
High Performance Computer Architecture 
Prof. Ajit Pal 

Department of Computer Science and Engineering 
Indian Institute of Technology, Kharagpur 

 
Lecture - 6 

Pipelining – Introduction 
 

Hello and welcome to today’s lecture on Pipelining, pipelining is one of the most 

important and popular technique that is used to enhance the performance of a processor. 

And you will see that it is an implementation technique, which is done in the hardware 

and it exploits different types of a kind of parallelism, instruction level parallelism. So, 

before I go into the details of implementation of pipelining in modern processor, today I 

shall introduce to you, the basic concepts of pipelining. As you shall see, pipelining is a 

concept that is used not only in processors, but in our day to day common life in various 

situations and various applications. 

(Refer Slide Time: 01:59) 

 

So, it is necessary to understand the basic concepts of pipelining, and in this lecture I 

shall cover these topics. After a giving a brief introduction, I shall discuss about what is 

pipelining, I shall define pipelining, and then I shall discuss about it is implementation, 

how is it implemented. And whenever you implement pipelining, how the performance 

changes and usually the performance is represented by two parameters, speedup and 



throughput. We shall see, how this speedup and throughput changes, as you implement 

pipelining. 

And we shall see that, whenever you go for pipelining, it is implemented by defining a 

particular operation and it is implemented in a number of stages and we shall see that, the 

performance is dependent on the number of stages. So, you have to indentify an optimal 

number of stages, that gives you good throughput and speedup based on cost 

performance. 

Then, I shall discuss about two important pipelining that is, your fixed point multiplier 

pipelining and floating point adder pipelining, which are used in implementing 

pipelining arithmetic unit that means, whenever you are performing multiplication of 

fixed point numbers. And also as you know, multiplication takes longer time, so 

pipelining is, whenever it is implemented, it will improve the performance. Similarly, 

floating point addition is another very important operation, where pipelining can be 

implemented to improve the speed of operation. 

(Refer Slide Time: 03:57) 

 

Oh my god, a house is on fire, so as it appears, the house is in a village, where the fire 

brigade is not present and fortunately as we can see, there is a pond nearby. Let us see, 

how this fire is doused by this person, so obviously what he will do, he will take water 

from the pond and again come back to the pond to take water and then again put it on the 



fire and so on. So, he will run between the house on fire and the pond to douse the fire 

off, so put the fire off. 

This is how he can try to do it, but unfortunately this thing, they have that putting the fire 

off will take very long time. The poor fellow may lose his house, the house may be 

completely brunt off by the time he is able to put the fire off. So, let us see, how the fire 

can be put off in an alternative manner, which was taught in our school. In our school it 

was taught that, whenever there is a house on fire, you get hold of as many buckets as 

possible, get as many people as possible, let them stand one after the other between the 

pond and the house on fire. And then let the bucket full of water pass from one hand to 

another hand from the pond to the fire. 

(Refer Slide Time: 06:00) 

 

And the way as I shall show in this particular diagram, so you can see here, the bucket 

full of water is moving from the pond, it has been passed on to the next person. And in 

the mean time, the first person, the person who is near the pond again take another 

bucket full of water. And in this way as you can see, bucket is moving from the pond to 

the fire and you can see, several bucket 1 2 3 4 in this diagram and maybe 5, so 5 buckets 

of water is moving from the pond to the fire in parallel simultaneously. 

And later on, when I understood I mean, when pipelining was taught I realized that, this 

is nothing but pipelining. So, what was taught in our village school for putting the fire 



off, is a pipelining technique. So, this is one common example, one example of I mean, 

pipelining in our day to day life. 

(Refer Slide Time: 07:15) 

 

Now, let us see another example, so here you see, the two alternative ways in which an 

engineering college can run. Let us consider the first approach, in which admission take 

place only when the batch of student passes out from the college. So, you can see, the 

student is taken, he joins the 1st year course then he goes to moves to the 2nd year course 

then he goes to 3 rd year course then he goes to a 4th year course and at the end, of the 

first 4th year as he passes out, then only another batch of student is taken. 

So, in this particular case as you can see, admission of student is taking place once in 

every four years. So, this is obviously not a very good way of doing it and in this 

particular case as you can see, the throughput that is, the number of student passing out 

per year is only 1 by 4. Because, only one student I mean, in every four year, one batch is 

passing out, so throughput is 1 by 4, obviously this is not practiced in our colleges. 



(Refer Slide Time: 08:29) 

 

So, in our colleges what is being done, student is admitted every year, so you can see, as 

the first batch of students moves to the second year, another batch of student is admitted. 

And as the second batch of student moves to third year and the second batch of students 

moves to the second year, another third batch is taken. And the first batch moves to the 

3rd year to 4th year, second batch moves from 2nd year to 3rd year and third batch 

moves to 1st year to 2nd year and a fourth batch is admitted. 

So, you can see, at the end of 4th year, initially there is some delay, at the end of 4th year 

only first batch is coming out. But, subsequently as you can see, in the 5th year, another 

batch is coming out that means, the second batch is coming out in the 5th year, third 

batch is coming out in the 6th year and so on. So, if you whenever a college is running 

for a large number of years, you can ignore the first initial few years. 

And then you will see that, the college is able to produce students one batch per year, so 

throughput is increasing from one fourth to 1. So, this is also a technique for pipelining, 

so we have seen two I mean, applications of pipelining in our common life, day to day 

life. 



(Refer Slide Time: 09:54) 

 

Now, let us see, what is the basic concept behind pipelining, so whenever you are asked 

define pipelining, you will say it is an implementation technique, where multiple tasks 

are performed in an overlapped manner. So, what has been done essentially, multiple 

tasks have been carried out in an overlap manner. So, if we go back to our previous 

diagram we see that, here the first batch who are in the 4th year is being taught 

simultaneously with the second batch of students, who are in the 3rd year. 

Similarly, a third batch of students were in the second year and a fourth batch, who are in 

the first year. So, all these batches of students of I mean, are taught simultaneously, 

although they are in different years and this is essentially the basic idea of pipelining, so 

in an overlap manner, multiple task are being performed. So, in this particular case, task 

is teaching students in a college, so it can be any kind of task. 

Now, let us see, how can it be implemented, this question arises because as you have 

seen, throughput increase whenever pipelining is implemented, question actually arises, 

can it be implemented in all possible cases. Let us see when it can be done, so the answer 

is, it can be implemented when a task can be divided into two or more subtasks, which 

can be performed independently, so this is the key idea of for implementing pipelining. 

First thing, first requirement is that, you should be able to divide a task into more than 

one subtasks 2 3 4, whatever it may be. Then it is also necessary that, these subtasks you 

should be able to perform independently. So, you have seen in case of college, the 



teaching of students of different batches, who are in different years of study, can be 

carried out, provided we have enough infrastructure, building, classrooms and teachers 

then it can be done independently. And that is how pipelining is implemented in case of 

college, so that is the requirement for implementing pipelining. 

(Refer Slide Time: 12:31) 

 

Now, let us see a task, which is taking time t, so this is a task, single task and it is taking 

time taking time t. Now, let us see, whenever it is divided into k subtasks, so here you 

have got a task, let us assume it takes time t. Now, whenever you divide it into k 

subtasks, so you have divided into k subtasks, obviously each of them now we will take 

time, which is equal to t by k, t by k is the time required to perform each subtask 

Now, if you think in terms of implementing it, here the time required is t for a task and 

here time required is t by k to perform a subtask. We shall see, whenever we go for 

implementing this in the context of processors, they are the, how the clock frequency and 

other things are affected by this. 



(Refer Slide Time: 13:55) 

 

Now, the pipelining can be implemented in two ways, first one is known as synchronous 

pipeline, which is the most popular one and here different subtasks are performed by 

different hardware blocks known as stages. So, you have seen, we can divide a task into 

a number of subtask, so this is performed by a particular stage. So, t will require k stages 

and each will perform a particular subtask and obviously, these stages will perform 

different operations, because you have divided task into k subtasks. 

And each of this subtask will be different, they are not same and obviously, these stages 

will perform different operations. Now, different subtasks are performed by different 

hardware blocks known as stages and the result produced by each stage is temporarily 

buffered in latches and then passed on to the next stage. So, what is important here, not 

only you have to divide a task into k subtask and each of the I mean, subtask is 

performed by a particular stage. 

But, it is also necessary that, you have to insert some kind of buffer in between each 

stage. Why is this necessary, this is necessary because whenever this stage will be 

performing some operation, it will get it is input maybe from the input. And then when 

the result is produced, that has to be temporarily stored in this particular latch or buffer. 

And subsequently, if an another task is applied to it, this latch will provide input to the 

second stage. 



Similarly, the output produced by the second stage, will be buffered in this latch and 

which will provide input to the third stage. So, in this way, the different stages will get 

their inputs from the latches, only the first stage will get inputs from the primary input 

that is applied. So, and as you can see, we will also require a clock, this clock will latch 

the input, that input which is available into this latch. Similarly, the output produced by 

stage S 1, will be also simultaneously I mean, latched into this particular buffer by this 

clock. 

So, in this way, output of different stages are latched in buffers simultaneously with the 

help of a clock. So, as the inputs will be coming, the outputs will be generated and that 

will be latched and we shall see, how the input will flow from input to output, we shall 

explain it with the help of another diagram. 

(Refer Slide Time: 17:13) 

 

Now, transfer between stages are simultaneous, as I have mentioned and one task or 

operation enters the pipeline per cycle, this is a very important thing. See here, clock per 

cycle, a new input is coming and which is getting admitted into the pipeline. And you 

can see, the clock is applied to different latches, different I mean, latches in between a 

pair of stages. 



(Refer Slide Time: 17:47) 

 

So, here let us see the, how the execution take place, so you can see here, in the first 

clock cycle, the task T 1 is entering the pipeline and entering the first stage of the 

pipeline. Then as we move to the second clock cycle then the another task is entering the 

first stage, but in the mean time, that output of the first stage has been latched in a buffer 

and which is being applied to the second stage. So, second stage and first stage, both are 

performing computation, performing some operation, but they are performing operation 

on the data of different tasks. 

So, this stage 1 is performing operation on task inputs coming from task 2 and stage 2 is 

performing operation of that is, generated by the first stage, intermediate result produced 

by the first stage that is, buffered in between and latched and essentially, it is the data 

coming out from the task T 1. So, in this way you can see, as we move to the fourth 

clock cycle, all the stages are busy. The stage 4 is performing processing on data 

produced corresponding to task 1 then stage 2 I mean, stage 3 is producing it is 

performing operation on data that is coming from task 2. 

Then, the third I mean, third task is being performed by stage 3 and stage 4 is performing 

the operation I mean, performing operation on task 4. So, you can see, this is how, in a 

overlap manner processing is taking place and now, at the end of fourth clock cycle, here 

it has been assumed that, it requires 4 stages. So, you can see, 4 clock cycles are required 



before the first result comes out then in every clock cycle, a new output is being 

generated. 

(Refer Slide Time: 20:04) 

 

Question naturally arises, we have defined synchronous pipeline, so there must be an 

alternative technique, that is known as asynchronous pipeline. So, in an asynchronous 

pipeline, transfers performed when individual stages are ready. So, here you see, we are 

not providing a latch in between, but there is a kind of handshaking signal present 

between two stages. You can see, there is a ready input and acknowledgement input, so 

ready signal is coming as input to stage S 1. 

And whenever it is ready to accept some new data, it will generate an acknowledgement 

signal and then new input will be provided to stage S 1. Similarly, stage 2 will receive 

that input from stage S 1 and only when acknowledgement will be sent by stage 2 to 

stage 1. So, in this way you can see, the data will be passed on from one stage to another 

stage with the help of handshaking signal in an asynchronous manner, there is no clock. 

Obviously in this particular case, the delay I mean, the time required to perform 

operations of different stages can be different. In other words, the different amount of 

delay may be experienced at different stages. So, in this particular case, say stage S 1 

may take say 5 nanoseconds, stage 2 may take 10 nanosecond and so on, variable time, 

so and as a consequence what can happen, it can display variable throughput rate. On the 



other hand, in our previous case we have seen, in case of synchronous pipeline, that is 

not so. 

A common clock is used to move data from one stage to another stage and as a 

consequence, the throughput is fixed determined by the clock rate, the rate at which 

output is produced. And also the delay that is been, we assume that, each stage take same 

time that means, the delay taken by different stages is same, there is no difference. 

(Refer Slide Time: 22:30) 

 

However, it I mean, this cannot be achieved in practical situations, so let us see, 

whenever the different stages, say here you have got stage S 1 and here is another stage S 

2. And there is a latch in between and another latch in between stage S 2 and S 3 and in 

this way, you have got a k stages. Now, you will be applying a common clock to all the 

latches and at the input also, this is the clock. How do you decide the clock or identify 

the clock frequency, actually it is dependent on the cycle time or time required to 

perform the operations of different stages. 

And in case the time required is different, let us assume this stage S 1 takes time T 1, 

stage 2 takes time T 2, stage 3 take time T 3, stage k takes time T k. So, in such a case, 

how do you find out the cycle time that is equal to tau, how do you find out that. What is 

being done, the clock cycle time has to be the worst case cycle time of a particular stage. 

So, what you will do, you will take maximum of the tau m, let us assume the stage m has 

the maximum delay. 



So, one of these stages will have maximum delay and that time has to be taken and also 

you have to take small delay, that is taken by these latches, maybe d, that is the delay of 

the latch and this is how, the cycle time of a pipeline implementation is decided. Now, 

cycle time is tau and obviously, the clock frequency can be derived from this clock 

frequency, is equal to 1 by tau. 

So, this will be the clock frequency that has to be apply here, so this is the time period 

then this is equal to tau and clock frequency is equal to 1 by tau. And based on this, the 

clock frequency will be decided, so worst case delay of a stage will decide the clock 

frequency. 

(Refer Slide Time: 25:26) 

 

Now, let us see, how the speedup and throughput changes. 



(Refer Slide Time: 25:39) 

 

As you have seen, throughput is the outputs produced per clock cycle and that 

throughput will be equal to 1, in case of ideal situation that means, when the pipeline is 

producing one output per clock cycle. And later on we shall see that, there are I mean, 

this will not be I mean, there will be situations, where the output cannot be produced in 

each cycle and because of problems know as hazards. So, later on, we shall discuss about 

pipeline hazards, for the time being let us assume, we are considering, we are dealing 

with ideal pipelining. 

Now, how do you compute the speedup, speedup can be found out from the time taken, it 

will be the ratio of time taken by non pipeline stage, non pipeline implementation and the 

speedup, the time taken by pipeline implementation. How do you find it out, if you have 

seen that, you are dividing a task into k sub tasks, 1 to k. Now, let us consider that, each 

of these times are identical same and then the time required, that will be equal to N into k 

into tau, assuming that this is equal to tau. 

Because, to perform a task of, where N is the number of tasks, here we are not 

considering one task, time taken by pipeline implementation to perform n tasks. So, one 

task will take k tau time and in a non pipeline implementation, an N tasks will take N k 

tau time, unit maybe nanosecond, millisecond, whatever it maybe. 



(Refer Slide Time: 28:40) 

 

Now, what is the time taken, so non pipeline is, non pipeline implementation is taking 

time N k into tau. How much time will be required by pipeline implementation, first of 

all, in case of pipeline implementation we find that, the first task will require k into tau 

time and the remaining tasks N minus k 1 tasks, will produce in tau time. So, you can see 

that, so here (Refer Time: 29:33) it will take k minus 1 time. And if you have got N tasks 

then it will be performed in this way. 

So, it will be taking k plus n minus 1 into tau, not this here it will be, I made a mistake, 

here it will be k into tau plus N minus 1, N is capital or small, whatever it maybe into 

tau, so k plus n minus 1 into tau. So, what is the speedup, speedup is equal to n k tau by k 

plus n minus 1 into tau and this tau tau will cancel out. So, you will get here, n k by k 

plus n minus 1, so this is a very simplified expression. Now, let us assume, n is infinity 

that means, when you are performing a large number of tasks then what will happen, n 

will be equal to infinity. 

o, in such a case, your speedup will be equal to n k and here, you can ignore k minus 1 

with respect to n, so it will be equal to n, so this will be equal to k. So, we find that, the 

number of stages that will be required is equal to k I mean, is equal to k that is, speedup 

is equal to k and which is equal to number of stages. So, in other words, we are getting a 

speedup in ideal situation, that is equal to number of stages. 



So obviously, you will be tempted to use as many stages as possible, but unfortunately 

later on we shall see, it is not true. Because, as the number of stages increases, overhead 

keeps on increasing, you have to put on buffers and a point is reached when you will not 

get any more speedup. 

(Refer Slide Time: 32:06) 

 

So, the speedup will initially keep on increasing, but the curve will be somewhat like 

this, say if we plot speedup and here the value of k. We will find that, initially it keeps on 

increasing but then it will decrease. So, the point will reach when you will get an 

optimum speedup, so that speedup will have always some optimum value (Refer Time: 

32:35). 

Another point that you have to remember that is, the memory bandwidth, we have seen 

that, in case of non pipeline processor, the rate at which data or instruction, whatever it 

maybe is transferred, the rate is k tau that is, the time required to perform a single 

operation. So, if it is a processor performing I mean, executing instruction, each at the 

interval of k tau, one instruction is fetched from the memory. 

Because, CPU will be fetching the information from the memory, instructions from the 

memory and for a non pipeline processor, the rate will k tau, where k is the number of 

stages and tau is the time required per stage, so this is the case in case of non pipeline. 

On the other hand, in case of pipeline stages, you have to feed data at the rate of tau that 

means, the input has to come at the rate of, because the new input has to be provided to 



the processor at the rate of tau in each cycle of the clock cycle of the pipeline processor, 

your new input will come. 

So, the bandwidth of the memory has also to be increased by factor of S k, where S k is 

the speed of factor. That means, what I am trying to tell, not only the clock frequency of 

the processor will be k times that of a non pipeline processor, the bandwidth of the 

memory is also I mean, that is required will be the S k times that is, the speed of times 

that of the non pipeline processor. In other words, you will require a faster memory, 

whenever you use it in the context of a pipeline processor. 

(Refer Slide Time: 34:48) 

 

Now, what are the different types of pipelines that is possible, historically there are two 

different types of pipelines, one is known as arithmetic pipeline, another is instruction 

pipeline. So, in arithmetic pipeline, you perform different types of arithmetic operations 

like addition, subtraction, multiplication and division. It may be fixed point addition, 

subtraction, multiplication, division or floating point addition, subtraction, 

multiplication, division, so these operations can be performed by the arithmetic 

pipelines. 

On the other hand, in instruction pipeline, the instructions will be fetched from the 

memory and the instructions will be executed in different stages of pipeline. So, the ALU 

operations can be performed by arithmetic pipeline and instruction processing can be 

performed I mean, fetching, execution can be performed by instruction pipeline. 



(Refer Slide Time: 35:51) 

 

Now, arithmetic pipelines like floating point multiplications are popular in general 

purpose computers and question actually arises, when a pipelining can be used. We have 

seen that, pipelining can be used whenever you are getting continuous input and 

producing continuous output. For a single task, it does not give you any benefit, the 

reason for that is, for a single task, time required to perform computation execution is 

more than that of a non pipeline implementation. That means, only when large number of 

tasks are to be performed then pipeline is suitable. 

And in case of arithmetic pipelines, we have seen, this is not very common, we do not 

keep on performing addition or subtraction or multiplication continuously. So, whenever 

an arithmetic addition operation is performed, that is performed and maybe another 

addition will be performed after many clock cycles, so it is not very common. However, 

there are situations, where you have to perform large number of operations and that 

situation is for example, vector processors. 

So, where you have to, an array has to processed and that number of array elements can 

be large, which is usually performed by vector processor, that type of thing can be done, 

can be performed by arithmetic pipelines. But, so far, as instruction pipeline is 

concerned, the instruction pipelines are being used in almost every modern processor. 

The reason for that is, we have seen that, whenever a processor of a computer is turned 



on, all it does is fetching an instruction from the memory and executing it, fetch execute, 

fetch execute and it does it continuously one after the other. 

And you have got a constant stream of instructions, that is stored in your computer 

memory and those are being fetched one after the other, as long as the power is on. So, 

instruction pipeline is a very good case I mean, implementing pipeline for instruction is a 

good case and that is the reason why, instruction pipelining is performed in all modern 

processors. But, before we go for instruction pipelining, for the sake of completeness, we 

should discuss about arithmetic pipelines with two examples. 

(Refer Slide Time: 38:43) 

 

First one is pipelined fixed point multiplier and then later on we shall discuss about 

pipelined floating point adder. 



(Refer Slide Time: 39:03) 

 

So, first let us focus on, how pipelining can be implemented for a fixed point multiplier. 

(Refer Slide Time: 39:10) 

 

So, whenever you are performing multiplication of two numbers, say A and B, say is 

equal to let us assume 1011 and the number another number is 1010. So, whenever you 

have to multiplier, what you do, whenever you do by hand computation, you first 

multiply 0 with this, so you get 1011 then multiply 1 with, (Refer Time: 39:33) you 

multiply with 0, you will get 0000. Whenever you multiply with 1, you get 1011 and you 



keep on shifting it and you essentially, we do shift and add, shift and you have to add 

these two numbers. 

You have perform addition of this and then whenever you multiply with this, again you 

get 0000 and then another is 1011. So now, these are added, so this addition whenever 

you perform by hand, we may do it simultaneously that means, we add all these bits 

together and produce the sum, as it is shown in this diagram (Refer Time: 40:17) here, A 

and B, two 8 bit numbers, P 0 is a partial product. By multiplying this bit one with this 

number, all the bits, we get this and in this way, we have got partial product P 0, P 1, P 2, 

P 3, P 4, P 5, P 6 and P 7 corresponding to multiplication of these 8 bits with these bits. 

So, these are the partial products, which are to be added and you can see 0 has been 

inserted on the right side. And whenever we do the addition of the entire column, but 

whenever you do it with the help of practical I mean processors, your adder will take two 

numbers, usual symbol of adder is this, adder will take two numbers and produces sum 

and a carry. So, this A, B, sum and carry, so you cannot really perform all these additions 

simultaneously, which is shown in this diagram. 

However, we can try to do it in a pipelined manner to I mean, instead of doing it serially 

that means, adding these two P 0 and P 1 then P 0 and P 1 then the result of that is added 

with P 2. And then result of that is added with P 3 and so on, that is essentially doing it 

serially, that will take long time. It will take definitely 8 clock cycles, if we perform one 

addition per clock cycle. 



(Refer Slide Time: 42:11) 

 

Let us see how this time can be reduced, whenever we go for pipeline implementation. 

(Refer Slide Time: 42:19) 

 

So, whenever we go for pipeline implantation, we can have two types of adders, you are 

familiar with full adder. A full adder takes 2 bit inputs, maybe a i b i and a carry C in and 

it produces a carry outs C out and sum bit s i. So, this is the full adder implementation 

that means, it is adding 3 bits, one is carry in coming from the previous stage and two 

bits and producing sum and carry. Now, you can realize two types of adder, one is known 

as ripple carry adder, which is also known as carry propagate adder that is, CPA. 



How is it implemented, here you will have several full adders, if it is a 8 bit, you will 

have 8 bit full adder. So, here you will put a 0 b 0 then a 1 b 1, here you will put a 7 b 7 

and this maybe 0 and the carry coming out from this will come here and s 0 you will get 

here, s 1 you will get here and s 7 you will get. So, you can see that, this is the final carry 

that will be generated, C out and the other carries are passing through from one stage to 

another, passing from one stage to another. 

So, it ripples through and you get, you can see if this a two 8 bit numbers or say two n bit 

numbers, produces n plus 1 bit output. So, this is the case for carry propagate adder, so 

two n bit number is input and output n plus 1 bit output. 

(Refer Slide Time: 44:43) 

 

Now, there is another type of adder, which you will require to implement the pipeline 

implementation, that is known as carry save adder. Carry save adder has got 3 inputs, so 

here you have got 3 inputs, it can take 3 inputs simultaneously and here 1 bit, here 

another bit, here another bit. So, and what it does, it produces two n bit output, so say it 

will take one input A, another input B, another input C, each of them maybe n bit and it 

produces 2 outputs, one is sum, which is n plus 1 bit and another is carry, which is also n 

plus 1 bit. 

How it is being done, let me illustrate this with the help of three 4 bit numbers, say 1010 

another is 0110 and third number is 1111. So, whenever you perform these three 

numbers, so this is A, this is B and this is C. So, sum will be generated, which is a sum of 



these numbers and as you know, sum is exclusive of all these three, so sum will be 1, 

sum will be in this case 1, sum will be 0 here, sum will be 0 here. And corresponding 

carry will be, if there is carry from this stage in this case and in this case also, there is a 

sum this will produce 1 here, so this is the sum. 

And so far as the carry is concerned, so you can see, you have got 4 bit addition you are 

taking, so you have got 5 bit. Similarly, for carry, this bit will not be there, because carry 

be from the next stage. So, from this stage, there is no carry so it will be 0, from this 

stage there is a carry, so there will be 1. From this stage there is a carry, there will be 1 

and from this stage, there will be a carry, so there will be 0. So, each of this stage will 

produce, so here also you require 5 bits, so you can see that, sum and carry both are 

requiring 5bits, so n plus 1, so this will be 0. 

And in this case, this sum will be 0, there will be sum in this case 0 and in this case 0, so 

this will be a carry here, carry here, not sum, sum is 0, so carry is here. So, this is the 

most significant bit is 0 in this case and here, less significant bit is 0 for carry. So, this is 

how, two n bit numbers are produced by the carry save adder (Refer Time: 48:05). So, 

we can combine carry sum adder and carry propagate adder to realize a pipeline fixed 

point multiplier. As you can see, the first stage is producing the multiplier recording 

logic. 

So, what it does, it produces (Refer Time: 48:22) these bits, this partial product bits, 

essentially by (Refer Time: 48:28) large number of AND gates. So, by large number of 

AND gates, you can produce these outputs and you can see, two 8 bit numbers, here you 

have got the corresponding partial products. So, last one was 15 bit and the first one was 

eight bit, which is shown here. So, you can see, here it is 8 bit then 9 bit, 10 bit upto 15 

bit. 

So, this input is going to the second stage and we are applying 3 inputs to each of the 

carry save adder, they in turn are producing the output. So, you can see the first carry 

save adder, each is having 10 bit inputs, so it is producing 10 bit output. Similarly, these 

three inputs are applied with 11, 12 and 13 bits, they will produce 2 outputs, 13 bits each. 

Similarly, these two are directly going to another stage and the output of this carry save 

adder are being added or applied to another carry save adder and this is 13, so this is 10, 

10, so the most significant bits will be 0s and this will produce 2 outputs. 



So, here actually 1 2 3 4 5 6 7 8, 8 inputs are there and ultimately, they are converted into 

4 outputs, these four outputs are applied goes to the third stage. And in the third stage, 

you will require 2 carry save adders to transform them into two 16 bit outputs. So, first 

three inputs will go to one carry save adder and there are two outputs and the fourth input 

will go to the another carry save adder and ultimately, you have got two 16 bit outputs. 

Now, these two 16 bit outputs will go to a carry propagate adder, which is essentially a 

ripple carry adder to produce a 16 bit sum and actually, carry output will be also there, 

which is not shown. So, this is the 16 bit output product, carry is not because here we are 

interested in the product. So, you get a and we shall assume that, there is no overflow or 

from this, so we shall be getting a product of 16 bit from the two 8 bit number. So, this is 

how you can see, in 4 clock cycles, you are able to perform the computation with the 

help of a number of carry save and carry propagate adder. 

And not only that, if you are have to perform this multiplication continuously, so after 

the first multiplication is done, which will take 4 clock cycles, the subsequent 

multiplications will be performed in I mean, in one output will be generated in one clock 

cycle. So, when you will be performing multiplication continuously, this type of pipeline 

implementation can be done. 

(Refer Slide Time: 51:36) 

 

Now, let us focus on the pipelined floating point adder. 



(Refer Slide Time: 51:40) 

 

So, the pipelined floating point adder is also implemented in 4 stages, so before we go to 

the discuss the implementation of the pipelined floating point adder, let us see what are 

the operations we normally perform, whenever we go for pipeline addition I mean, 

normal floating point addition. So, here, we have given an example of decimal floating 

point number, but it can be binary and the operations will be same. So, here you see, you 

have got two floating point numbers, one is 8.96 into 10 to the power 1 another number 

is 48.6 into 10 to the power minus 1. 

So, these two numbers are to be added, so first operation that we do is the, adjust the 

exponent I mean, adjust the number having the smaller exponent and convert it into a 

number of exponent having the same exponent value, as the larger exponent. That means, 

for example, this 48.6 into 10 to the power minus 1 is converted into 0.486 into 10 to the 

power 1, only when this is done then we can perform the addition. So, you can see, we 

have done, we have shifted this, this can be carried out with the help of shifter. 

And this adjustment of the significant is done and then you can add the significants, this 

8.96 can be added with 0.486 to get 9.246. And then we do a kind of normalization and 

when we do the normalization, that exponent is adjusted and here, there is no I mean, the 

number starts with fraction 0.9246 and if there is leading 0s then you have to do the 

round off. The same thing is done here, you can see exponent subtraction is being done 

to find out, what is the difference between the exponents. 



And accordingly, the fraction with smaller exponent is shifted with the help of right 

shifter, to have the same exponent value. And that number and the exponent with larger 

fraction I mean, larger exponent, that fraction these two are added with the help of the 

fraction adder. And the exponent values are maximum of the two exponents, that is 

passed on to the third stage. And here, after the addition is done, if it leading 0 in the 

result, in the fraction, that is being left shifted. 

Earlier we did right shifting, now you are doing left shifting to remove the leading 0s and 

how many shifting is done, that is being counted here and then we get a normalized 

result, that is passed on to the last stage. However, you have to adjust the exponent value 

to take care of the number of leading 0s and so exponent is adjusted of the adder and we 

get the final exponent here and here, the sum we get. So, we get the d that is, the sum of 

the number and the exponent of the result s is obtained here. 

So, this is how that means, d into 2 to the power s, in binary that these are the two 

number. That means, we starting with two numbers (Refer Time: 55:22) a into 2 to the 

power p and we are adding with b into 2 to the power q and then it is producing d into 2 

to the power, maybe 2 to the power s. So, this is being done in a pipeline manner and this 

is implemented with the help of a four stage pipeline. 

(Refer Slide Time: 55:46) 

 

Now, it is time to conclude, so in this lecture, we have introduce the basic concept of 

pipelining. You have seen, what is pipelining, what pipeline means and it is essentially an 



implementation technique, where multiple tasks are performed in an overlapped manner, 

after dividing into a number of subtasks. And when can it be implemented, it can be 

implemented when a task can be divided into two or more subtasks, which can be 

performed independently, as we have seen. 

And we have observed that, the time required to perform an individual task does not 

decrease, but the throughput decreases, throughput increases. So, whenever we go from 

non pipeline to pipeline implementation, we have seen, the time required to perform a 

task does not decrease, if we considered individually. However, the throughput increases, 

the number of outputs that can be generated per unit time that increases. 

And in this lecture, we have discussed about pipeline implementation of fixed point 

multiplier and floating point adder. These are essentially arithmetic pipeline 

implementation, but as I have told, the most common application of pipelining is in 

instruction pipeline. So, in the next lecture, we shall discuss about the pipeline 

implementation of instructions. 

Thank you. 


