
Low Power VLSI Circuits and Systems
Prof. Ajit Pal

Department of Computer Science and Engineering
Indian Institute Of Technology, Kharagpur

Lecture No. # 27

Minimizing Switched Capacitance – I

Hello and welcome to today’s lecture on minimizing switched capacitance, in the last

four lectures we have discussed various techniques of supply voltage scaling for

minimizing power dissipation. We have discussed static voltage scaling multilevel

voltage scaling and also you have discuss dynamic frequency and voltage scaling..

(Refer Slide Time: 00:55)

Now, we shall switch to a new topic that is minimizing switched capacitance and as you

know based on over study of sources of power dissipation we identified four degree’s of

freedom that is supply voltage which been capacitance switching activity and threshold

voltage which can be used to reduce power dissipation in c mos circuits and based on

based on the various techniques that we shall be discussing. They can be categorized into

three types as I mention.

First one was supply voltage scaling second one is minimizing switched capacitance

which I shall discuss which I mean, I shall start about discussing on this topic today and

after that we shall discuss minimizing leakage power we have already seen.

(Refer Slide Time: 01:43)

 The switching power dissipation expression that is alpha zero c l v d d square f plus

summation of alpha i c i v i v d d f this is the switching power dissipation that take place

in c mos circuits and essential this power dissipation occurs because of charging and

discharging of capacitances.

Now, the switching power dissipation can be minimized by minimizing capacitor

capacitance and or switching activity of course, you can minimize by using supply

voltage which have already discussed what apart from minimizing power dissipation by

scaling down the supply voltage another technique is reduce the power dissipation by

reducing the by switched capacitance by switched capacitance i mean which is which is a

product of switching activity and capacitance.

So, essentially alpha v d d sorry alpha c l; that means, alpha c l the presents the switched

capacitance either we shall minimize switching activity alpha or c or together.

(Refer Slide Time: 03:03)

So, I mean we shall discuss various techniques of minimizing switched capacitance you

can see the here is a big list first one is hardware software tradeoff then bus encoding use

of number systems and there are a various architecture level optimizations techniques

then glitching power minimization techniques clock gating state encoding logic styles.

(Refer Slide Time: 03:28)

So, today we shall start about discussion on hardware software tradeoff.

What do you really mean by hardware software tradeoff whenever we start designing a

system first we identify which part to be implemented by hardware and then that

hardware part of the design will follow the i mean flow of hardware design will take

place; that means, the hardware design will flow be used to realize the hardware.

Similarly, we identify which functions we can realize by software and then there is a

traditional software design flow the software design will take place using that flow and

then of course, you have to do what is known as system integration; that means, you

have to integrate hardware and.

Now, a very important step is identifying which part to be implemented by software

which part to be implemented by software there is a tradeoff. So, the tradeoff is based on

cost performance power dissipation and, so on.

So, in let me lasted with the help of an example and example is coming because same

functionality can be either realized by hardware or by software or by combination of

both; that means, you know you will find that a particular piece of function weather it is

analog to digital conversion or compression or decompression or inscription or

description many such functions you will encounter in imbedded systems or various

other applications.

These functions can be implemented either by hardware fully by hardware or by software

or a judicious combination of hardware and software question is how to implement them

efficiently and; obviously, whenever you implement it by hardware it will be faster and

unfortunately it will be costlier and more importantly it will consume more power.

On the other hand we know that whenever we go for software based approach. It is

cheaper to implement because you do not require any additional hardware; however, a

software based approach will be slower in in performance, but most important is it will

consume much less power.

(Refer Slide Time: 05:28)

 Let me lasted with the help of a very simple example suppose you have to implement an

eight bit analog to digital converter in the context of a microcontroller based application.

Where may be you have to sense temperature ambient temperature or temperature of

your water bottle whatever it may be. So, you have to convert an analog voltage to a

digital one this is a very common requirement in almost I mean many imbedded

applications how you implement the analog to digital convertor.

(Refer Slide Time: 06:46)

Your first approach is to implement it with the help of a your hardware; that means, what

you can do you can use one a d c chip analog to digital converter then it can be interfaced

to a micro controller. So, here is your micro controller and of course, microcontroller

interfacing can be done through I the data bus this is your data bus. So, say zero to seven

whatever it is a eight bit eight bit a d converter.

Then there will be two additional lines for hand shaking because the microcontroller will

initiate send signal to start conversion and also there will be another line which is end of

conversions these are available in the analog to digital converters which these signal will

go to port lines of the microcontroller and then will interface this a d c and; obviously,

there will be analog input here the analog to digital conversion can be done.

So, this is the first approach. So, in this particular approach we find that the a d c

function is implemented by hardware and; obviously, you will require very few lines of

software; that means, start conversion signal for sending the start conversion signal one

few lines of code then another few lines of code for monitoring to see when the end of

conversion signal is coming then another one or two line to read the date from the data

bus.

So, the software part is very simple here, but you are using a costly hardware because

this this a d c is usually costly and of course, it is fast and it consumes more power

another implementation technique is you can realize a analog to digital converter

function with the help of a digital analog converter you can interface one digital to

analog converter then of course, you will require you will require some additional

hardware that is your comparator.

So, this analog to digital analog convertor will receive input from the microcontroller

and the output of the d a c which is an analog signal will be applied to one input of the

comparator and another to another input you will be apply the analog signal analog input

and this will going to one port line of the microcontroller and of course, usually a pull-up

resister is needed for interfacing into microcontroller because this is this comparator can

be implemented by using say l m three nine three chip.

So, this is how you can interface digital to analog converter then you will be have

applying the output of the d a c to a comparator and comparator output is fade to

microcontroller.

Now, question arises how do you really implement the analog to digital converter

operation the analog to digital conversion function that is your successive approximation

algorithm can be realized in software you can realize right a program of course, the

program will be little longer and by that you can implement that successive

approximation algorithm and successive algorithm will perform analog to digital

conversion by with the help of this digital to analog convertor and comparator.

So, in this particular case you see the digital to analog convertor is a much simplified i

mean much simpler then analog to digital analog to digital convertor for example, if the

cost of the a d c is rupees five hundred the cost of a d d d a c is rupees 50. So, order of

magnitude differences in cost not only order of magnitude difference in cost order of

magnitude difference in complexity. So, the power of consumption d a c is much less.

However here it is it is the operation will be slow. So, although it is cheaper to

implement for example, total cost of implementation will not exceed may be two less

than it will be less than two hundred rupees on the other hand the cost of a d c a d c itself

here will be rupees five hundred. So, it will be much cheaper to implement; however, it

will be and power consumption will be less, so less power consumption.

So, we find that with the help of this simple example we have seen hardware software

tradeoff the analog to digital converter conversion operation can be either realized in

hardware or it can be realize in software and depending on your requirement. If you

require very fast conversion; obviously, the you have to go for this this particular choice;

that means, you have to use this first technique where you will be used an analog to

digital convert a chip.

However in numerous applications the conversion need not be very fast for example,

when you are monitoring the temperature of a water bath or monitoring the temperature

of geyser or monitoring the temperature of a air condition room in such cases the

temperature does not change very quickly and; obviously, you have the option of using

slow analog to digital conversion and in such a case you can use this second option and

whenever you use this second option you have the benefit of a cheap implementation and

consume the power consumption is less.

(Refer Slide Time: 13:04)

So, this is very simple example by which i have illustrated the illustrated the software

hardware tradeoff.

(Refer Slide Time: 13:09)

 Now, let me go to a more complex application more complex example, but very

important example here we shall consider two different c p u architecture one of them is

superscalar architecture all of you may not be familiar. So, i shall briefly explain what do

you really mean by superscalar architecture all the Intel processors Pentium starting from

three eight six four eight six to Pentium all of them are superscalar processor what do

you really mean by superscalar processors.

(Refer Slide Time: 13:59)

Superscalar as you know the performance can be improved performance of the processor

can be improve by incorporating parallel. So, in the say if you go back to the days of

eight zero eight five eight zero eight six inside the c p u there was a single functional

element; that means, there was only one a l u arithmetic and logic unit, but now i mean

with the advancement of technology it is possible to put more functionality in a single c

p u. So, what was done more functional more than one functional elements were

provided inside a c p u.

So, normally say this is a c p u inside the c p u you can have several functional unit one

can perform floating point operation one can perform fixed point operation one can

perform load and branch operation like that. So, you can have several functional unit

within a single processor essentially to increase the through-put of the processor that is

the basic idea behind superscalar architecture.

So, a superscalar architecture implements a form of parallelism called instruction level

parallelism. So, here what you are doing you are having a number of functional unit say

in this case I have shown four functional units what is being done four different

operations can be executed in parallel; that means, you will be identifying which

instructions can be executed in parallel. So, it exploits instruction level parallelism and

by that all the four functional units can be kept busy by issuing i mean up-codes for these

four functional unit how it can be done I shall explain.

Essentially within a single processor you are having multiple functional units.

(Refer Slide Time: 16:03)

 And where parallelism is exploited using the instruction level parallelism and

superscalar-superscalar processor executes more than one instruction during a single

clock cycle simultaneously dispatching multiple instruction to more than one functional

units on the processors.

As I have shown there are multiple functional units and in a superscalar c p u the

dispatcher reads instruction from the memory and decides which ones can be run

parallel. So, there is a special case of hardware which reads the instructions from the

memory and then identifies which operations or instructions can be executed in parallel

and this is all done by hardware.

(Refer Slide Time: 16:45)

So, this is the schismatic background how the Intel’s series of processor implement

superscalar operation you can see these are the x eighty-six instructions which are

complex in nature as you know those Intel user processors are based on cisp cisp stand

for complex instruction said compute processor or computer. So, these complex

instructions are received by superscalar decode unit. So, superscalar decode unit will do

the decoding and decomposes a single complex instructions into multiple simple risk like

operation.

So, that is been done by the decoding and translation unit. So, those complex instructions

are translated into several micro-operations which are typically simple operations risk

operation which are perform by processors reduce instruction in computer and then they

are send to a another piece of hardware known as dispatch unit. So, dispatch unit

identifies which operations or micro-operations can be executed can be performed in

parallel and they are send to these multiple functional units and after the operations are

performed by the multiple functional units they are send another piece of hardware

known as in-order retire unit.

So, what is happening here you are fetching instructions sequentially one after the other

then you are doing decoding and sending it to the dispatch unit, but depending on the

parallelism possible here there they may be executed with the help of functional units out

of order; that means, in-order fetching i mean those instructions which have been fetched

in-order may be executed out of order in this part of hardware. So, you required a

another hardware which will ultimately re-order i mean those instructions to get in-order

retire unit.

So, you see you require power hungry de-coder unit translation unit dispatch unit and

then in-order retire unit. So, these conventional superscalar out of order c p u use

hardware to create and dispatch micro-operations that can be executed in parallel and as

the dispatch unit reorders the micro-operations to keep the functional units busy a

separate hardware known as in-order retire unit as i have shown here is necessary to

effectively reconstruct the order of the original x eighty-six instructions and ensure that

they take effect in the proper order.

That means in this case we cannot be really disturbed the order. So, as the x eighty-six

instruction set is quite complex as i have told the decoding and dispatch hardware

requires large quantity quantities of power hungry transistors; that means, the functional

units; obviously, will occupy some area, but this part of the hardware which also which

will also require a very large portion of the processor; that means, a large part of the

silicon real state will be occupied by these power hungry component as a consequence

we have seen the Pentium cheap has reach the power dissipation of the hundred watt

which we have already.

(Refer Slide Time: 20:34)

Now, what is the other alternative the other alternative is known as v l i w v l i w stands

for very large instruction ward. So, in this very large instruction ward approach what is

being done by hardware in superscalar architecture is perform by software. So, in this

particular case what is being done the instructions are fetched form the memory and then

there is a kind of complier that complier will do the necessary decoding and then after

decoding it will decompose complex instructions into micro-operations then it will put

several micro-operations into a single instruction like this.

(Refer Slide Time: 21:21)

Say a single instruction may have say four or five fields and in each field will correspond

to one simple micro-operation say is one operation this is another operation this is

another operation this is another operation. So, this is a single instruction single

instruction of a v l i w which stand for very large instruction very large instruction.

So, this why it is very large because you can see this instruction length can be much

larger compare-compare to a superscalar architecture a an instruction of a superscalar

architecture can be \ thirty-two bit on the other hand this instruction the width of the

instruction can be one twenty-eight bit that is why it is called very large instruction ward

a single instruction ward because it is it comprises four different operations and four

different operations are here and that is the reason why the width of these instructions

will be longer than the than that of superscalar architecture and what is the benefit that

we are getting here.

These after that you know after these superscalar sorry v l i w complier has performed

conversion of the code into a v l i like instructions then they can be stored in the memory

and executed in-order.

(Refer Slide Time: 23:13)

So, in this case a complier generates long instructions having multiple operations meant

for different functional units.

So, you see each of these operations each of these instructions will be fetched one after

the other and then they will be executed serially and you can see the operations

corresponding to this add is going to this integer unit this floating point add operation up

code is going to the floating point unit load operation code is going to the load store unit

and the b r c c this code branch-branch conditional code is going to do going to the

branch unit.

So, in this particular case the c p u has got four functional units integer unit floating point

unit load store unit and branch unit and which are fade parallel by the by the by the codes

available in a single instructions. So, here it here is single one twenty-eight bit v l i w

instruction is shown and there these are this is fade to those operation. So, in this case

what will happen the implementation will be far simpler then superscalar architecture?

(Refer Slide Time: 24:32)

One real i mean real life example is a Crusoe processor there is a there is a manufacturer

transmeta. So, transmeta has developed a processor known as Crusoe. So, this the Crusoe

processor is a very simple high performance v l i w processor with two integer units one

floating point unit one memory unit and one branch unit. So, you can see two plus three

plus one load to four five unit; that means, a Crusoe processor has got five functional

units inside the c p u inside the single c p u.

But the way it a execute instructions is completely different form that of superscalar

architecture how it is done you see the long instruction word they call it in the transmit’s

Jorgen it is called molecule. So, the long instruction ward called molecule can be sixty-

four or one twenty-eight bit. I have already shown the example of one twenty-eight bit

long instruction and those are and those four a molecule can contain up to four risk like

instructions called atoms.

So, in the Jorgen of transmitter you know each risk like a instructions is called atoms and

then four atoms form a molecule and these all these atoms get executed in parallel as you

have seen because each of them is a fade to a fade to different functional units. So, they

can be executed in parallel and the molecules are executed in-order; that means, the these

v l i w instructions are stored in the memory and they are fetched one after the other

executed in-order. So, there is no you know that to convert out of order to in-order with

the help of the retire unit in this particular case.

So, this you will get details of this from transmitter sites and the particular the part of this

what I am discussing today is based on a based on a particular paper the technology

behind Crusoe processors and this you can get from traumata’s side.

(Refer Slide Time: 26:59)

And now let us see what is the impact of these v l i w implementation. So, here we have

made comparison of several processors some of them are Pentium which are in black

color this mobile Pentium two mobile Pentium two mobile Pentium three these are all

Pentium processors and you can see the process technology that have been that have

been used are given here point two five micron for mobile Pentium two mobile Pentium

three point two five micron and mobile Pentium three point one eight micron and then

the on-chip cache memory they have got is thirty-two kilobyte and the on chip ready to

cache is to have two 50-six kilobyte and die size is the one thirty square millimeter the

first one eighty square millimeter for the second one and one zero six square millimeter

for the third one.

On the other hand transmeta has developed two different types of codes initially to us t m

transmeta three one two zero implemented by using point two micron technology and

here you can see they have used more on-chip l two cache, because you know the power

hungry component which are present in those superscalar architecture is not present in

transmitter processors as I consequence they are they can afford to provide more cache

memory. So, this is the thirty-six to thirty-six kilobyte of cache memory is available in t

m three one two zero of course, it has no l two un-chip l two cache memory.

But the second generation processor t m five four zero-zero implemented by using point

one eight micron technology has got one twenty-eight kilobyte on-chip l one cache and

two 50-six kilobyte on-chip l two cache and in spite of using larger cache memory in

transmitter processor you can see the die size is much smaller. So, the first generation

processor it is seven-seven square millimeter on the other hand in the way for the second

generation processor transmitter processor the die size is only seventy-three square

millimeter.

So, we find that it is evident from the table that Crusoe processors using the same

technology point one eight point one eight micron the comparable performance level and

using comparable performance level requires about 50 percent chip area. So, chip area is

much smaller; that means, to that same comparable performance with the same

comparable performance the chip area requirement is 50 percent.

(Refer Slide Time: 29:53)

Now, another very interesting demonstration is that you know the test of the fooding is in

eating you have to run some application to demonstrate the efficacy of the technique. So,

here you know a Pentium three a processor playing a d v d that digital digital video it is

executing and the temperature is raising to one zero five degree five point five degree

centigrade. So, within the course here the temperature profile within the processor is

shown you can see in the central part the temperature is raising to one zero five point five

degree centigrade and this kind of heat this kind of temperature may lead to you know

may lead to the point of failure.

That means the Pentium processor may fail whenever the temperature is rising to this

level now same applications whenever it is run on Crusoe processor it is very cool. So,

you can see the transmit a processor the temperature is raising only to forty-eight degree

centigrade. So, you do not really require any active cooling. So, in the in the Pentium

processors you require active cooling you require () () a very big head sink a fan on the

top of the head sink like that on the other hand in case of your transmitter processor no

active cooling is required. So, normal ambient temperature is sufficient to cool it down

because the temperature is not much.

So, this demonstrates you know the efficacy is approach proposed by transmitters

essentially it is a it is a tradeoff between hardware and software the hardware which is

implemented in superscalar architecture to perform instruction decoding instruction you

know dispatching then reordering are being perform by piece of software in transmitter

processor by using v l i w architecture.

(Refer Slide Time: 31:52)

Now, the most important component in this transmitter processor is a piece of software

known as code morphing software what it really it does the code morphing software

mediates between x eighty–six software and v l i w engine. So, essentially what it is

doing is it is doing a kind of virtualization of the x eighty-six processor.

So, to the it is nothing, but a x eighty-six processor the users have written their program

x eighty-six code, but the piece of there is a piece of software known as code morphing

software as it is shown it is insulating the v l i w engine from the outside ward. So, here

you can see this you know the operating system bios and all the applications that you

encounter in in any in your traditional Pentium based system those are all written in x

eighty-six; that means, the Intel series of for Intel series of processor.

So, you can have you know traditional operating system and also bios that is required

there and various applications that you use word processing and various other things and

then these soft these those codes are translated to v l i w code with the help of this code

morphing software. So, code morphing software is essentially doing it is fundamentally a

dynamic translation system a program that compiles instructions for instructions set

architecture for into instructions for another instructions set architecture.

(Refer Slide Time: 33:30)

So, what it is doing the code morphing software is translating code sub one instructions

sets that is your x eighty-six to another instructions set architecture that is your

transmitter’s v l i w instruction set architecture. So, these called code morphing software

is a only program that is written directly for the v l i w processor and as i mention code

morphing software insulates x eighty-six programs from the hardware engine’s native

instruction set.

Now, you may be asking if v l i w is. So, advantageous why it has not been used earlier

the concept of v l i w very large instruction ward architecture is existing for a long time,

but it was not popular the reason behind that is when the task of writing code for v l i w

processor is given to a user it becomes very a difficult task; that means, user cannot

handle the complexity of writing codes for v l i w architecture processors.

But in this particular case what is happening that problem is overcome by this by this

code morphing software because the programmer or user is not is not you know is not to

bothered to write program in for the v l i w processor there writing their program in their

traditional Intel processors and the code morphing software is doing the necessary job of

translation and. So, that is that is a reason why earlier v l i w processors were not. So,

popular.

Now, the native instruction can be changed arbitrary without affecting the x eighty-six

software now here the question is suppose just like your Intel series of processors it has

gone from three eighty-six to four eighty-six to Pentium and. So, on inductions set has

been new instructions have been added it has been more and more complex what about

this transmitters as Crusoe processor.

It can be also changed you can add more some important instructions in v l i w

processors, but whenever you do such changes what modification in your system is

required. So, whenever you do that only thing that has to be done is to change the code

morphing software nothing else is required because in this particular system you can see

the code morphing software is interfacing with the native v l i w engine and if this engine

is changed all the change that is required is in this code morphing software and the outer

layer software’s which are written in x eighty-six need not be changed. So, the user is not

it is transparent to the user you can say because the code morphing is provided by

transmeta.

(Refer Slide Time: 37:02)

Now, you may ask you may be curious to know how exactly this translation occurs. So,

to illustrate that i am illustrating that with the help of the very simple example this is a

piece is x eighty-six code here you have got four instructions first one is load and data

from stack add to e a x. So, you can see it is performing load operation and addition

operation with the help of a single complex instruction then it is also the second

instruction is also doing the same thing.

The third instruction is load from memory and fourth instruction is subtract from

register. So, you can see these four instructions are consist of a code of x a piece of x

eighty-six code now the translation of this code into v l i w code is performed in the three

phases in the first pass the that mean the complier that dynamic translation unit operates

in three phases or three passes you can.

So, the what are the three passes in the first pass the translator system decodes the x

eighty-six instructions and translation them into a simple sequence of atoms in case of

superscalar architecture this is done by that decode and translate unit it is done by

hardware. So, here you can see it is done by the by the software. So, these four

instructions are now decomposed now converted into simpler sequence of operations and

they called it atoms.

So, you can see load from stack one instruction add another instruction load another

instruction add another instruction load another instruction subtract another instruction

these are the. So, this is done in the first pass. So, after this first pass is over in the

second pass the translator performs typical complier optimizations such as common sub

expression elimination dead–code elimination and so on so.

(Refer Slide Time: 39:03)

Whenever you are writing a optimizing compiler you have to do different types of

optimizations and the optimizations like dead-code elimination some codes are generated

by the complier which are never executed. So, those codes can be removed and common

sub expression eliminations same computation you have done maybe n times or forth

time only one computation is sufficient those since can be removed with the help of a

optimizing compiler and i have given two such examples there are several such

optimization which are perform by optimizing compiler. So, in the second pass those

optimization are done in this particular case essentially you have seen one instruction in

the in the previous case you have seen one two three four five six codes six instructions

were there which have been converted into i mean one two three four five one has been

removed.

Because you know we have seen in the previous case you were loading to a temporary

register thirty and you are loading the same data to another register thirty–one. So, which

can be eliminated because you can reuse the value twice? So, you can reuse you are the

loading into this temporary register then you are reusing it twice and. So, one instruction

can be removed. So, removed the dead–code which is not required and then load and sub

subtracts. So, this is how you have performed some kind of optimizations.

Then you will do a third pass there is a final pass the schedule are reorders the atoms and

groups them into individual molecules which is somewhat similar to the functions of

dispatch hardware we have seen in a superscalar architecture after the complex codes

have been converted into micro-operations they are send to multiple functional unit with

the help of the dispatcher. So, here again it is done by software.

So, in a final pass the scheduler reorders the terms and groups them into individual

molecules and which is somewhat similar to the function of dispatch hardware as i have

told. So, you can see these five operations are now are now packed in a in few fewer

number of v l i w instructions we can see we have it has been possible to pack two

operations of course, you have to see which operations can be execute in parallel it may

not be possible to execute all of them in parallel. So, whenever these whenever you put

them in a single v l i w code then you have to see which operations can be executed in

parallel.

For example this load operation and this particular instruction these two can be executed

in parallel, but not the other because unless load is done you cannot perform addition

operation neither you can perform load operation. So, only these two codes can be

executed with the help of the single v l i w instruction then the remaining three are

perform are put in single v l i w instructions and they can be executed in parallel.

So, now this can be stored in the memory and then they can be fetched one after the

other. So, the first this particular v l i w is instruction will be fetched and all these atoms

will be executed together and then the second instruction will be fetched i mean order it

will be done in same order then all these three atoms will be executed in parallel.

So, this is how the program execution take place in v l i w architecture. So, the program

is executed in-order by the hardware and the molecules explicitly encode the instruction

level parallelism; that means, the; that means, both superscalar architecture and v l i w

architecture are exploiting instruction level parallelism, but there exploiting instruction

level parallelism in two different way one is one is doing hard ware and another is doing

by using software.

(Refer Slide Time: 43:44)

Now, here is a comparison between superscalar and v l i w processors. So, you can see

what happens in case of superscalar architecture instructions are fetched from memory

and decoded them to micro-operations and which are then recorded recorded by out–of-

order re-order it will be reordered by out-of-order dispatch hardware and fed to the

functional units for parallel execution.

And the out-of-order dispatch unit has to translate and schedule instructions every time

these are executed and it must be done very quickly. So, you have seen whenever you are

executing a program say you have to execute it 10 times this decoding dispatching

reordering have to done 10 times every time you execute all these things have to be done

10 times and; obviously, 10 time power dissipation will take place and. So, power

dissipation take place each time the programs is executed

Now, what happens in case of v l i w processor in v l i w processor the code morphing

software c m s translates an entire group of x eighty–six instructions at once and saves

the resulting translation in a translation cache cache memory and in subsequent and use

them in subsequent executions. So, what is happening in here you know in case of v l i w

processor once the translation has been done by the code morphing software you can

store them in cache memory you can executing them many times may be 10 times

hundred times depending on the applications, but each times you do not have to do the

translation you will do the translation only once and execute them as many times as it is

necessary by the application.

And what happens in this case the cost of translation is amortized in code morphing

approach over many executions; that means, the; obviously, the translations operations

done by the code morphing software has some overhead that overhead cost is amortized

over a large number of execution. So, as a consequence what is happening power

dissipation is much less as has been demonstrated by that video execution example?

So, this is the comparison and; obviously, apart from using the basic concept of a v l i w

architecture doing translation by using software some more additional you know you’ll

require additional techniques to improve the efficiency of this particular processor.

(Refer Slide Time: 46:12)

Architecture number one is caching what is caching in real life applications it is very

common to execute a block of code many times over and over after it has been translated

once you do that in real-time real life that executable code you save in a memory.

So, here also you will saving, but where you will be saving in a special type of memory

known as translation code and it operates like a kind of cache memory you may have you

may be familiar with cache memory what is the task of a cache memory you know to

execute a program what is a primary requirement primary requirement is that it must be

present in a main memory.

Now, instead of storing in main memory a part of the program is stored in the cache

memory which part that part which is executed quite often we use a property known as

locality of reference and by using a locality of reference a part of the program which is

executed most of the time is stored in the cache memory and that is that is the concept

used here.

In this case a separate memory space is used to store the translation cache and the code

morphing software; that means, may be you have got say hundred different applications,

but all of them you may not be executing quite often. So, which are executed quite often

those codes you will be storing in the in this the particular cache memory and; obviously,

you will be doing it by using the locality of reference property.

So, it allows reuse reuse the translated code by making the use of locality of reference

property. So, caching translations provide excellent opportunity of reuse in many real-

time real-life applications this is very quite common in real life applications apart from

caching.

(Refer Slide Time: 48:34)

Another technique which is also used in to improve the performances which is known as

filtering what do you really mean by filtering it is common knowledge that a small

percentage of the of the code accounts for ninety-five percent of the execution time.

Suppose you have written a big code and it has been observed that only 10 percent of the

code is used executed ninety-five percent of the time. So, may be a loop that code which

is part of the loop that will be executed many times other part of the code may not be

executed as many times.

So, what can be done you can focus on that part of the code which is executed many time

rather you can do more optimization you can you can devote more time for optimization

on that part decode. So, you can selectively devote shorter or longer time for

optimization to different parts of decode that is filtering.

So, this opens up the possibility of applying different amounts of translation affords that

is you know effort for efforts for optimization to different portions of a program the code

morphing software has built in feature of wide choice of execution modes of x eighty-six

code starting from interpretation has no translation overhead at all, but the execution is

slower.

To highly optimized code; that means, some part of the codes has to be highly optimized

which has large overhead for code generation; that means, that code morphing software

will deford long-time for to optimize it, but that runs fasted once translated because that

will be executed many times. So, a set of sophisticated heuristics helps to choose from

several execution modes based on dynamic feedback information gathered during actual

execution of the code.

So, what is being done you know a particular program you running many time. So,

whenever it is run once the code morphing software gatherers information which part of

the decode is executed quite often which part of the decode is executed less often.

So, based on that you know the translation effort is devote I mean is done differently for

different parts of the decode.

(Refer Slide Time: 51:14)

So, this kind of filtering is done then another important thing is that is been done in

prediction and path selection. So, the code morphing software can gather feedback

information about the x eighty-six program with the help of additional code present in

the translator whose sole purpose is to collect information about block execution

frequencies or branch history.

You know here what is been done a kind of branch prediction is done. So, branch

prediction is done why for example, here there is a branch it may be taken in that case it

will go in this direction and if the condition is not satisfied it will go back to this. So, if

the if the taken probability is more then you will put more effort to optimize this part of

the code.

On the other hand if the untaken probability is more you will put more effort to on to on

this part. So, depending on how often a piece of x eighty-six code is executed or whether

conditional branches instruction is balanced. So, if 50 percent probability then of course,

there is no biased in any particular direction direction. So, a biased in a particular

direction decision can be made about how much effort to put to optimize that code..

So, whether you will put more effort to this code or this code that is decided by the by

this prediction and path selection. So, in a conventional hardware only x eighty-six

implementation it would be extremely difficult to make similar kind of decisions; that

means, whenever a you are in doing it hardware it is not really possible to devote more

time for optimization to a particular part of code less time for optimization another part

of the code this is feasible only because you are doing by software.

(Refer Slide Time: 52:59)

 Here is a more complex example. So, you can see these are all a complex x x 86.

(Refer Slide Time: 53:16)

Instruction which is converted by the code morphing software into only 10 instructions

of-course all the all the you know all if you look at a particular molecule you’ll see that

all the fields are not filled up all the atoms are not present that will happen. So, you

cannot expect to have complete parallelism or hundred percent efficiency, but in spite of

that it will give better result.

So, with this we have come to the end of today’s lecture. So, we have discussed a very

important step known as hardware software tradeoff which can be used to reduce power

dissipation particularly which will minimize the switched capacitance of a circuit thank

you in the next lecture we shall discuss about other techniques.

