide Time: 40:37) 

 



So, let us look at this exercise. We have three tasks, T 1, T 2, T 3; for simplicity, I mean without 

making it too non-trivial two tasks, we are just considering three tasks, but in a realistic scenario, 

you might have 5 or 10 tasks. 

So, e 1 is 10 millisecond and p 1 is 50 millisecond, e 2 is 25 and 150 and e 3 is 50 and 200 

millisecond; and the three tasks are different self suspension, maximum self suspension times; 

for T , it is 3 millisecond, for t 2 it is 3 millisecond and for t 3 it is 5 millisecond. So, will this 

task be schedulable. What do we have to do here? 

Sir, we need b t for each and every task then add…, exactly. 

So, we need to compute the b t i, for every task T I, and then in the completion time theorem, we 

need to factor in that delay. 

(Refer Slide Time: 41:49) 

 

So, that is what is done here. For the first task, it is 3; b t i is 3 and the delay due to higher 

priority tasks is 0, because it is the highest priority task. So, execution time is 10 and its self 

suspension is 3, which satisfies is less than 50, its deadline. T 1 will meets its deadline, but T 2 

we need to consider, the higher priority task which is 3 plus 3 is 6 and ceiling of 150 by 50 is 3. 

So, 3 into 10 is 30, 30, 55 plus 6 is 61 which is less than 150. So, T 2 will also meet its deadline. 



 (Refer Slide Time: 43:30) 

 

For the task T 3, we need to add its execution time, and then the self suspension time or the 

execution time, whichever is lower for all higher priority tasks, and then, the execution time for 

the higher priority tasks during this duration. So, if you simplify this, that is 2 into 25 plus 4 into 

10 plus 12 plus, that is 50, is it not? So, that is 50 plus 12 plus 40. So, 102 plus 50 is 152. So, for 

T 3 also it will meet the first deadline. 

(Refer Slide Time: 43:47) 

 



Now, let us see how do we take care of both self suspension and context switch? So far we have 

been assuming that the context switch is restricted to two. One when it preempts or it starts 

executing, and another it completes. And we said that, all higher priority tasks when the preempt 

it will be factored in and we do not have to consider for them. So, just two was enough. But, 

when you have additional scheduling point due to self suspension, we need to change that 

calculation, the maximum number of context switches that we need to take into account. 

So, let us look into that. Since, we are assuming a single self suspension, the self suspension will 

introduce at most, two other context switches. So, we need to make it e i plus 4 into c.  

Is suspension is an resumption?  

Yes, self suspension and resumption. 

(Refer Slide Time: 44:49) 

 

So, for taking care of both self suspensions, single or two time self suspension, and context 

switches, we can do it very easily, but now let us see another issue, in using the rate monotonic 

algorithm, in actual system development. You will have situations, when the task criticality is 

different from the task priority. See here, we have assigned priority, solely based on what is the 

rate at which the tasks are arising, right; the rate of the task - based it solely on that criterion, I 

have assigned the priority, and it might so happen that a task which whose period is slightly 



larger, but that is a critical task; for example, the response needed for a robot to take deviation 

from a obstacle. Now, but that task should not fail, even when there is a overload.  

A lower priority task, it can fail and still the system will work, but for critical tasks, in a over 

load situation also it should not fail. So, how do you take care, because here we have a 

contradiction, a conflicting situation here, where a lower criticality task has higher priority. One 

thing is that we can raise the priority of a critical task, even if we find that its period is high or 

the rate is low, still you can assign it a priority of 1, but if we do that, then we will be violating, 

the schedulability assumptions, in the schedulability criterion computation right. 

So, the schedulability results will not be applicable. Now, what if we… So, what is the solution? 

How do we do that? A solution was proposed by Sha and Raj Kumar. The period transformation 

technique reported in 1989. 

(Refer Slide Time: 47:20) 

 

Now, let us see the essence of the result; very simple result actually; the paper is available on the 

internet. If you just give Sha and Raj Kumar period transformation technique, you will get the 

paper. So, here the task T i has execution time e i, and let us say, it needs to complete by p i , let 

us say. So, what we can do is, we can say that see, we will split it into k smaller tasks. So, instead 

of considering e i over a period p i, we can as well consider e i by k over p i k, that will take care 



of it. Is it not? We just reduce the task e i, p i to e i by k and p i by k. So, it is in effect, its period 

has reduced by k times, and this is done at a conceptual level, we do not have to really split the 

task. In the schedulability computation, we just use this.  

(Refer Slide Time: 48:41) 

 

But one thing we must note here, that… that we will just talk little later. So, let us just look at an 

example of the application of the period transformation. 

So, let us consider two tasks. e i, e 1 is equal to 5 millisecond and the period is 20 millisecond, 

and e 2 is 8 millisecond and the period is 30 millisecond, and then we find that T 2 is a critical 

task; whereas, T 1 is not as critical as T 2. So, if T 1 misses the deadline, it is not a severe failure; 

but T 2 should not miss its deadline, then the robot tumbles or something like that, collides and 

tumbles; so, this is a critical task. 

So, what you have done here is that we have transformed T 2 into T 2 a, e 2 a is 4 and p 2 is 15. 

So, we have in effect, split the execution time and the period by half, and now, see that T 2 a is 

assigned the higher priority than T 1 and we can also use this in our schedulability analysis. 



(Refer Slide Time: 50:10) 

 

But, just one observation here, I think I forgot to written here, to write here. That see, even 

though we are splitting it on the into k smaller tasks, the actual deadline is on the last task, is it 

not? The last of these smaller tasks is actually critical. So, if we can use that in our schedulability 

analysis, possibly the schedulability, it will become more schedulability right. We can take that 

into for the tasks, for the k minus 1 tasks, the deadline, if that it is also missed, it is not problem. 

I mean missed by a small factor, it is not a problem, but for the last task - sub task - the deadline 

is missed then the task will fail right. Just remember that. 

But, is there any impact on schedulability at all, is it that a task set which was schedulable earlier 

by splitting it, it will become non-schedulable, and is it also, that we can improve schedulability 

of a task set by splitting the task into smaller periods. So, we need to analyze two situations: one 

is that an already a schedulable task set, after we split a critical task into smaller parts, it becomes 

schedulable and second is can we improve the schedulability of a task set, which was 

unschedulable earlier, and by splitting it, we have improved it schedulability, it has now become 

schedulable. So, both ways we have to consider; please investigate this. 

As we are saying that Sha Raj Kumar’s paper is available on the net for everyone to look at it, 

1989 paper, we can consult that or any other paper or any other literature that you wish, and 



please submit this result, that what is the effect of period transformation technique on tasks 

schedulability?  

So far, we have been posing large number of bonus problem, please attempt that seriously, 

because we will evaluate all of them, and whoever is sincere, trying to put some effort and do it, 

search the literature, Google search and think about it originally, and submit results, will be 

rewarded. So, let us break now, we will meet for the next lecture. 


