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Hello and welcome to today’s lecture on pass-transistor logic circuits; this is the second 

lecture on this topic; the last lecture, we have introduced you, the basic concepts of pass-

transistor logic and discuss the advantages of pass-transistor logic circuits, and also the 

limitations. And we also discussed how the limitations can be overcome with the help of 

some additional hardware. Today, we shall start our discussion from the point, where we 

left in the last lecture.  
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So, here is the agenda of today’s lecture. I shall discuss about a very important concept 

known as Shannon expansion theorem, and we shall see how this expansion theorem can 

be used in realizing the pass-transistor network. And then, I shall introduce to you a 

number of members of the pass-transistor logic family; first one is complementary pass-

transistor logic CPL, Swing restored pass-transistor logic SRPL, Double pass-transistor 

logic DPL. Then LEAP which is single-rail pass-transistor logic; then differential 



cascode voltage switch with pass-transistor logic DCVSPG. And finally, I shall discuss 

about the logic synthesis by using pass transistors. 
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So, let me start with Shannon expansion theorem. What is Shannon expansion theorem? 

A function say, function f is a function of say x 1, x 2, x n.  
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So, it is an n variable function which is a function of n variables; this can be expanded 

around a variable x i. And it can be represented as x i f x i plus x i bar f x i bar. So, this is 

known as Shannon expansion, Shannon expansion theorem. So, this x i dot f x i and x i 



bar dot f x i. What is f x i? f x i and f x i bar these are essentially reduced functions; that 

means, if you expand around x I, you will get f x i which is independent of x I and that 

part of the function for which it is true for x i. Similarly, f x i bar is also independent of x 

i; however, this part of the function is true when x i bar is one. So, this is how it can be 

extended; I believe, I can illustrate with the help of an example say suppose f is equal to 

a plus b c. 

Now, we can expand it around anyone of the three variables; let me explain around a. So, 

this can be represented as a dot one, because you can see a dot one and the f x i is one 

here, plus a bar dot b c. Now this is the reduced function; that means this part of the 

function when a bar is equal to one, only this part is true. Similarly, when a is equal to 

one, only this part is true. And of course, it is 1 plus b c, but you know 1 plus b c 

becomes one. Now this part can again be expanded around b c.  

So, one of the two variables so, this can be represented as a dot one plus a bar; let me 

expand around another variable say b. So, we can represent it as, I mean b dot 0, because 

the reduced function f x b is 0 plus b dash c, a dot b c so, b dot 0 b c it will be equal to 

sorry, it will be one and this will be 0; b dot 0; b dot c and b dash bar 0. It will be b dot c 

and b dash bar 0. Because, you know it is one for when a b is equal to one; this turns out 

to be c and when b for b dash bar, this part is zero. So, this is how it can be expanded. 

. Now after this expansion is done, we can actually map it to pass-transistor logic. So, 

this part is logic independent of how it is being realized. Now this part after the 

expansion is done, this can be use to realize the circuit using pass-transistor logic. For 

example, we start with expansion with a. So, here we apply a this part so, and this is one. 

And then, if we expand around a bar, we have got two components. And this is being 

expanded around b so, it will be equal to b and then this is c and when is expanded 

around b bar, it is zero. So, this is the realization of, this is the realization of the pass-

transistor logic.  

Earlier we obtained the realization of this by using multiplexer; there we have seen it can 

be used to realize this function, can be realized using multiplexer. However, whenever 

we use multiplexer to realize a function, you require more number of transistors. For 

example, this particular realization of this f will require how many, how many 

transistors? There will be four inputs, if we expand around a and b. 



And this is the output f. So, it inside you will require 1 2 3 4 5 6 7 8; 8 transistors will be 

required inside it. And here of course, you have to apply the other the various 

components after expanding around a b, a and b. That means from the truth table, we can 

find out that will hear it will be, you will be applying here g 0, g 1, g 2 and g 3. So, 

instead of requiring eight transistors inside this pass-transistor logic network, you require 

only 1 2 3 4. So, instead of eight transistors, you require four transistors. So, this is how 

you can carry out expansion of a function and then map it to the pass-transistor network; 

pass-transistor network means nMOS transistors. So, this is how it can be done. 
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Now let me illustrate with the help of another example. Suppose f is equal to a bar b plus 

a b bar; typical, I mean this is the exclusive or function exclusive or b. Now this can be 

expanded around a; so, it will be a b bar. It is already in expanded form and a dash b. So, 

what will be the pass-transistor network based on this? It will be here you will require a 

and a bar, a bar and b. So, this is how only by using two transistors, this realizes f; this f 

this particular f which is a exclusive or function, just you require two transistors. On the 

other hand if you perform you know, if you realize by using multiplexer function user 

you will require more number of transistors.  

So, this is the, the advantage of this Shannon expansion theorem; that means using 

Shannon expansion theorem, you can get a pass-transistor network which will require 

minimum number of transistors. Of course, later on we shall see this ordering of variable 



here for example; we have first expanded around a then expanded around b. So, if you 

have got n variables, you can expand around any one of the variable then another one 

from the remaining variables and so on. This ordering has an important role in the 

expansion; particularly, the expanded form will be heavily dependent on the ordering. 

And then it has been found that getting an optimal solution after expansion is a np-

complete problem; that means which particular ordering, you will give you a minimum 

number of transistors; that is an np complete problem. However, there are some heuristic 

based techniques by which the expansion can be done and a good ordering can be made. 

Such that you can get transistor with, you can realize minimum number of transistors. 

So, this is Shannon, Shannon expansion theorem. Later on, we shall be using this in our, 

in our future circuits.  
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Now I shall introduce to you the pass-transistor logic family. Obviously, the pass-

transistor logic family has been, I mean has been provided, has been has been merged 

such that, it overcomes the various limitations of pass-transistor logic circuits. We know 

that there are a number of inherent limitations of pass-transistor logic; these inherent 

limitations are overcome with the help of these logic families and I shall introduce to you 

various members of this family. 

What are the limitations that you have to overcome; first limitation is insertion of buffers 

to avoid long delay of a chain of pass transistors. As you know, as the number of 



transistors increases in series, the delay increases; more or less quadratically at the rate of 

a square. And as a consequence after when the number of pass-transistor stage or number 

pass transistors in series is large say, eight or ten or fifteen then delay can be 

unacceptable. So in such a situation, you can put buffers as we have discussed in the last 

lecture so, all the family members. We will include a buffer at the output and such that, 

the long delay can be avoided. Second limitation was you know that there is some multi-

threshold voltage drop at the output.  
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So, you have to use some swing restoration circuit to overcome multi-threshold voltage 

drop. As we know, whenever the signal passes through a pass single or multiple pass-

transistors. Even if you apply V d d here; you will and the gate voltage is V d d, you will 

get V d d minus V t n.  

And if this is applied to one gate logic say an inverter, then what will happen? It will not 

only get lesser drive, but this voltage may be such that both the transistors are on. So, it 

will lead to what is known as short circuit; Short circuit power dissipation. 

 So, to avoid this short circuit power dissipation and lesser drive, it is necessary to restore 

the output to the V d d level and that is done with the help of swing restoration logic. 

And I have introduced to you the type of circuit you require to restore the voltage level 

with the help of swing restoration logic. Third limitation that we encountered is the 



problem of sneak path. As we know, whenever the output gets a path to one as well as 

zero simultaneously, this leads to what is known as sneak path.  

Actually sneak path can be avoided by proper design of the pass-transistor network. And 

we have already discussed about the pass realization of net pass-transistor network using 

Shannon expansion and whenever you realize the pass-transistor network using Shannon 

expansion theorem, you will find this kind of sneak path cannot exist. So, sneak path is 

can be avoided by using proper design, using particularly using Shannon expansion 

theorem. Later on we shall discuss about another technique use of binary decision 

diagram B d d which can also be use to realize pass-transistor network and that will also 

avoid sneak path. 

Fourth problem as we know that the it requires both x and x bar, I mean both the 

complementary and uncomplimentary inputs are required as input; that is the reason why 

the pass-transistor logic circuits are inherent or inherently dual value; dual-rail in the 

sense that means, you will realize a circuit in such a way. It will produce not only f, but 

also f bar. We will apply input, primary input and it will produce f and f bar. So, this is 

known as dual-rail so, dual-rail is necessary. So, that you can feed both x f and f bar 

which is necessary as we know. For example, even whenever you are realizing this type 

of circuit, you require a and a bar, b and b bar.  

Similarly, the later power of the circuit will require f and f bar; that is the reason why 

you have to realize both and f and f bar. Such that, the pass-transistor network can be 

driven by a, the by these two signals, so, these are the features which will be included as 

part of your pass-transistor logic circuits. 
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So, let me introduce the first family member; that is your complementary pass-transistor 

logic CPL. So, CPL or complementary pass-transistor logic, CPL as the as its name 

suggests complementary, complementary means it has got both the outputs, 

complementary outputs; that means, f and f bar; that means, it is dual-rail.  
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So, what is being done? Two networks are used; one is your one for realizing f; another 

for realizing f bar. So, it will have a one pass-transistor network and you will require two 

pass-transistor networks to realize the complementary function. So, another pass-



transistor networks, another pass-transistor network to realize f and f bar. So, you will 

apply inputs to both, to both of them and from there you will get f and f bar. 

However in addition to this, it will insert buffer in the form of inverters. So, inverting 

buffers are provided at the output. In addition to that two weak p most transistors are 

used; this is connected to V d d. Here also, another weak p most transistor is there; this is 

connected to V d d and instead of grounding them, this is connected to the, to this point. 

As we know, this is the complementary output of this one. So, that is the reason why 

instead of connecting from inverter output, it is it is connected from here. Similarly, this 

is this is connected to this. 

So, this is the generalized structure of a complementary pass-transistor logic circuit 

which is one of the, one of the members of the pass-transistor logic. So, here you realize 

f and here you realize f bar.  

Let us consider the realization of some real functions say suppose you have to realize 

AND and NAND. How do you realize this pass-transistor network? Since A and B, you 

see this is an AND function, AND function; this is an NAND function. So, you can again 

use the Shannon expansion theorem here. So, A B can be represented as A dot B plus A 

bar B; A bar sorry, it will be A bar 0 or if you expand around B, it is not necessary that 

you have to always expand around A. If you expand around B then, it will be B A plus B 

bar 0. Now instead of applying 0 here, what you can do sometimes us instead of applying 

a constant, we apply some variable so, you can put A B here. As you know, when B bar 

is one, B will be 0. So, this will realize the same thing. 

So, based on this you can realize the network of this pass-transistor logic, similarly for 

this complementary function. One particular property of this pass-transistor logic is that 

you can see say suppose you expand around B, so it is B A plus, let us assume B bar B. 

This is how you realize A B.  

Now without doing any expansions A bar B that is NAND function can be obtained 

simply by putting these inputs in the complemented form. That means, that B A bar plus 

B bar B bar will realize this complementary function. Because, you will see that this 

realizes the complementary functions so, we do not have to do expansion only thing that 

you have to do these inputs; those inputs which you apply to the pass-transistor logic, 



they have to be complemented. Then it will realize the complementary functions as we 

shall see in the realizations.  
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Now with this, let me let us realize the NAND and NOR functions for the CPL version 

of NAND and NOR. So, you will require two transistors for realizing the complementary 

and these functions. So, you require, you will require if you expand around B A, and A 

and B there will be the inputs. So, A whenever it is B and B bar B and similarly, here B 

and B bar. So, we have to apply the complement of this. So, it will A bar and here will be 

B bar. And then, this we will go to, as we as we know it will go to an inverter; this will 

go to another inverter.  

And here, you will require two pMOS transistors for swing restoration, another pMOS 

transistor that will be connected, gate will be connected there; this should be connected 

to V d d and this will be connected here. So, this realizes as we know, this is this is the 

output of AND and so, it will be NAND here; A dot B bar. And here, it will require A 

dot B. Here it is NAND so, it will be AND here. So, this is how you can realize and, and 

with the help of this CPL.  

Now what are the advantages and disadvantages of this? We have seen that in this CPL 

logic inverting buffers perform restoration of logics levels at the output. So, we have 

inverting buffers at the output and inverting buffers allowed driving large capacitive 

loads and pMOS latch you see since they are connected back to back. This output is 



connected as to the base to the gate of this transistor; this output is connected to the gate 

of this transistor; they form a kind of latch. So, these two pMOS transistors perform 

swing restoration.  

In this particular case, one aspect you have to remember that the pMOS devices should 

be properly sized. So, that the circuit can function correctly; you see the sizing of the 

pMOS transistor is important, because they will decide how quickly the switching will 

take place and also, what kind of power dissipation that will occur. And of course, in this 

particular in the steady state, it will not affect the output, because since it is acting as a 

kind of latch. The output voltage levels will be always 0 and V d d in both the, for both 

the outputs. So, here it will be V d d and 0 depending on high or low and here also, V d d 

and 0 depending on high or low. 
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However proper sizing of this pass transistors is necessary, to avoid unnecessary power 

dissipation and delay. And using the same concept we can realize different types of gates 

by using this CPL technique, you can see here OR and NOR has been realized and in the 

same way, you can realize the pass-transistor network. And here, we have realized the 

XOR and XNOR again by realizing the p, the pass-transistor network using Shannon 

expansion theorem.  
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So, this is how you can realize different gates with the help of CPL technique. Now 

coming to the second family member, swing restored pass-transistor logic.  
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So, in swing restored pass-transistor logic so, this is SRPL, swing restored pass-transistor 

logic. In swing restored pass-transistor logic, what is done? Again two pass-transistor 

network is used like the previous case. So, you have pass-transistor network pass-

transistor network and you will require two pass-transistor networks. It may be noted that 

the number of transistors required in each network will be same; only difference will be 



the inputs will be different; that means, complementary of the other; that means number 

will remain same. And here these outputs were the buffers are not provided at the output, 

but they are connected in this form, back to back. 

The inverters are connected back to back. So, here you will apply the primary inputs in 

the same manner, in the same way you will apply the primary inputs here and the outputs 

should be taken from these two points. So, it will be f and this will be f bar. It is so in this 

case, we are finding that two inverters are connected back to back. How it really 

performs various functions like you know number one, it is dual- rail, dual-rail as that we 

have seen, because we are realizing f and f bar. 

 Now, how it is performing the role of swing restoration? How the swing restoration is 

done? We can see here, this inverters I can expand one of the two inverters. As we know 

this is the static CMOS inverter. So, you will have a pMOS transistor and nMOS 

transistor and this is actually equivalent to this inverter; it is connected to ground; this is 

connected to V d d. Now let us assume this particular, this particular inverter is this one. 

Now, base is connected here and output is connected here. So, base is connected here 

and output is connected here. Now you see this particular pMOS transistor will act as 

swing restoration of this one. How? Let us assume this is zero so, this zero means, this 

output is supposed to be one. And so, since this is 0; this transistor will be on and this 

will provide, this will restore the logic level to V d d. So, the swing restoration is done by 

the pMOS transistor of this inverter for this particular output. Similarly, the swing 

restoration for this output is done by the pMOS transistor of this particular inverter. So, 

you see that swing restoration is done with the help of the two pMOS transistors of the 

two inverters. We do not require any additional transistors for that. 

Third requirement as we know, we have to insert buffer. Here you know, for this output 

this inverter is acting as a buffer. We can see it is driving so, you can drive large 

capacitive load. Similarly for this output, this is acting as a buffer; this inverter is acting 

as a buffer. So, you find that the two inverters performing dual-rail; the dual-rail is first 

of all, they are doing the swing restoration. They are also doing theirs, they are also 

performing the role of buffer; that means, buffer means whenever you have to drive large 

capacitive load, some buffer is required.  



That will reduce the delay as we know, buffer insertion is necessary to reduce delay. So, 

they will help to reduce the delay as well as they will perform the swing restoration; 

however, you are duplicating the pass-transistor network to get dual-rail output. 

So, here is the, here one NAND and NOR version of the SRPL circuit is shown here; it is 

not different from the other logic family; this nMOS network, that pass network is 

identical expect, I mean only difference is the output path, driver path. So we see, we 

have got inverters connected back to back and we are getting A dot B bar and A B. 

 Now you may be asking is there any basic difference between this and that CPL? In 

what way they differ? In case of CPL, the inverter was provided at the output, but here 

inverter is not provided at the output; that means, the pass-transistor logic was not 

driving the output in case of CPL as you can see.  

So, CPL pass-transistor logic is driving the inverter and inverter output is driving the 

output. But in this particular case, you can see the directly the pass-transistor logic is 

driving. Of course, that inverter is there which is acting as swing restoration logic and it 

will definitely give some drive, because opposite polarity input is available here. 

Now, what is the outcome of this? Outcome is that you can see, this B is as if B is 

transmitted through this network to the output so, isolation is less here. In case of CPL, 

inputs are applied to the gate and you know to the, you know to the input of the pass-

transistor logic. It is usually source or drain, because they are interchangeable and that 

like gate logic, we are taking the output from the output of an inverter, but here you are 

directly taking from output of the pass-transistor network. So, here we can say that less 

isolation; that means, whenever isolation is less, the input signal will noise and 

disturbances of the input will pass to the output; it will not be, it cannot be suppressed by 

the inverter driver. So, isolation is less in this particular case. 

Now and here also, sizing is critical for speed and power dissipation issues; the sizing of 

the transistors of these inverters is critical. You have to huge proper width of these 

transistors such that, the power dissipation is not high and speed of operation is not much 

affected. It will definitely effect to some extent, but you have to size it them properly. 

So, that necessary speed and power dissipation is achieved. 
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Coming to the third family member, which is known as double pass-transistor logic 

DPL; in case of DPL, again you are using dual pass-transistor logic DPL; you are using 

both nMOS and pMOS transistors earlier we have seen.  
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So, far as if pass-transistor is concerned, you were using only nMOS transistors. But in 

case of DPL, you will see both nMOS and pMOS transistors are used and typically the 



nMOS transistors are used to provide a path to the ground. On the other hand as you 

know, pMOS transistors are use to provide a path to V d d. 

The reason for that are nMOS transistors you know is not a, does not pass high level 

signal properly. Similarly, pMOS transistor does not pass low level signal properly. So, 

here the same concept has been used, but the configuration is different from the static 

CMOS. We are using pMOS in the pull-up network and nMOS transistors in the pull-

down network, but not the way it is done in case of static CMOS; it is different. Here 

they are connected like pass transistors as you can see. So, here A B so, A B you know, 

A B can be realized by this network.  

So, let me explain say A dot B; here it can be represented by A dot or B dot. So, this is, 

this is how you can realize the pull-down network; that means, you can see you can 

realize A dot B dot and this is connected to ground.  

That means, when any of them is one; that means, A bar is equal to, A bar is A is equal 

to 0 or B is equal to 0 as you know in case of NAND gate, if any of them is gate is zero, 

output will be connected to, output will be zero. 

And that means, if any of the input is 0 this will be one so, this will be connected to zero. 

So, this is, this will realize the A dot B bar NAND function and what about the pMOS 

network? pMOS network is realized in this way. 

Here B bar, in a similar way you are using B bar and A bar these two are connected; 

however, here you will be putting A and B and this will realize the A bar B function. In a 

similar way you can realize the complementary functions; this is a NAND and NOR 

function. And sorry, this is the NAND function you can realize in this manner and in this 

case, this is connected to V d d and this is connected to… this is your A B and this is A 

bar B bar and this is connected to A B. 

 A is connected to, these are connected to V d d and here you were realizing A dot B. So, 

when both of them are one, then output will be one; both of them are one means B is 

equal to one, B is equal to one and A is equal to one I mean, A is equal to one, B is equal 

to one; A is equal to one, B is equal to one; both of them are one; then output will be one. 

No this is I think, I think this is NAND, this will be AND; this is AND this is NAND 

(()). So, this is how you can realize and and and functions by using DPL. So, the DPL is 



modified version of CPL; in case of CPL we have seen two pass transistors logics are 

used, but here you are replacing this part and this you are replacing the pass-transistor 

logic part by using pMOS transistors. 

And both nMOS and pMOS logic networks are used together. As this provides full swing 

on the output; no extra transistors are required for swing restoration. So you can see, 

since nMOS transistors are used for, for making it zero and similarly, these transistors 

are used to make the output one; you will always get good logic level outputs. So, there 

is no needing swing restoration logic at the output. Here also, you do not require any 

swing restoration logic. 

 And another very important feature is that, it has balanced input capacitance, you see 

number of transistors that is connected here. For example, A here one, here also A is one; 

A bar is one, here A bar is one here; that means, both the inverting and non-inverting part 

will require same number of transistors.  

As a result, the capacitance is balanced for the, for the two different networks and this 

will give you switching characteristic, Ideal switching characteristics of both the outputs. 

So, switching characteristics will be identical, because of the balanced input capacitance 

of this double pass-transistor logic; this is the third member DPL.  
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Now let us consider the fourth member LEAP. So, LEAP actually stands for lean pass-

transistor logic; the reason for that it is called lean. It is thinner, because you will be 

using single-rail logic in contrast to dual-rail logic that is used for other pass-transistor 

members, logic family members. Here you will see that, the any circuit is realized with 

the help of three cells; these are known as y one cell, y two cell, and y three cell.  
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So, there are three cells; LEAP - LEAn Pass-transistor logic. So, leap has come from this 

LEAn, LEAP lean pass-transistor logic, because number of transistors required is smaller 

because, it is not dual-rail. Now three cells are there; one is known as y one; second one 

is known as y two; third is known as y three. Actually if you look closely, you will find 

that, this y one is nothing but a 2 to 1 multiplexer. So, here you apply C, C bar and two 

inputs are available A B. And here of course, you will provide some buffer at the output. 

We shall see what kind of buffer is that. So, this is nothing, but a two to one multiplexer.  

We have got two inputs and C is the control input and you have got a buffer circuit at the 

out inverting buffer at the output. So, this will also do swing restoration as we shall see. 

So, y one is nothing, but a two to one mask multiplexer 

Similarly, this y two is essentially three to one multiplexers. So, it has got two to one and 

another transistor is there, again this is connected to that buffer inverter. So, here you 

have got three inputs A, B and C and D, D bar, E, E bar. So, D and E are control signals 



and these three are inputs and there is buffer at the outputs. So, this is nothing but, three 

to one mask.  

So, in a similar manner y three can be realized which is essentially a fourth to one mask. 

So, you have got A, B, C, D sorry, C and D and here we will apply A, B, C, D, E, E bar, 

F, F bar. These are tied together; then this is connected to E, F, and G here. There will be 

E, F, G and A, B, C, D, E here actually E and E bar here also use E and E bar and F and 

F bar connected here; F bar and buffer is there. So, this is nothing, but a four to one mask 

And then the swing as it is shown here, the same circuit y one, y two, and y three cells - 

two to one, three to one, four to one multiplexers and here is the buffer. Buffer as it is 

shown is nothing but an inverter and a weak pMOS transistor for swing restoration. So, 

this path performs the dual-rail of providing buffer as well as swing restoration logic. So, 

this kind of buffer is provided at the output of each of the cells. Now any circuit can be 

realized in terms of these cells y one, y two, and y three cells and in the number of the 

cells required is only three.  
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So, this is the fourth member of the logic family coming to the last member of the logic 

family which is differential cascade voltage switch with pass gate logic DCVSPG. 

Here two pMOS transistors are connected back to back in the form of a latch; then you 

have got two pass-transistor logic same kind of pass-transistor logic. So, here this one is 



AND at the output you will get AND at the here at the output you will get NAND. So, 

the pass-transistor realization can be done in the same way and only difference is that 

instead of inverter, you have got two pMOS transistors which are connected back to back 

and name is differential cascode voltage switch with pass gate logic. So, and as you can 

see, it is, it has got dual-rail, two outputs, the pMOS latch performs swing restoration.  

So, these two transistors are also doing swing restoration and however, isolation is less 

here, because pass-transistor logic is directly driving the outputs. So, there will be less 

isolation. 
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Let us quickly compare the various logic families. Here as you can see, we have five 

members of the logic family compared with static CMOS. The number of transistors that 

is required is shown here.  

CPL as you know, CMOS require two n transistors, if n is the number of inputs number 

of variables; CPL will require two n plus six, because inverter and the weak pMOS 

transistor three plus three six. SRPL will require two n plus four, because you do not 

require the weak pMOS transistors, but only two inverters are required at the outputs so, 

two n plus four. DPL requires four n; you do not require neither inverter nor swing 

restoration pMOS transistor, but you require two n for each network. So, you require 

four n transistors to require dual-rail circuit.  



LEAP requires n plus three, because the n is the number of inputs plus three which is 

essential that driver and swing restoration logic. And DCVSPG requires two n plus 1 

transistor.  

So, output driving capability as you can see, it is medium to good for CMOS; it is good 

for CPL, because you have got explicit inverters at the output. So, you get good output 

driving capability. But it is poor for SRPL as we have seen the, in case of SRPL, the pass 

transistors are directly connected to the output. 

Similarly, for DPL it is good, for lean LEAP it is also good you have got pMOS. The 

inverters at the output for DCVSPG, it is again medium. The reason for that is, here also 

pass transistors are directly connected to the output. So, for as I/O coupling is concerned, 

there is no I/ O coupling in SRPL, I mean I/O decoupling; there is I/O decoupling; that 

means, inputs are inputs are not, pass transistors are not directly connected to the output.  

This is directly connected to the output for SRPL, but not in other cases. I think in case 

of DCVSPG also it is connected to the, directly to the output. Here also, it is already 

connected. So, but you have got pMOS transistors connected that is why in this case also 

I/O decoupling will not be good so, here will be no. Then swing restoration logic, you do 

not require in case of static CMOS and you also do not require for DPL and DCVSPG. 

But you require explicit swing restoration logic for CPL, SRPL and LEAP logic family 

members and except static CMOS and LEAP all are dual-rail as you have seen.  

And so far as robustness is concerned, static CMOS is very robust; DPL is also very 

robust, but others are not as robust as, static CMOS and DPL others are moderately or 

low robust. 

So, this is how, this is a relative comparison of the pass-transistor logic families. Now we 

are the pass-transistor logic family is now known to us. Question is how we shall realize 

logic circuits using these pass-transistor logic families.  
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Actually, the logic synthesis State has got two states; first or you can say, there are two 

phases; in the first phase, you do technology independent optimization phase and one 

commonly used technique is get ROBDD of A given Boolean function. ROBDD  stands 

for, ROBDD stands for Reduced Ordered Binary Decision Diagram, BDD. This and 

actually this technique that we discuss Shannon expansion technique; that is also a logic 

independent optimization technique; there we have seen, we are doing an expansion and 

we are getting a network.  

That is also a logic independent optimization technique and second technique; second 

phase is mapping the BDD nodes onto the PTL cell. So, these are the two phases so, it is 

like this. So, you get a BDD and in the next phase, you will do the mapping on the pass-

transistor logic tree. 

Now, the pass-transistor logic tree can be mapped depending on which particular logic 

family, you are using; you can use CPL, you can use DPL, you can use LEAP, you can 

use SRPL. So, that part is logic dependent. On the other hand, the BDD part is logic 

independent.  
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Let us discuss, how you can get a ROBDD construction? This ROBDD is a canonical 

representation of a Boolean function; that means, what do you mean by canonical 

representation? Canonical representation is unique; for a given function, it will be unique 

that is why it is called canonical representation.  

And it is a convenient data structure for Boolean logic representation and manipulation 

and that is the reason, why BDD is widely used for synthesis verification of functions. 

So, BDD plays a very important role in logic synthesis and verification. 

Let us discuss how BDD can be obtained. So, for this particular function f is equal to a c 

plus b c, if from the truth table you can you can construct a decision tree. Decision tree 

you know, you can choose take one variable say a. We have started with variable a; then 

it has got one edge and zero edge; one edge is for which the reduced function, for which 

reduce, for which a is one. And here, this part will be essentially, the reduced function 

for which a is zero; that means, essentially we are doing kind of Shannon expansion here. 

So, this is the f a, this is f a bar. So in this way, if you do the expansion, you will get a 

tree like this. And at the LEAP node, you will get zeros and ones essentially, it can, you 

can take it from the truth table so, 0 0 0 1 0 1 0 1. So, I have put them there. 
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 Now you can this is the decision tree, now you have to do a kind of optimization or 

reduction. First thing that is being done; all these zeros are combined and all these ones 

are combined to have only two leap nodes; 1 for 0, another for 1. 

 So, that is what is being done by removing duplicate terminals. So, here duplicate 

terminals are reduced, removed from the output. Then here again, you can see here c; we 

have removed where their identical. For example, in this particular case b, whenever it is 

coming this is, this c, you can see b dot c; this is coming to 0; b c it is also coming to 0. 

So, they are combined here b c and here you have got only two c’s and this is how we 

have removed the number of nodes for c. So, only two nodes are required for c. 

 And finally, we shall reduce, remove the redundant nodes. For examples, this c is not 

required even for 0 as well as 1; it is connected to 0 obviously, this is redundant. 

Similarly, this b is redundant, because both it is connected for 0 as well as for 1. So, this 

is also removed. So, both of them are removed and getting a redundant I mean, remove 

the after removing the redundant nodes, we get a final tree. And this is actually the 

reduced ordered BDD. Reduced, why it is reduced ordered BDD? We have removed 

unnecessary nodes and edges. 

Only necessary nodes and edges are present and this is only for a particular ordering a, b 

and c. If you take different ordering say start with b then a then c, this particular tree will 

be different and after this is done, you can do the mapping.  
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So this BDD, ROBDD is obtained, then you will do the mapping to the pass-transistor 

logic tree. Here the mapping has been done. Each of the nodes is mapped with two to one 

multiplexer. So, here you have used a two to one multiplexer for this node where the 

control signal is a. This b has been again replaced by two to one multiplexer and c has 

been node replaced by another two to one multiplexer and we are coming to 0 and 1. So, 

you can see there is a one to one corresponding between this ROBDD and this is pass 

pass-transistor tree. Each node has been replaced by a two to one multiplexer. So, this is 

how you can realize the function. 
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Let me illustrate with another example. The example of full adder, you can see here you 

can perform Shannon expansion or you can get ROBDD for sum and carry functions. 

And after getting the pass-transistor, getting the BDD or Shannon expansion you can 

map it to the one of the logic families. Here we have mapped it to that leap cells. So, here 

you can see this is the y three cell; y three cells are nothing but a fourth to one 

multiplexer. So, the carry and sum both can be realized by using a, using each by each, 

for each you require one y three cell; that is your, I mean one cell for each of them. So, 

this is the realization of each order and you can see the number of transistors required is 

significantly less. So, we can realize very easily in this particular case. 

So with this, we have come to the end of todays lecture. So, we have introduced to you 

various members of the pass-transistor logic family. And we also have discussed quickly 

the logic synthesis technique that you can do for pass-transistor logic circuit realization 

and illustrated with the help of an example of polar diagram. Thank you.  


