
Low Power VLSI Circuits and Systems
Prof Ajit Pal

Department of Computer Science and Engineering IIT Kharagpur
Indian Institute of Technology, Kharagpur

Module No #01
Lecture No #31

Minimizing Switched Capacitance - V

(Refer Slide Time: 00:27)

Hello and welcome to today’s lecture on minimizing switched capacitance. We shall

continue our discussion on this topic, and in the earlier lectures we have discussed about

various techniques; like hardware software tradeoff, bus encoding, clock gating, then use

of different techniques like; gated FSM state encoding and FSM partitioning, used in

minimizing switched capacitance and finite state machines. We have also discussed

operand isolation and pre-computation, which are used to review switching activity in

combinational circuits. Now, today we shall first focus on, how we can use a suitable

number system in minimizing switched capacitance, before we discuss other techniques

like; architecture level, optimizations, minimizing glitching power and various logic

styles, that can be used to reduce switched capacitance. All of us are using some number

system in our day to day use, and for arithmetic computation like; addition, subtraction

,multiplication division, we also use some number system within the computer.

(Refer Slide Time: 01:37)

Now, let us consider the number system that we use in our day to day system. We use

what is known as decimal number system, decimal number system with radix obtained.

Then you can represent numbers using 0 1 up to 9, 9 different symbols or numbers, and

of course in addition to this, we use positive and negative signs, to represent positive and

negative numbers. So, this is typically known as sign-magnitude representation. Sign-

magnitude representation, where we use sign explicitly by this symbol positive symbol,

and then we give the magnitude value say, we would like to represent plus 10, so we

write plus 10. Similarly, if it is a negative number, we represent it by a negative sign

minus, so this is minus 10. So, this is how we normally represent numbers, in sign-

magnitude representation. However, whenever you are using a computer to do

computation; obviously, everything has to be in terms of zeros and ones. So, has to

represent by a binary values.

So, sign is also given a binary value, usually 0 is used to represent a positive number,

one is used to represent the sign of a negative number. So, in sign-magnitude form, a

binary value, binary representation of plus 10 will be 0, then 1010. So, this part is the

sign, and this part is the magnitude. Similarly, the sign- magnitude representation of

minus 10 can be 1, then of course; the magnitude part will be remaining same, so 1 and

10. However, the sign-magnitude representation is not very convenient in implementing

various arithmetic operations within the computer; that means, implementing addition,

subtraction and other arithmetic operations, cannot be done efficiently by using the sign-

magnitude representation. So, another representation that is being used, that is known as

two’s complement representation. In two’s complement representation, usually we say

the number is either 8-bit or it is a 16-bit, and accordingly we represent the various

values.

For example, this plus 10 in 8-bit representation of two’s complement form will be 0.

Then you will add three more 0 and followed by the actual magnitude. Similarly, the

negative value of this, has to be obtained in a little different way, what we normally do

we first complement the value, say 0 0 0 0 1 0 1 0, so this is being bit complemented, so

we make bit by bit complementation 1 1 1 1 0 1 0 1, then we add one to get the two’s

complement representation of minus 10. So, you get 0 1 1 0 1 1 1 1. So, this is this is

minus 10 in two’s complement form, and this is plus 10 in two’s complement form. So,

this is how it is being represented inside the computer, when we perform various

arithmetic operations. We use a concept known as sign-extension.

Suppose we have to add a 8-bit number, I mean suppose this is 8-bit value and another

number is of 16-bit, so how do you add this 8-bit number with a 16-bit value, that can be

done by sign-extension of this number and convert it into 16-bit number, then perform

the addition; that means, your adder will take both the values 16-bit, here also it will take

16-bit, but if it is a 8-bit number then it has to be converted into 16-bit by using the

concept of sign-extension. For example, if we do this sign-extension of this plus 10, it

will become 0 0 0 0 then 0 0 0 0 then 0 0 0 0, and then 1 0 1 0, this is the plus 10 in 16-

bit; that means, 16-bit representation of plus 10, so you have got. So, this part you can

see nothing, but sign-extension, so this is the positive number. The sign bits have been

extended to fill the remaining bit. Similarly minus 10 can have say 1 1 1 1, 1 1 1 1, 1 1 1

1 then 0 1 1 0. So, this is the minus 10 in sign-extended form. So, this way you can

perform a numbers, perform addition subtraction and other things of binary numbers in

two’s complement form, and if there the magnitudes are not same, then we do sign-

extension to convert them of the same number. So, this sign-extension of binary

numbers, two’s complement numbers creates problem, what kind of problem it creates,

let us see.

(Refer Slide Time: 07:17)

So, as I have told in MOS signal processing application, two’s complement is typically

chosen, to represent numbers, primarily because the two’s complement number system

allows you to realize adder and subtract (()) a hardware efficiently. Then sign-extension

causes MSB sign bits to switch, when a signal transitions from positive to negative or

vice-versa take place. For example, let us consider a situation, where the numbering

changing from plus 1 to minus 1 alternately, I mean may be in between 0, so that means,

the number is switching between plus 1, minus 1 and 0, value is small and may be,

because of noise, because of other reasons it is changing, over 0 and it is becoming

minus 1 or plus 1 or 0. You can see how the bits will be changing, here plus 1 in 8-bit

will be equal to 0 1 1 1 sorry 0 0 0 0 this is a positive number. So, it will be 0 0 0 1, and

0 obviously will be 0 0 0 0 in two’s complement, then 0 0 0 0, and minus 1 will be, you

see that you have to perform bit complementation of all these bits, and then you have to

add 1. So, that will make it 1, so 1 1 1 1 all 1. So, you see if the value changes from 0 to

minus 1, you see the number of bits that will switch is 8. Similarly, now if it changes

from say minus 1 to plus 1 or plus 1 to minus 1, number of bits that will switch is 7.

So, you see large number of bits are switching, whenever we are representing in two’s

complement form, 2 c form to represent numbers. On the other hand, instead of

representing numbers in two’s complement form, if we representing sign-magnitude

form, then you can see how the number of bits will switch. So, plus 0 plus 1 is 0 0 0 0 1

and 0 is 0 0 0 0 0 0 0 1 and minus 1 is essentially 0 0 0 1 0 0 this is the sign and

magnitude part is same as the positive number. So, in this particular case, so whenever

you switch from 0 to 1, number of bits that switches is only 2, on the other hand

whenever you switch from say minus 1 to plus 1 the number of bits that switches is only

one. So, this is a remarkable change in the number of bits that switches; that means, if

the dynamic range of a number is small, and if it switches sign very quickly, then it may

lead to large switching activity in case of two’s complement form. On the other hand in

the sign-magnitude form, the number of transitions will be much less. This is the basic

idea of this particular technique, as I have told two’s complement can result in significant

switching activity, when signals being processed switched frequently around 0, and

switching in MSB can be minimized by using sign-magnitude represents as I have

already explained.

(Refer Slide Time: 10:52)

Now let us see how you can really use it or in what situation we can use it. You see a

sign-magnitude representation is useful for cases, where large buses have to be driven.

For example, you are using, let us assume a microcontroller or microprocessor, and this

microprocessor is sending data to, may be a digital to analog converter, which is

receiving digital data and producing analog corresponding value, at the output of the

digital to analog converter. Now, here if the values, I mean the dynamic range is small

and if the change is taking place over 0, and if it takes place frequently, then you can see

large switching activity result over the bus. So, you are sending through bus, and as you

know the capacitance of this bus is quite large. So, this switching activity will lead to lot

of change in switched capacitance, leading to high dynamic power dissipation. This

however, can be minimized by using sign-magnitude representation; in that case what

you have to do, you have to add one converter. So, here you will see, say two’s c two’s

complement to sign-magnitude form, and here at this end you have to add another

converter which will perform sign-magnitude to two’s complement form.

So, if you add these two hardware, then before sending the data you can convert it into

sign-magnitude form, then the sign-magnitude representation of data, can be send over

this bus, and on the other hand, on the other side, you can convert it back with the help of

the sign-magnitude to two’s complement converter, and here there is a (()) what is that

that (()). This can be done, only when the addition of this converters, two’s complement

to sign-magnitude and sign-magnitude to two’s complement converter, is essential and

overhead. So, this overhead will add capacitance to the systems. So, by adding this

capacitance, if the switch switched capacitance is less than, I mean is more. Then I mean

by adding this, if the switch capacitance is less than without adding this, only then this is

beneficial; that means, what you have to do, the overhead of converting back to two’s

complement is quite insignificant compared to the reduction and switched capacitance.

Only in such situation you can use this type of technique.

(Refer Slide Time: 13:57)

And let us have some little more analysis of this approach, here data bus is of 16 bit, 3

sigma is 2 to the power 11. Here essentially this represents the dynamic range; that

means, the most of the bits are changing over 11 bits, remaining three bits does not

change much, and rho that is your, although known as, this is essentially known as

correlation, convulsion x n minus x n minus 1 by rho square. So, again that will be that

you will achieve will be dependent on two things; number one is the dynamic range of

the number and another parameter is correlation of the data bits. So, this correlation and

the dynamic range will affect the performance of this introduction of two’s complement

to sign-magnitude converter, and sign-magnitude to two’s complement converter. So, let

us do some analysis and see.

Here is the, you know transition probability that has been obtained for this particular

situation, where three sigma is equal to two to the power eleven, and rho is zero, or it can

be, plus it can vary. I mean depending on the correlation of the data, and you can see

when rho is 0 data is uncorrelated, uncorrelated means it can become positive, it can

become negative it can, it is a random so; that means, any bit can change probability of

change of any bit is 50 percent. So, that is the reason why transition probability is 0.5.

So, when it is uncorrelated all the bits can change, the probability of any bit to become 0

or 1 is same, in such a case we get transition probability of 0, and the bandwidth as I told

is represented by log two three sigma, that is your, and here you can see this is

essentially in the dynamic ranges over 11 bits, remaining three bits do not change much

now, but of course it depends on the correlation factor. So, if the data is correlated, what

you really mean by correlated. Correlated means, what can happen if the data may

change likely slowly.

So, in such a case over time if it changes slowly, then we can say data is correlated; that

means, the present value and next value are correlated, means you know they are very

close and it is slowly going becoming positive, then it is slowly becoming negative, so

the data is correlated. So, when the data is correlated, the correlation then; obviously, the

switching activity will be less as you can see, and whenever rho is equal to 0.99 it is very

much correlated. So, you can see. Of course, the lower order bits will change, because

dynamic range is higher, and you can see depending on the correlation, say it is point 0

to 5 then you can see only the higher order bits, and these bits are not changing much,

but lower order bits are changing; that means, probability is 0.5 and as the correlation

factor increases, then you can see the even lower order bits are not changing much. So,

the bits are changed from say bit 7 to 14, there could there switching activity is reducing

7 to 11, these switching activity of opposite bits are changing, as the correlation is

increasing. On the other hand, if the data is anti-correlated; that means, they are changing

fast.

So, it may so happen that, data is changing fast like this. So, data is changing quickly.

So, it is anti-correlated you can see, in this particular case it is anti-correlated. So, in such

a situation, depending on what kind of anti-correlation is there, the switching activity is

increasing from four bits starting from 7 to 11 as you can see, it is increasing and also

higher order bits it is increasing; that means, including sign bit, it is increasing. So, of

course, if the dynamic range is small then; obviously, it will move towards this for this

particular dynamic range, 3 sigma is equal to 2 to the power 11, this is the situation. So,

you can see, that transition probability is dependent on two parameters; one is the

bandwidth or the dynamic range of the signal, and second is the correlation factor, and

depending on that the number of transitions on different bits will vary, which is

represented by these plots.

(Refer Slide Time: 19:13)

Now, let us consider the same situation for sign-magnitude representation, one was for

two’s complement representation. Now, you have come to two’s complement sign-

magnitude representation. Here as you can see, except the sign bit for all other bits the

transition probability is always less than point five, and not only that, as the correlation

increases, the transition probability of the sign bit as well as the other bits reduces. So,

transition probability of order bits starting from bit 6 reduces, for sign-magnitude

representation, and it never what becomes more than 0.5, because as you have seen in

case of sign-magnitude representation, you have seen that the number of transitions will

be always less, and even with anti-correlated data, the number of transitions will never

exceed 0.5. And as a consequence the for sign-magnitude representation, the transition

activity is much less compared to that of two’s complement representation. And

obviously, this reduction will be more and more if the bandwidth is less, and also the

data is highly correlated, and as the data becomes anti-correlated; that means, switching

occurs more frequently, between positive and negative, and of course the sign which will

change more frequently if the data is uncorrelated.

(Refer Slide Time: 21:02)

Now, there is another plot, where the transition for two’s complement data is plotted on

the y axis, again this signal dynamic range, but peak amplitudes, as I told it depends on

two parameters; the correlation factor and the dynamic range. As you can see as the

signal dynamic range is increasing, the probably transition activity is increasing, and

whenever it is highly anti-correlated, the transition activity is much less compared to

when it is highly correlated, and rho is equal to 0.99 and for point rho is equal to 0, you

can see, it is roughly point 8, because it is, I mean it will be 8 because it is 16-bit

number. So, the transition number of transitions for two’s complement will be 8, for rho

is equal to 0, for 16-bit number and number of transitions will be 8. And for 0.99 MSB

do not switch at all, and for minus 0.99 MSB switches frequently. And as a consequence

the variation of the transitions for two’s complement representation take place in this

way, depending on the values of dynamic range and the correlation along different data.

(Refer Slide Time: 22:33)

Now, let us consider this in the situation for sign-magnitude form. So, number of

transition for two’s complement by sign- magnitude. So, it has been normalized with

respect to two’s complement representation. So, here you find the, here as you here for

highly anti-correlated form, sorry highly anti-correlated form, the reduction is less, but

whenever it is highly correlated, it reduces significantly, this ratio is quite large. So,

number of transitions for two’s complement by sign-magnitude, here the reduction is of

course, you can see it also changes with the dynamic range, but and as the dynamic range

increases, the ratio is less and as the dynamic range is small, then the ratio is more. In

other words maximum reduction occurs in switching activity, when the dynamic range is

small and data is very anti-correlated. So, reduction is achieved whenever it is anti-

correlated. And in other words this suggests, when you will use, when you will chose

sign-magnitude representation. You will chose sign-magnitude representation for

sending above the bus, when the dynamic range is small and data is ant-correlated. If the

dynamic range is large and data is correlated, you may not get the benefit of using sign-

magnitude representation.

(Refer Slide Time: 24:16)

Now, let us focus on architectural optimizations, including number of presentation for

arithmetic computation. The ordering or operations, resource utilization and we shall

discuss techniques for minimizing glitching activity.

(Refer Slide Time: 24:31)

Coming to again two’s complement representation of an accumulator, this is a operation

you know a large number of sample values, are added or accumulated in many DSP

applications, say one thousand sample values are accumulated, and that is being used

after accumulating thousand sample values. So, this is what is being done, by this

hardware. So, here you can see or applying clock at the rate of 64 megahertz, here the

data is only 4 bit, and that is being added, that is being kept on adding for thousand

different values, and after the accumulation has taken place for thousand different values.

The final result is taken out from the output of the adder, with the help of this latch,

which is operating at 64 kilohertz. So, you can see, this one thing which is not shown

here, here you are doing sign-extension, because you have to add or you can see after

accumulating for thousand times, the size of the, number of bits that been required is 14

bit, that is the reason why the adder is of 14 bit, but here the data is a 4 bit. So, you have

to do sign-extension before you perform addition, with the 14 bit number, and as a

consequence as you do sign-extension, and then you know if the sign changes frequently,

then lot of switching activity will occur, and that will lead to lot of switching activity

within this adder, and this happens, because of sign-extension of this number, because

dynamic range is small only 4 bit, but you are adding with 14 bit number.

(Refer Slide Time: 26:29)

So, whenever you do this, if you plot the switching activity at different point, you can see

at the adder output the switching activity is very high, the reason for that as I told this

adder output, what is happening you are doing sign-extended value of data you are

adding with the 14 bit number. And as a consequence at this point adder output will have

lot of intermediate transitions, leading to high switching activity. On the other hand, after

the addition is performed, you know that in latched data will not have that much

switching activity, here you know here you can see the current sum will not have that

much activity, so here there is effect of kind of low pass filtering. So, as you as you keep

on adding data the switching activity gradually reduce.

There is a kind of gradual you know smoothness on the card, and as a result you get

lesser and lesser switching activity, in higher bit numbers, lower bit, I mean higher bit

numbers not changing at all, but you can see the switching activity is much less in the

current sum, but in this the in latched data the sign extension part will have point 5

switching activity, and this the lower part 4 bit will have three bit which is essentially

magnitude. Again we will have switching activity plus 2.5. So, on this three lines, we

have seen, here, here and here, how the switching activity changes, and of course the

switching activity is maximum at this point, how can we reduce, the power dissipation

due to high switching activity, by changing the architecture of implementing this

accumulator.

(Refer Slide Time: 28:31)

What we can do, we can trade silicon area for lower switching activity; that means, we

can use some additional hardware, to achieve lower switching activity, and for example

implementation of an accumulator using two’s complement, can be done in a different

way. We can do accumulator implementation, using sign-magnitude representation, and

in sign-magnitude representation, you know computation is for positive and negative

data is kept separate, how it is being done, what you can do, so depending on whether the

data is positive or negative, you separate out the data, and do the additions of positive

data in one part and negative data by using another part. Then finally when the

accumulation has taken place, then you perform subtraction between the two

accumulated data to get the final result. So, you will get the lower switching activity, at

the cost of double silicon area.

(Refer Slide Time: 29:41)

So, as you can see how this is done in this particular implementation. So, in this case the

sign bit has been used to channelize the data; either to this part or to this part. So, you

this gated clock is realized, or gated clock is implemented with the help of the sign bit,

and if the data is positive, then this latch is enabled and accumulation is done by this

part. Similarly, the data is negative, then this latch is enabled and the accumulation is

done by this part. So, you can see although your input data is in two’s complement form,

but you are doing the additions with the help of two separate hardware; one for positive

numbers another for negative numbers. And as a consequence the switching activity in

this hardware or in this hardware will be much less, because you are only passing

positive data. So, this sign extended part will remain same, because all are positive.

Similarly, if it is negative data sign extended part will be all 1 in this case. And in this

case sign extended part will be all 0 in this case, and as a consequence the switching

activity at the output of this particular adder 1 will be much less compared to two’s

complement form, and after performing this at high speed you know, after you have done

this additions, you will of course, perform final subtraction at lower rate 64 kilohertz;

that means, subtract thousand accumulation of thousand data has taken place. You will

now shift it to in a 1 adder, I mean subtract or it is doing subtraction positive

accumulated and negative accumulated data, and then you are finally, getting the

accumulated data at the output 14 bit data. So, here we are not sacrificing throughput,

only thing that we are doing, we are trading area for lower switching activity, by

duplicating the hardware.

(Refer Slide Time: 31:55)

And let us see the transition activity for two different situations; the upper curve is, this

particularly is dotted lines, there that correspond to two’s complement implantation. So,

here, that the sum output, you can see there is lot of switching activity. On the other hand

these thick lines correspond to this sign-magnitude implementation, you can see either

for sum a or sum b; sum a or sum b means, you can see sum a or sum b means, here you

are doing sum a and you are doing sum b. So, sum a and sum b the switching activity is

much less, and of course whenever you are doing that sign-magnitude, that sum a plus

sum b in sign-magnitude form, when you are doing addition then of course, you have

little more switching activity, but you can see that switching activity in this part, here

you are doing at a lower frequency 64 kilohertz, as a consequence, since it is multiplied

by factor of f, you know and the switching activity at the output of this adder will not

increase the switched capacitance much, because you are you will be multiplying by

factor f. So, here you are doing at the rate of megahertz, and here you will be doing at the

rate of kilohertz.

(Refer Slide Time: 33:29)

So, as a consequence the overall reduction in the power dissipation will be much more in

this implementation, and you can see here, some experiment has been done, for data with

different correlation factor. In the first case you are feeding constant, constant means you

are not changing the input at all. So, when you are feeding the constant value, data is

highly correlated, and whenever data is highly correlated as we know, it will not make

much change, much difference for sign-magnitude or two’s complement, because the

switching activity is dependent on the correlation factor. So, when it is highly correlated

it will not make much difference; however, since the sign-magnitude implementation has

got larger area capacitance, that will lead to larger power dissipation. So, when you are

feeding constant value n is equal to seven, then you can see input pattern, your constant

input pattern you are feeding for 10024 cycles, then the power dissipations in two’s

complement, implementation is 1.97 mille watt, where as for sign-magnitude

representation power is 2.25 volt, using the same supply voltage of three volt in both the

cases.

However, if you use a ramp, in case of ramp you are essentially, it is also correlated, you

are increasing and decreasing. So, you are increasing from minus 7, here it is 0, then you

are making it. So, here not like this, here minus 7 to 0, then plus 7. So, you are

essentially ramp, so that means plus 7, then in this way you are doing. So, minus 7 to 0

plus 7 and you are changing in this way, you are using a ramp. Then again you are

putting as well, minus 7, 0 plus 7, so this is how you are applying your data. So, in this

particular case, data is also correlated, it is not that it is not correlated, it is also

correlated. So, when there is correlation as you can see, you do not get much benefit in

sign-magnitude implementation, because of larger capacitance. So, here also there is no

reduction in power dissipation, but there is increasing power dissipation in sign-

magnitude realization.

On the other hand, when you have got random data, data is changing I mean it can have

any value; any bit has the probability of transition of 0.5. In such a case it is a random

data, and as a consequence you can see two’s complement representation, realization

based on two’s complementation gives you 3.42 mille watt compared to 2.5 watt 51

mille watt, that you can achieve while using realization based on sign-magnitude form.

So, this gives you reduction in the power dissipation, because of lesser switching

activity, or lesser switched capacitance. Now here is a extreme case, here you are

changing between say minus 7 to plus 7. So, you are changing minus 7 to plus 7, not this

way minus 7, then plus 7, then minus 7, then plus 7 this way you are changing. So, in

this case data you can say extremely anti-correlated. So, whenever it is highly anti-

correlated, then you know we get good benefit using sign-magnitude representation as it

is evident from this particular result. So, you find that for two’s complement realization

based on two’s complement we get 5.28 mille watt compared to 2.46 mille watt,

whenever you do sign-magnitude based realization.

(Refer Slide Time: 37:36)

Now, we switch gear we consider another technique; ordering of input signals, you know

switching activity can be reduced by optimizing the ordering of operation. So, here what

you are doing, for example multiplying a signal with constant coefficient, this operation

can be composed into shift-add operations. So, sometimes you can reduce switching

activity, by changing the ordering of operation. Let us consider a simpler example, where

you have to perform, consider a multiplication in which it is decomposing to three

additions. So, what you have done, you have to ultimately add three numbers; one is IN

another is IN into 2 to the power minus 7, that can be achieved by shifting the data by 7

times towards right, that is that is effectively diving by 2 to the power 7 and another is IN

into shifting the data by 8 times towards right, essentially it is division by 2 to the power

8. So, these three data have to be added. Obviously, the magnitude of this number, which

has been shifted 7 times towards right, or the number which has been shifted 8 times

towards right, their magnitude will be much less.

(Refer Slide Time: 39:09)

So, whenever you have to add these three data, you have got two possible topologies, in

the first case, you will perform addition of the IN with IN into 2 to the power minus 7,

and then you add with that partial result, you add with IN into 2 to the power minus 8.

So, you can do in this way, in this order or you can do the addition, first you add the

smaller numbers IN into 2 to the power minus 7, plus IN into 2 to the power minus 8,

and then you add this intermediate result ,with the in the initial value IN. So, we can do it

in these three ways, and let us see the result.

(Refer Slide Time: 39:47)

So, in this case we are adding a large number with a small number, and again a large

number with a small number, as a consequence you know you have to do, here you have

to do sign-extension, here you have to do sign-extension to do the additions, and as a

result the switching activity is quite high, as you can see, both at the output of sum one

and sum two, but you can perform the same thing without losing the, without sacrificing

correctness of data, you can use the property of associability and commutability, to

perform the same operation by adding the two smaller number first, then adding it with

the larger number. And as you do that, as you can see, since you are adding to smaller

numbers, obviously the switching activity at the output of sum one will be much less. As

you can see it is much less switching activity, particularly in the higher order bits, there

will be no change at all, switching activity will be much less. On the other hand, of

course here we are adding a small number with a large number, in that case switching

activity will be comparable to the sum two of the previous situation. So, we find that at

least at the output of one adder you are able to reduce the, switching activity

significantly, by using this particular topology of implementation.

(Refer Slide Time: 41:15)

And here you know same thing, shown in a different way, transition probability and how

the bit numbers are how the changing from different bit numbers. Here it is IN 7, IN 8,

and you are doing addition of these two numbers, and you can see how the adder output

reduces the switching activity that you have already seen, and whenever you perform

addition of these two numbers, obviously the initial implementation, when you do

addition, we using these two numbers switching activity was larger, because you are

adding with a small number with a large number. So, sign bit correlation is one for

different numbers, that correlation is shown for different values, obviously for smaller

numbers there is larger correlation among the higher order bits, but whenever you are

using, you know that smaller number and a larger number that correlation is different as

you can see. So, transition probability for three different signals, I have shown here and

based on that we got this result, this transition probability of this sum 1, sum two and for

the output of these adders.

(Refer Slide Time: 42:38)

Now, we shall consider another interesting situation, this is regarding optimizing the

source utilization. You know there are two choices time multiplexed architectures, versus

fully parallel architecture. So, you can have time multiplexed architecture, or you can

have fully parallel architecture. This I can explain with an example of our

microprocessors.

(Refer Slide Time: 43:14)

I do not know whether you have studied, that 8 bit puller microprocessor that is your

8085 by Intel. In this processor you may remember that, it had a 8 to 15 was coming out,

this is the higher order at this at this bus, but the data bus and lower order at this bus, so

AD0 to seven; that means, what does it mean. It means that same bus you are using for

sending data as well as address, so that was being done in your 8085. So, we used to call

it bus multiplexed. So, you are multiplexing the bus, so initially you are sending the data,

which is being latched in the memory, normally you have got a memory here, main

memory, so this lower order at. So, ALE signal was generated by the microprocessor that

was latching the address fast in the main memory. Then the data you are reading using

the same lines; that means, the lower order at this lines were sent using these lines first,

then data were read or sent, using the same lines in the in subsequent cycles. So, a bus

was time multiplexed.

Obviously, this had large number of pins, so number of pins was reduced by eight, and as

a consequence you are able to realize the 8 bit microprocessor by using a 40-pin chip,

and as you know the cost of a chip is dependent on the number of pins. So, at that point

of time, when 8 bit micro, that 8085 was implemented, it was wiser to implement using

this time multiplexed bus, but you know it has one drawback. Whenever you do that the

switching activity is very large, on these lines, first you are sending address, then you are

sending data, lot of switching activity will take place, and that will lead to large power

dissipation. So, this time multiplex implementation mainly may have good resource

utilization. You are using the same bus to communicate two different data in two

different time instants or different cycles. Obviously, resource utilization is more, but the

switching activity is much higher. The degree of resource sharing should be optimized,

because resource sharing can destroy signal correlations and increase switching activity.

For example, time sharing busses out of, I have already considered.

(Refer Slide Time: 46:03)

Let us consider this example; here you are taking output from two counters. These two

counters may be, you know their counter counters may not be correlated; one is counting

something, other is counting something, that count value may be in the module of the

counter may be different, or the rate at which counting is take place can be different.

Now you can use either shared bus, as it is shown here. In this case instead of using two

busses, you are using a single bus; obviously, the capacitance will be less in this

particular case, c b s that is your, that is the bus over which you are doing, and first you

are sending this, then you are sending this or you can have two separate busses. So, the

number of bus transition per cycle is eight, the reason for that is you have got 8 bit data.

And since it is coming out from a counter, the number of bus transitions plus average

value of the number of this transitions plus per cycling will be four, as you know count

value will change from all zero to all one, and the average value will be four. Now, with

this situation, with this background, let us see how the number of bus transitions per

cycle changes, in these two different situations. So, whenever we use parallel busses then

you can see, the number of bus transition per cycle remains fixed four, it does not

change, because here you are taking from one counter, and here you are taking from

another counter, and obviously the number of bus transition per cycles remains constant.

I mean average number of bus transition per cycle remains constant that is four.

However, whenever you do multiplexing then you can see, the number of transitions is

little random in nature, and it can attend very high peak value, with minimum value of

four. So, you can see the switching activity on the shared bus or common bus is very

large, and as a consequence in this particular case, we will have large switching activity.

So, you have to decide which particular system will use. For example, I was giving the

example of this Intel microprocessor. So, in the earlier processors like 8085 and 8088 the

bus was multiplexed, but subsequently as the frequency was increased. You know both

8085 and 8088 were operating in the range of few megahertz, as the frequency increased

in subsequent processor, starting from 8086 to 80286, 80386, 80486 or in Pentium in

subsequent processors no bus multiplexing was done, separate busses were provided,

essentially to reduce power dissipation, switching activity, switch high switching

activity, and also you know that increase the throughput, because you are sending over

different busses. So, this particular technique, I mean this shows that why the bus were

not multiplexed in subsequent processors.

(Refer Slide Time: 49:52)

Then, another technique that is your glitching power dissipation. Glitching power

dissipation you have already discussed, that occurs because of delay of the gates, and I

have already explained this particular, you know that the occurrence of this glitch,

because of the delay of this gate that take place, and this glitch how can you reduce the

glitching power dissipation.

(Refer Slide Time: 50:20)

Glitching power dissipation can be reduced, by using balanced implementation instead of

cascaded implementation. So, if you use cascaded balance implementation in this way,

you know the delay here and delay here is more or less same, as a consequence at the

output of this gate the switching activity will be much less. So, in this particular case

there will be switching activity here and here O2 and O3, which will not be present here.

So, extra transitions can be minimized. In other words the glitching power dissipation

can be reduced by balancing all signal paths, and reducing logic depth, and also this

reduces the logic depth. Reducing logic depth also reduces the delay of the critic that we

know, that delay of that particular network. So, whenever you are realizing multilevel

implementation of bullion functions, it is advisable to use balance circuit, and as much

reduction in logic depth as possible.

(Refer Slide Time: 51:29)

Now, coming to the last topic, you know I have already discussed about the use of

different logic styles; static c MOS circuit, dynamic c MOS logic style and pass-

transistor logic. Nowadays you know most of the VLSI implementations are done by

using static c MOS. Primarily because CAD tools are available, for matured CAD tools

are available for based on static c MOS, unfortunately matured CAD tools are not

available for logic realization, using dynamic c MOS or pass-transistor logic. So, one

experimentation was done, by developing suitable CAD tool, by realizing dynamic c

MOS and pass-transistor logic.

(Refer Slide Time: 52:16)

 I shall show you, I have already discussed the advantages and disadvantages of static

CMOS dynamic CMOS. So, I am not going into the details at this moment.

(Refer Slide Time: 52:30)

So, let us come to the final result, where we have implemented the same circuit same

benchmark circuits, c 4 36 I mean these are discussed benchmark circuits, with you can

see the number of transistors required in different cases, and you have implemented by

using static c MOS dynamic c MOS and PTL pass-transistor logic. So, the tools CAD

tools were developed at that automated implementation were done, to realize using static

c MOS or dynamic c MOS or pass-transistor logic, and we find that the reduction in the

area delaying power for dynamic c MOS, and here is the reduction in area delay and

power in pass-transistor logic. So, you find that if you realize the same circuit, using

dynamic c MOS there can be 16 percent reduction in area, 37 percent reduction in delay,

and 25 reductions in power dissipation. So, reduction in energy which is power delay

product is quite significant, may be more than 50 percent. Similarly, whenever you

realize using pass-transistor logic, which I have already discussed in detail, you can see

on the average 33 percent reduction in area take place, because pass-transistor logic

realization requires a lesser number of transistors, as you can see the number of

transistors required has been shown here, which is representative of the area and then the

reduction in delay is 47 percent, using pass transistor logic and reduction in power

dissipation is 17 percent.

(Refer Slide Time: 54: 16)

So, you find there is significant reduction in area delay and power. So, with this we have

come to the end of today’s lecture. And here is a reference the various techniques that

you have discussed today, has been taken from a book by Anantha P. Chandrakasan and

Robert W. Brodersen, the title of the book is low power digital c MOS design, published

by Kluwer Academic Publishers; it was published some time in 1995. So, with this we

have come to the end of on the various lectures on minimizing switched capacitance. In

the next lecture we shall start our discussion on minimizing leakage power dissipation.

Thank you

