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Hello and welcome to today’s lecture on minimizing switched capacitance. We shall 

continue our discussion on this topic, and in the earlier lectures we have discussed about 

various techniques; like hardware software tradeoff, bus encoding, clock gating, then use 

of different techniques like; gated FSM state encoding and FSM partitioning, used in 

minimizing switched capacitance and finite state machines. We have also discussed 

operand isolation and pre-computation, which are used to review switching activity in 

combinational circuits. Now, today we shall first focus on, how we can use a suitable 

number system in minimizing switched capacitance, before we discuss other techniques 

like; architecture level, optimizations, minimizing glitching power and various logic 

styles, that can be used to reduce switched capacitance. All of us are using some number 



system in our day to day use, and for arithmetic computation like; addition, subtraction 

,multiplication division, we also use some number system within the computer.  
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Now, let us consider the number system that we use in our day to day system. We use 

what is known as decimal number system, decimal number system with radix obtained. 

Then you can represent numbers using 0 1 up to 9, 9 different symbols or numbers, and 

of course in addition to this, we use positive and negative signs, to represent positive and 

negative numbers. So, this is typically known as sign-magnitude representation. Sign-

magnitude representation, where we use sign explicitly by this symbol positive symbol, 

and then we give the magnitude value say, we would like to represent plus 10, so we 

write plus 10. Similarly, if it is a negative number, we represent it by a negative sign 

minus, so this is minus 10. So, this is how we normally represent numbers, in sign-

magnitude representation. However, whenever you are using a computer to do 

computation; obviously, everything has to be in terms of zeros and ones. So, has to 

represent by a binary values.  

So, sign is also given a binary value, usually 0 is used to represent a positive number, 

one is used to represent the sign of a negative number. So, in sign-magnitude form, a 

binary value, binary representation of plus 10 will be 0, then 1010. So, this part is the 

sign, and this part is the magnitude. Similarly, the sign- magnitude representation of 

minus 10 can be 1, then of course; the magnitude part will be remaining same, so 1 and 



10. However, the sign-magnitude representation is not very convenient in implementing 

various arithmetic operations within the computer; that means, implementing addition, 

subtraction and other arithmetic operations, cannot be done efficiently by using the sign-

magnitude representation. So, another representation that is being used, that is known as 

two’s complement representation. In two’s complement representation, usually we say 

the number is either 8-bit or it is a 16-bit, and accordingly we represent the various 

values.  

For example, this plus 10 in 8-bit representation of two’s complement form will be 0. 

Then you will add three more 0 and followed by the actual magnitude. Similarly, the 

negative value of this, has to be obtained in a little different way, what we normally do 

we first complement the value, say 0 0 0 0 1 0 1 0, so this is being bit complemented, so 

we make bit by bit complementation 1 1 1 1 0 1 0 1, then we add one to get the two’s 

complement representation of minus 10. So, you get 0 1 1 0 1 1 1 1. So, this is this is 

minus 10 in two’s complement form, and this is plus 10 in two’s complement form. So, 

this is how it is being represented inside the computer, when we perform various 

arithmetic operations. We use a concept known as sign-extension.  

Suppose we have to add a 8-bit number, I mean suppose this is 8-bit value and another 

number is of 16-bit, so how do you add this 8-bit number with a 16-bit value, that can be 

done by sign-extension of this number and convert it into 16-bit number, then perform 

the addition; that means, your adder will take both the values 16-bit, here also it will take 

16-bit, but if it is a 8-bit number then it has to be converted into 16-bit by using the 

concept of sign-extension. For example, if we do this sign-extension of this plus 10, it 

will become 0 0 0 0 then 0 0 0 0 then 0 0 0 0, and then 1 0 1 0, this is the plus 10 in 16-

bit; that means, 16-bit representation of plus 10, so you have got. So, this part you can 

see nothing, but sign-extension, so this is the positive number. The sign bits have been 

extended to fill the remaining bit. Similarly minus 10 can have say 1 1 1 1, 1 1 1 1, 1 1 1 

1 then 0 1 1 0. So, this is the minus 10 in sign-extended form. So, this way you can 

perform a numbers, perform addition subtraction and other things of binary numbers in 

two’s complement form, and if there the magnitudes are not same, then we do sign-

extension to convert them of the same number. So, this sign-extension of binary 

numbers, two’s complement numbers creates problem, what kind of problem it creates, 

let us see.  



(Refer Slide Time: 07:17) 

 

So, as I have told in MOS signal processing application, two’s complement is typically 

chosen, to represent numbers, primarily because the two’s complement number system 

allows you to realize adder and subtract (()) a hardware efficiently. Then sign-extension 

causes MSB sign bits to switch, when a signal transitions from positive to negative or 

vice-versa take place. For example, let us consider a situation, where the numbering 

changing from plus 1 to minus 1 alternately, I mean may be in between 0, so that means, 

the number is switching between plus 1, minus 1 and 0, value is small and may be, 

because of noise, because of other reasons it is changing, over 0 and it is becoming 

minus 1 or plus 1 or 0. You can see how the bits will be changing, here plus 1 in 8-bit 

will be equal to 0 1 1 1 sorry 0 0 0 0 this is a positive number. So, it will be 0 0 0 1, and 

0 obviously will be 0 0 0 0 in two’s complement, then 0 0 0 0, and minus 1 will be, you 

see that you have to perform bit complementation of all these bits, and then you have to 

add 1. So, that will make it 1, so 1 1 1 1 all 1. So, you see if the value changes from 0 to 

minus 1, you see the number of bits that will switch is 8. Similarly, now if it changes 

from say minus 1 to plus 1 or plus 1 to minus 1, number of bits that will switch is 7.  

So, you see large number of bits are switching, whenever we are representing in two’s 

complement form, 2 c form to represent numbers. On the other hand, instead of 

representing numbers in two’s complement form, if we representing sign-magnitude 

form, then you can see how the number of bits will switch. So, plus 0 plus 1 is 0 0 0 0 1 

and 0 is 0 0 0 0 0 0 0 1 and minus 1 is essentially 0 0 0 1 0 0 this is the sign and 



magnitude part is same as the positive number. So, in this particular case, so whenever 

you switch from 0 to 1, number of bits that switches is only 2, on the other hand 

whenever you switch from say minus 1 to plus 1 the number of bits that switches is only 

one. So, this is a remarkable change in the number of bits that switches; that means, if 

the dynamic range of a number is small, and if it switches sign very quickly, then it may 

lead to large switching activity in case of two’s complement form. On the other hand in 

the sign-magnitude form, the number of transitions will be much less. This is the basic 

idea of this particular technique, as I have told two’s complement can result in significant 

switching activity, when signals being processed switched frequently around 0, and 

switching in MSB can be minimized by using sign-magnitude represents as I have 

already explained.  
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Now let us see how you can really use it or in what situation we can use it. You see a 

sign-magnitude representation is useful for cases, where large buses have to be driven. 

For example, you are using, let us assume a microcontroller or microprocessor, and this 

microprocessor is sending data to, may be a digital to analog converter, which is 

receiving digital data and producing analog corresponding value, at the output of the 

digital to analog converter. Now, here if the values, I mean the dynamic range is small 

and if the change is taking place over 0, and if it takes place frequently, then you can see 

large switching activity result over the bus. So, you are sending through bus, and as you 

know the capacitance of this bus is quite large. So, this switching activity will lead to lot 



of change in switched capacitance, leading to high dynamic power dissipation. This 

however, can be minimized by using sign-magnitude representation; in that case what 

you have to do, you have to add one converter. So, here you will see, say two’s c two’s 

complement to sign-magnitude form, and here at this end you have to add another 

converter which will perform sign-magnitude to two’s complement form.  

So, if you add these two hardware, then before sending the data you can convert it into 

sign-magnitude form, then the sign-magnitude representation of data, can be send over 

this bus, and on the other hand, on the other side, you can convert it back with the help of 

the sign-magnitude to two’s complement converter, and here there is a (()) what is that 

that (()). This can be done, only when the addition of this converters, two’s complement 

to sign-magnitude and sign-magnitude to two’s complement converter, is essential and 

overhead. So, this overhead will add capacitance to the systems. So, by adding this 

capacitance, if the switch switched capacitance is less than, I mean is more. Then I mean 

by adding this, if the switch capacitance is less than without adding this, only then this is 

beneficial; that means, what you have to do, the overhead of converting back to two’s 

complement is quite insignificant compared to the reduction and switched capacitance. 

Only in such situation you can use this type of technique.  
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And let us have some little more analysis of this approach, here data bus is of 16 bit, 3 

sigma is 2 to the power 11. Here essentially this represents the dynamic range; that 



means, the most of the bits are changing over 11 bits, remaining three bits does not 

change much, and rho that is your, although known as, this is essentially known as 

correlation, convulsion x n minus x n minus 1 by rho square. So, again that will be that 

you will achieve will be dependent on two things; number one is the dynamic range of 

the number and another parameter is correlation of the data bits. So, this correlation and 

the dynamic range will affect the performance of this introduction of two’s complement 

to sign-magnitude converter, and sign-magnitude to two’s complement converter. So, let 

us do some analysis and see.  

Here is the, you know transition probability that has been obtained for this particular 

situation, where three sigma is equal to two to the power eleven, and rho is zero, or it can 

be, plus it can vary. I mean depending on the correlation of the data, and you can see 

when rho is 0 data is uncorrelated, uncorrelated means it can become positive, it can 

become negative it can, it is a random so; that means, any bit can change probability of 

change of any bit is 50 percent. So, that is the reason why transition probability is 0.5. 

So, when it is uncorrelated all the bits can change, the probability of any bit to become 0 

or 1 is same, in such a case we get transition probability of 0, and the bandwidth as I told 

is represented by log two three sigma, that is your, and here you can see this is 

essentially in the dynamic ranges over 11 bits, remaining three bits do not change much 

now, but of course it depends on the correlation factor. So, if the data is correlated, what 

you really mean by correlated. Correlated means, what can happen if the data may 

change likely slowly.  

So, in such a case over time if it changes slowly, then we can say data is correlated; that 

means, the present value and next value are correlated, means you know they are very 

close and it is slowly going becoming positive, then it is slowly becoming negative, so 

the data is correlated. So, when the data is correlated, the correlation then; obviously, the 

switching activity will be less as you can see, and whenever rho is equal to 0.99 it is very 

much correlated. So, you can see. Of course, the lower order bits will change, because 

dynamic range is higher, and you can see depending on the correlation, say it is point 0 

to 5 then you can see only the higher order bits, and these bits are not changing much, 

but lower order bits are changing; that means, probability is 0.5 and as the correlation 

factor increases, then you can see the even lower order bits are not changing much. So, 

the bits are changed from say bit 7 to 14, there could there switching activity is reducing 



7 to 11, these switching activity of opposite bits are changing, as the correlation is 

increasing. On the other hand, if the data is anti-correlated; that means, they are changing 

fast.  

So, it may so happen that, data is changing fast like this. So, data is changing quickly. 

So, it is anti-correlated you can see, in this particular case it is anti-correlated. So, in such 

a situation, depending on what kind of anti-correlation is there, the switching activity is 

increasing from four bits starting from 7 to 11 as you can see, it is increasing and also 

higher order bits it is increasing; that means, including sign bit, it is increasing. So, of 

course, if the dynamic range is small then; obviously, it will move towards this for this 

particular dynamic range, 3 sigma is equal to 2 to the power 11, this is the situation. So, 

you can see, that transition probability is dependent on two parameters; one is the 

bandwidth or the dynamic range of the signal, and second is the correlation factor, and 

depending on that the number of transitions on different bits will vary, which is 

represented by these plots.  
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Now, let us consider the same situation for sign-magnitude representation, one was for 

two’s complement representation. Now, you have come to two’s complement sign-

magnitude representation. Here as you can see, except the sign bit for all other bits the 

transition probability is always less than point five, and not only that, as the correlation 

increases, the transition probability of the sign bit as well as the other bits reduces. So, 



transition probability of order bits starting from bit 6 reduces, for sign-magnitude 

representation, and it never what becomes more than 0.5, because as you have seen in 

case of sign-magnitude representation, you have seen that the number of transitions will 

be always less, and even with anti-correlated data, the number of transitions will never 

exceed 0.5. And as a consequence the for sign-magnitude representation, the transition 

activity is much less compared to that of two’s complement representation. And 

obviously, this reduction will be more and more if the bandwidth is less, and also the 

data is highly correlated, and as the data becomes anti-correlated; that means, switching 

occurs more frequently, between positive and negative, and of course the sign which will 

change more frequently if the data is uncorrelated.  
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Now, there is another plot, where the transition for two’s complement data is plotted on 

the y axis, again this signal dynamic range, but peak amplitudes, as I told it depends on 

two parameters; the correlation factor and the dynamic range. As you can see as the 

signal dynamic range is increasing, the probably transition activity is increasing, and 

whenever it is highly anti-correlated, the transition activity is much less compared to 

when it is highly correlated, and rho is equal to 0.99 and for point rho is equal to 0, you 

can see, it is roughly point 8, because it is, I mean it will be 8 because it is 16-bit 

number. So, the transition number of transitions for two’s complement will be 8, for rho 

is equal to 0, for 16-bit number and number of transitions will be 8. And for 0.99 MSB 

do not switch at all, and for minus 0.99 MSB switches frequently. And as a consequence 



the variation of the transitions for two’s complement representation take place in this 

way, depending on the values of dynamic range and the correlation along different data. 
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Now, let us consider this in the situation for sign-magnitude form. So, number of 

transition for two’s complement by sign- magnitude. So, it has been normalized with 

respect to two’s complement representation. So, here you find the, here as you here for 

highly anti-correlated form, sorry highly anti-correlated form, the reduction is less, but 

whenever it is highly correlated, it reduces significantly, this ratio is quite large. So, 

number of transitions for two’s complement by sign-magnitude, here the reduction is of 

course, you can see it also changes with the dynamic range, but and as the dynamic range 

increases, the ratio is less and as the dynamic range is small, then the ratio is more. In 

other words maximum reduction occurs in switching activity, when the dynamic range is 

small and data is very anti-correlated. So, reduction is achieved whenever it is anti-

correlated. And in other words this suggests, when you will use, when you will chose 

sign-magnitude representation. You will chose sign-magnitude representation for 

sending above the bus, when the dynamic range is small and data is ant-correlated. If the 

dynamic range is large and data is correlated, you may not get the benefit of using sign-

magnitude representation.  



(Refer Slide Time: 24:16) 

 

Now, let us focus on architectural optimizations, including number of presentation for 

arithmetic computation. The ordering or operations, resource utilization and we shall 

discuss techniques for minimizing glitching activity.  
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Coming to again two’s complement representation of an accumulator, this is a operation 

you know a large number of sample values, are added or accumulated in many DSP 

applications, say one thousand sample values are accumulated, and that is being used 

after accumulating thousand sample values. So, this is what is being done, by this 



hardware. So, here you can see or applying clock at the rate of 64 megahertz, here the 

data is only 4 bit, and that is being added, that is being kept on adding for thousand 

different values, and after the accumulation has taken place for thousand different values. 

The final result is taken out from the output of the adder, with the help of this latch, 

which is operating at 64 kilohertz. So, you can see, this one thing which is not shown 

here, here you are doing sign-extension, because you have to add or you can see after 

accumulating for thousand times, the size of the, number of bits that been required is 14 

bit, that is the reason why the adder is of 14 bit, but here the data is a 4 bit. So, you have 

to do sign-extension before you perform addition, with the 14 bit number, and as a 

consequence as you do sign-extension, and then you know if the sign changes frequently, 

then lot of switching activity will occur, and that will lead to lot of switching activity 

within this adder, and this happens, because of sign-extension of this number, because 

dynamic range is small only 4 bit, but you are adding with 14 bit number.  
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So, whenever you do this, if you plot the switching activity at different point, you can see 

at the adder output the switching activity is very high, the reason for that as I told this 

adder output, what is happening you are doing sign-extended value of data you are 

adding with the 14 bit number. And as a consequence at this point adder output will have 

lot of intermediate transitions, leading to high switching activity. On the other hand, after 

the addition is performed, you know that in latched data will not have that much 

switching activity, here you know here you can see the current sum will not have that 



much activity, so here there is effect of kind of low pass filtering. So, as you as you keep 

on adding data the switching activity gradually reduce.  

There is a kind of gradual you know smoothness on the card, and as a result you get 

lesser and lesser switching activity, in higher bit numbers, lower bit, I mean higher bit 

numbers not changing at all, but you can see the switching activity is much less in the 

current sum, but in this the in latched data the sign extension part will have point 5 

switching activity, and this the lower part 4 bit will have three bit which is essentially 

magnitude. Again we will have switching activity plus 2.5. So, on this three lines, we 

have seen, here, here and here, how the switching activity changes, and of course the 

switching activity is maximum at this point, how can we reduce, the power dissipation 

due to high switching activity, by changing the architecture of implementing this 

accumulator.  
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What we can do, we can trade silicon area for lower switching activity; that means, we 

can use some additional hardware, to achieve lower switching activity, and for example 

implementation of an accumulator using two’s complement, can be done in a different 

way. We can do accumulator implementation, using sign-magnitude representation, and 

in sign-magnitude representation, you know computation is for positive and negative 

data is kept separate, how it is being done, what you can do, so depending on whether the 

data is positive or negative, you separate out the data, and do the additions of positive 



data in one part and negative data by using another part. Then finally when the 

accumulation has taken place, then you perform subtraction between the two 

accumulated data to get the final result. So, you will get the lower switching activity, at 

the cost of double silicon area.  
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So, as you can see how this is done in this particular implementation. So, in this case the 

sign bit has been used to channelize the data; either to this part or to this part. So, you 

this gated clock is realized, or gated clock is implemented with the help of the sign bit, 

and if the data is positive, then this latch is enabled and accumulation is done by this 

part. Similarly, the data is negative, then this latch is enabled and the accumulation is 

done by this part. So, you can see although your input data is in two’s complement form, 

but you are doing the additions with the help of two separate hardware; one for positive 

numbers another for negative numbers. And as a consequence the switching activity in 

this hardware or in this hardware will be much less, because you are only passing 

positive data. So, this sign extended part will remain same, because all are positive.  

Similarly, if it is negative data sign extended part will be all 1 in this case. And in this 

case sign extended part will be all 0 in this case, and as a consequence the switching 

activity at the output of this particular adder 1 will be much less compared to two’s 

complement form, and after performing this at high speed you know, after you have done 

this additions, you will of course, perform final subtraction at lower rate 64 kilohertz; 



that means, subtract thousand accumulation of thousand data has taken place. You will 

now shift it to in a 1 adder, I mean subtract or it is doing subtraction positive 

accumulated and negative accumulated data, and then you are finally, getting the 

accumulated data at the output 14 bit data. So, here we are not sacrificing throughput, 

only thing that we are doing, we are trading area for lower switching activity, by 

duplicating the hardware.  
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And let us see the transition activity for two different situations; the upper curve is, this 

particularly is dotted lines, there that correspond to two’s complement implantation. So, 

here, that the sum output, you can see there is lot of switching activity. On the other hand 

these thick lines correspond to this sign-magnitude implementation, you can see either 

for sum a or sum b; sum a or sum b means, you can see sum a or sum b means, here you 

are doing sum a and you are doing sum b. So, sum a and sum b the switching activity is 

much less, and of course whenever you are doing that sign-magnitude, that sum a plus 

sum b in sign-magnitude form, when you are doing addition then of course, you have 

little more switching activity, but you can see that switching activity in this part, here 

you are doing at a lower frequency 64 kilohertz, as a consequence, since it is multiplied 

by factor of f, you know and the switching activity at the output of this adder will not 

increase the switched capacitance much, because you are you will be multiplying by 

factor f. So, here you are doing at the rate of megahertz, and here you will be doing at the 

rate of kilohertz.  
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So, as a consequence the overall reduction in the power dissipation will be much more in 

this implementation, and you can see here, some experiment has been done, for data with 

different correlation factor. In the first case you are feeding constant, constant means you 

are not changing the input at all. So, when you are feeding the constant value, data is 

highly correlated, and whenever data is highly correlated as we know, it will not make 

much change, much difference for sign-magnitude or two’s complement, because the 

switching activity is dependent on the correlation factor. So, when it is highly correlated 

it will not make much difference; however, since the sign-magnitude implementation has 

got larger area capacitance, that will lead to larger power dissipation. So, when you are 

feeding constant value n is equal to seven, then you can see input pattern, your constant 

input pattern you are feeding for 10024 cycles, then the power dissipations in two’s 

complement, implementation is 1.97 mille watt, where as for sign-magnitude 

representation power is 2.25 volt, using the same supply voltage of three volt in both the 

cases.  

However, if you use a ramp, in case of ramp you are essentially, it is also correlated, you 

are increasing and decreasing. So, you are increasing from minus 7, here it is 0, then you 

are making it. So, here not like this, here minus 7 to 0, then plus 7. So, you are 

essentially ramp, so that means plus 7, then in this way you are doing. So, minus 7 to 0 

plus 7 and you are changing in this way, you are using a ramp. Then again you are 

putting as well, minus 7, 0 plus 7, so this is how you are applying your data. So, in this 



particular case, data is also correlated, it is not that it is not correlated, it is also 

correlated. So, when there is correlation as you can see, you do not get much benefit in 

sign-magnitude implementation, because of larger capacitance. So, here also there is no 

reduction in power dissipation, but there is increasing power dissipation in sign-

magnitude realization.  

On the other hand, when you have got random data, data is changing I mean it can have 

any value; any bit has the probability of transition of 0.5. In such a case it is a random 

data, and as a consequence you can see two’s complement representation, realization 

based on two’s complementation gives you 3.42 mille watt compared to 2.5 watt 51 

mille watt, that you can achieve while using realization based on sign-magnitude form. 

So, this gives you reduction in the power dissipation, because of lesser switching 

activity, or lesser switched capacitance. Now here is a extreme case, here you are 

changing between say minus 7 to plus 7. So, you are changing minus 7 to plus 7, not this 

way minus 7, then plus 7, then minus 7, then plus 7 this way you are changing. So, in 

this case data you can say extremely anti-correlated. So, whenever it is highly anti-

correlated, then you know we get good benefit using sign-magnitude representation as it 

is evident from this particular result. So, you find that for two’s complement realization 

based on two’s complement we get 5.28 mille watt compared to 2.46 mille watt, 

whenever you do sign-magnitude based realization.  
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Now, we switch gear we consider another technique; ordering of input signals, you know 

switching activity can be reduced by optimizing the ordering of operation. So, here what 

you are doing, for example multiplying a signal with constant coefficient, this operation 

can be composed into shift-add operations. So, sometimes you can reduce switching 

activity, by changing the ordering of operation. Let us consider a simpler example, where 

you have to perform, consider a multiplication in which it is decomposing to three 

additions. So, what you have done, you have to ultimately add three numbers; one is IN 

another is IN into 2 to the power minus 7, that can be achieved by shifting the data by 7 

times towards right, that is that is effectively diving by 2 to the power 7 and another is IN 

into shifting the data by 8 times towards right, essentially it is division by 2 to the power 

8. So, these three data have to be added. Obviously, the magnitude of this number, which 

has been shifted 7 times towards right, or the number which has been shifted 8 times 

towards right, their magnitude will be much less. 
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So, whenever you have to add these three data, you have got two possible topologies, in 

the first case, you will perform addition of the IN with IN into 2 to the power minus 7, 

and then you add with that partial result, you add with IN into 2 to the power minus 8. 

So, you can do in this way, in this order or you can do the addition, first you add the 

smaller numbers IN into 2 to the power minus 7, plus IN into 2 to the power minus 8, 

and then you add this intermediate result ,with the in the initial value IN. So, we can do it 

in these three ways, and let us see the result.  
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So, in this case we are adding a large number with a small number, and again a large 

number with a small number, as a consequence you know you have to do, here you have 

to do sign-extension, here you have to do sign-extension to do the additions, and as a 

result the switching activity is quite high, as you can see, both at the output of sum one 

and sum two, but you can perform the same thing without losing the, without sacrificing 

correctness of data, you can use the property of associability and commutability, to 

perform the same operation by adding the two smaller number first, then adding it with 

the larger number. And as you do that, as you can see, since you are adding to smaller 

numbers, obviously the switching activity at the output of sum one will be much less. As 

you can see it is much less switching activity, particularly in the higher order bits, there 

will be no change at all, switching activity will be much less. On the other hand, of 

course here we are adding a small number with a large number, in that case switching 

activity will be comparable to the sum two of the previous situation. So, we find that at 

least at the output of one adder you are able to reduce the, switching activity 

significantly, by using this particular topology of implementation.  
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And here you know same thing, shown in a different way, transition probability and how 

the bit numbers are how the changing from different bit numbers. Here it is IN 7, IN 8, 

and you are doing addition of these two numbers, and you can see how the adder output 

reduces the switching activity that you have already seen, and whenever you perform 

addition of these two numbers, obviously the initial implementation, when you do 

addition, we using these two numbers switching activity was larger, because you are 

adding with a small number with a large number. So, sign bit correlation is one for 

different numbers, that correlation is shown for different values, obviously for smaller 

numbers there is larger correlation among the higher order bits, but whenever you are 

using, you know that smaller number and a larger number that correlation is different as 

you can see. So, transition probability for three different signals, I have shown here and 

based on that we got this result, this transition probability of this sum 1, sum two and for 

the output of these adders.  
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Now, we shall consider another interesting situation, this is regarding optimizing the 

source utilization. You know there are two choices time multiplexed architectures, versus 

fully parallel architecture. So, you can have time multiplexed architecture, or you can 

have fully parallel architecture. This I can explain with an example of our 

microprocessors.  
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I do not know whether you have studied, that 8 bit puller microprocessor that is your 

8085 by Intel. In this processor you may remember that, it had a 8 to 15 was coming out, 



this is the higher order at this at this bus, but the data bus and lower order at this bus, so 

AD0 to seven; that means, what does it mean. It means that same bus you are using for 

sending data as well as address, so that was being done in your 8085. So, we used to call 

it bus multiplexed. So, you are multiplexing the bus, so initially you are sending the data, 

which is being latched in the memory, normally you have got a memory here, main 

memory, so this lower order at. So, ALE signal was generated by the microprocessor that 

was latching the address fast in the main memory. Then the data you are reading using 

the same lines; that means, the lower order at this lines were sent using these lines first, 

then data were read or sent, using the same lines in the in subsequent cycles. So, a bus 

was time multiplexed.  

Obviously, this had large number of pins, so number of pins was reduced by eight, and as 

a consequence you are able to realize the 8 bit microprocessor by using a 40-pin chip, 

and as you know the cost of a chip is dependent on the number of pins. So, at that point 

of time, when 8 bit micro, that 8085 was implemented, it was wiser to implement using 

this time multiplexed bus, but you know it has one drawback. Whenever you do that the 

switching activity is very large, on these lines, first you are sending address, then you are 

sending data, lot of switching activity will take place, and that will lead to large power 

dissipation. So, this time multiplex implementation mainly may have good resource 

utilization. You are using the same bus to communicate two different data in two 

different time instants or different cycles. Obviously, resource utilization is more, but the 

switching activity is much higher. The degree of resource sharing should be optimized, 

because resource sharing can destroy signal correlations and increase switching activity. 

For example, time sharing busses out of, I have already considered.  
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Let us consider this example; here you are taking output from two counters. These two 

counters may be, you know their counter counters may not be correlated; one is counting 

something, other is counting something, that count value may be in the module of the 

counter may be different, or the rate at which counting is take place can be different. 

Now you can use either shared bus, as it is shown here. In this case instead of using two 

busses, you are using a single bus; obviously, the capacitance will be less in this 

particular case, c b s that is your, that is the bus over which you are doing, and first you 

are sending this, then you are sending this or you can have two separate busses. So, the 

number of bus transition per cycle is eight, the reason for that is you have got 8 bit data.  

And since it is coming out from a counter, the number of bus transitions plus average 

value of the number of this transitions plus per cycling will be four, as you know count 

value will change from all zero to all one, and the average value will be four. Now, with 

this situation, with this background, let us see how the number of bus transitions per 

cycle changes, in these two different situations. So, whenever we use parallel busses then 

you can see, the number of bus transition per cycle remains fixed four, it does not 

change, because here you are taking from one counter, and here you are taking from 

another counter, and obviously the number of bus transition per cycles remains constant. 

I mean average number of bus transition per cycle remains constant that is four. 

However, whenever you do multiplexing then you can see, the number of transitions is 

little random in nature, and it can attend very high peak value, with minimum value of 



four. So, you can see the switching activity on the shared bus or common bus is very 

large, and as a consequence in this particular case, we will have large switching activity.  

So, you have to decide which particular system will use. For example, I was giving the 

example of this Intel microprocessor. So, in the earlier processors like 8085 and 8088 the 

bus was multiplexed, but subsequently as the frequency was increased. You know both 

8085 and 8088 were operating in the range of few megahertz, as the frequency increased 

in subsequent processor, starting from 8086 to 80286, 80386, 80486 or in Pentium in 

subsequent processors no bus multiplexing was done, separate busses were provided, 

essentially to reduce power dissipation, switching activity, switch high switching 

activity, and also you know that increase the throughput, because you are sending over 

different busses. So, this particular technique, I mean this shows that why the bus were 

not multiplexed in subsequent processors.  
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Then, another technique that is your glitching power dissipation. Glitching power 

dissipation you have already discussed, that occurs because of delay of the gates, and I 

have already explained this particular, you know that the occurrence of this glitch, 

because of the delay of this gate that take place, and this glitch how can you reduce the 

glitching power dissipation.  
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Glitching power dissipation can be reduced, by using balanced implementation instead of 

cascaded implementation. So, if you use cascaded balance implementation in this way, 

you know the delay here and delay here is more or less same, as a consequence at the 

output of this gate the switching activity will be much less. So, in this particular case 

there will be switching activity here and here O2 and O3, which will not be present here. 

So, extra transitions can be minimized. In other words the glitching power dissipation 

can be reduced by balancing all signal paths, and reducing logic depth, and also this 

reduces the logic depth. Reducing logic depth also reduces the delay of the critic that we 

know, that delay of that particular network. So, whenever you are realizing multilevel 

implementation of bullion functions, it is advisable to use balance circuit, and as much 

reduction in logic depth as possible.  
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Now, coming to the last topic, you know I have already discussed about the use of 

different logic styles; static c MOS circuit, dynamic c MOS logic style and pass-

transistor logic. Nowadays you know most of the VLSI implementations are done by 

using static c MOS. Primarily because CAD tools are available, for matured CAD tools 

are available for based on static c MOS, unfortunately matured CAD tools are not 

available for logic realization, using dynamic c MOS or pass-transistor logic. So, one 

experimentation was done, by developing suitable CAD tool, by realizing dynamic c 

MOS and pass-transistor logic. 
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 I shall show you, I have already discussed the advantages and disadvantages of static 

CMOS dynamic CMOS. So, I am not going into the details at this moment.  
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So, let us come to the final result, where we have implemented the same circuit same 

benchmark circuits, c 4 36 I mean these are discussed benchmark circuits, with you can 

see the number of transistors required in different cases, and you have implemented by 

using static c MOS dynamic c MOS and PTL pass-transistor logic. So, the tools CAD 

tools were developed at that automated implementation were done, to realize using static 

c MOS or dynamic c MOS or pass-transistor logic, and we find that the reduction in the 

area delaying power for dynamic c MOS, and here is the reduction in area delay and 

power in pass-transistor logic. So, you find that if you realize the same circuit, using 

dynamic c MOS there can be 16 percent reduction in area, 37 percent reduction in delay, 

and 25 reductions in power dissipation. So, reduction in energy which is power delay 

product is quite significant, may be more than 50 percent. Similarly, whenever you 

realize using pass-transistor logic, which I have already discussed in detail, you can see 

on the average 33 percent reduction in area take place, because pass-transistor logic 

realization requires a lesser number of transistors, as you can see the number of 

transistors required has been shown here, which is representative of the area and then the 

reduction in delay is 47 percent, using pass transistor logic and reduction in power 

dissipation is 17 percent. 
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So, you find there is significant reduction in area delay and power. So, with this we have 

come to the end of today’s lecture. And here is a reference the various techniques that 

you have discussed today, has been taken from a book by Anantha P. Chandrakasan and 

Robert W. Brodersen, the title of the book is low power digital c MOS design, published 

by Kluwer Academic Publishers; it was published some time in 1995. So, with this we 

have come to the end of on the various lectures on minimizing switched capacitance. In 

the next lecture we shall start our discussion on minimizing leakage power dissipation. 

Thank you  

 


