High Performance Computer Architecture
Prof. Ajit Pal
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture -4
MIPS IPS and Processor

Hello and welcome today’s lecture on MIPS and processor, so in two lectures | should
cover this topic in the last lecture. | have discussed in detail what do you mean by
instruction set architecture we have seen that the various components of a instruction e
architecture and that instruction architecture access a specification for the design of
processor. So, today | shall introduced you one processor that is known as MIPS, do not
confuse with MIPS that is million instructor per second that is different this MIPS is
name of the processor. So, | shall introduced you instruction set architecture and then I
have discuss how you can realize the processor using that instruction set architecture as

an input as an specification.

(Refer Slide Time: 01:53)

Operands in MIPS

O Registers
— MIPS has 32 architected 32-bit registers
— Effective use of registers is key to program performance

O Data Transfer

— 32 words in registers, millions of words in main memory

= Instruction accesses memory via memory address

- Address indexes memory, a large single-dimensional array

O Alignment

= Most architectures address individual bytes

- Addresses of sequential words differ by 4

- Words must always start at addresses that are multiples of 4

S8 | pyte-3 | byte-2 | byte-1 | byte-0 | L8
byte-7 | byte-6 | byte-5 | byte-4

So, as | told the various components that you required for storing data number one is
registers, so MIPS are got 32 architected 32 bit registers. We shall see these 32 be 32, 32
be registers are used for different purposes and effective use of the registers is key to

program performance because how you are able to exploit how you are able to utilize.

This register will play very important role in deciding the performance of program that

you write.

Then, you have to see the data transfer we have seen that 32 words in registers and the
million of words in main memory. So, we will see it has got 32 bits address and as a
consequence the number of words, | mean it is again by the addressable and the 2 the
power 32 is the size of the main memory and instruction. Accesses memory via memory
address and address indexes memory a large single dimensional array. That means the
memory is accessed as a large single dimensional array and for that purpose you have to
do some kind of alignment is most architectures at this individual bites as | told like any

other processor mix also is byte addressable.

(Refer Slide Time: 03:31)

lr:: t:f(;'-,Jr‘[“?_‘,_"_qf’ x: lJ,, ned. rf‘_’,"“ 3 9L it
msb L{
a I |
[byte ’Ll i:-ﬂx 1 Il 7’f¢ i j .bl_;.ft. .n L
t‘i‘:‘ L 7‘, by b Gl hylbi-S | byt
A] | !2"9 $ ndlan

'J'N,‘,'fhur_fl;) OAL adre

Now, whenever you do make it byte addressable your word size is now 4 bytes, so they
will be 4 bytes present in a single word how do you really use be convention of aligning
devise. For example, this will definitely will be this significant bit and this is the most
significant bit, now this can be byte 0, this can be byte one this can be byte 2. This can be
byte 3 and this approach is known as big ending and there is another possibility of
course, in this case this is the first byte. Second byte will be like this that means it will
again start with 0, 1, 2, 3 and byte 4 will be here in the second word and byte 5 byte 6
and byte 7, so this is your big Endean approach.

There is another approach which is known as little Endian in which case this 4 bytes are
alignment in a little different way for example, what will be done there here it will byte 0
this will be byte 1, this will be byte 2 and this is byte 3. So, this your this is the LSB and
this is the MSB, so this is known as the little Endian approach, so these two conventions

are used, but you can see in case of your MIPS, they are using big Endian approach.

So, addresses of sequential words differ by four obviously 0, 1, 2, 3, and then the second
one will be start from 7, so that means this will start from 0 and this will start with 4. So,
this is and words must always start at addresses that are multiplies of 4 because of these
obviously the address will started multiply of 4. That means4n4nplus14n2,2,4n
plus 3, so n can carry from 0 to something whenever you accessing different addresses,

so have been memory different words of the memory.

(Refer Slide Time: 06:25)

Register Usage Conventions

U Registers

~r0: always 0

~r1: reserved for the assembler

~r2, r3: function return values
~r4~r7: function call arguments
~r8~r15: “caller-saved” temporaries
~r16~r23 “callee-saved” temporaries
~124~r25 “caller-saved” temporaries
126, r27: reserved for the operating system
~128: global pointer

~129: stack pointer

~130: callee-saved temporaries
~1r31: return address

Now, as | told there are 32 bit registers and they are architected in a different way as you
can see perform different purposes. For example, r 0 is always 0 you will be asking what
the form of putting all O in a particular register the reason for doing it. You see they will
be many situations query have to initialized either a memory location or a register with 0
when you do how keeping of a loop. There are many situations this will help you to write
0 in a particular memory location or in a register very quickly because already 0 is return
in a register. So, if you copy those values into another register, it will take very small

time, on the other hand if you write 0.

I mean if you read 0 by using imitate at the same, then you try to do that it will take
longer time. So, that is the reason why a resister is a expressively a assign with value 0
and which can be use in many situations then register r 1 is reserved for the assembler r 2
and r 3 are the function return values. We will see that the registered are used for you
know parameter parsing whenever you do in sub routine sub routine for function task.
So, r 2 and r 3 is used to return the values by the function or the sub routine and r 4 to r

7, they are used by the by the sub routine to pass the parameter to the function.

That means main program can pass parameter to the function using this four register are
4 by 6 an answer, then you have got other registers like r 8 tor 15, 8, 9, 10, 11. There are
8 registers they are caller saved temporaries, so they are used to save temporary values in
this registered then r 16 to r 23, there is called saved temporaries then r 24 and r 25
called saved temporaries. So, you can see these register can be used either by the main
program or by the sub routine to stores some temporaries values and which can be which

will make it very convenience to use register for storing intermediary results.

Then, r 16 and r 17 are reserved for the operating system and r 24 is used for global
pointer and r 29 is used for stack pointer then r 30 used as called saved temporaries again
and r 31 is used as return address sometime. It is called r a register that means the return
at this whenever you do sub routine call that return at this same. You know the program
counter value as same to be in a register in most of the situation it is step in stack, but in

this particular case it is step in a special register that is r 31.

(Refer Slide Time: 09:55)

Data Types in MIPS

Data and instructions are both represented in bits
- 32-bit architectures employ 32-bit instructions
— Combination of fields specifying operations/operands

~MIPS operates on:
*32-bit (unsigned or 2's complement) integers,
*32-bit (single precision floating point) real numbers,
= 84-bit (double precision floating point) real numbers;
» 32-bit words, bytes and half words can be loaded into GPRs
* After loading into GPRs, bytes and half words are either zero
or sign bit expanded to fill the 32 bits;
= Only 32-bit units can be loaded into FPRs and 32-bit real
numbers are stored in even numbered FPRs.
= 64-bit real numbers are stored in two consecutive FPRs,
starting with even-numbered register.
*Floating-point numbers IEEE standard 754 float: 8-bit exponent, 23-bit
significand double:11-bit exponent, 52-bit significand

So, return and let us look at the different types of data types that MIPS can handle data
and instruction are both represented in bits 32 bit architectures employ 32 bit
instructions. So, not only your words size is 32 bit instructions are also 32 bit and all the
instructions are 32 bit that means you have got a single size for instruction it is not
variable length. So, the fix length instruction each of 32 bit and this is one of the
important characteristic of risk processors and obviously MIPS processor and an

consequence.

You know it uses a single format for not format single size not variable size of
instruction and combination of fields specifying operations or operands. Later on, | shall
discuss how 32 bits have been used in different addressing mode, then coming to the data
types MIPS operator on 32 bits unsigned or 2’s complement integers. So, it can perform
integer processing either on unsigned data are two complement data, then 32 bit real
number single precision floating point and 64 bit double precision floating point real

numbers.

Then, 32 bit words bytes half words can be loaded in two general purpose registers, so
we already seen it is got the large number of general purpose registers. This can be
consider as general purpose registers and they can be use to same this bytes half words
are either 0 or sign bit expanded to fill the 32 bit, now you may be here another concept

you should understand.

(Refer Slide Time: 12:05)

Dal Q@ bek
5 - .'!’:;"(.'. —_— 2-buk
M 50 _ e
-1 e 0o- C.ﬂc ojo- . .+ Gj Dete. |
e A b L by ST SAEE de |
_j |." '; > 7 A j} S -
: & }’J,',‘ {
& Jd ’."?‘1 (/{ _i N.eCeA
. g — ‘\‘»‘ 5) d Cti'»“l_
< "EH_ exliniy 7’/ i I [, {\ I a4
= =y L
22 :f"li) . } A B 27 -I
= "7> l/ FI e-hit [. |

Suppose, your data is 8 bit data is 8 bit now this is your 32 bit number data is 8 bit so this
part will be field by data what will happen to the remaining by whenever you store an 8
bit data in a 32 bit register because your register is 32 bit a concept. It is known as sign
extension is used as you know in case of sign tools complement number a whenever the
most significant bit that is your MSB is 0, then it is a positive number, MSB 0 positive
number and MSB is 1 the number is negative. Now, obviously this be doing 0 if the

number is positive it is a positive integer, but what about the remaining bits.

So, you have got twenty three other bits what is done all this build up with Os if it is a
positive number. On the other hand, if it is a negative number, then most significant bit is
one and these are all field of with ones and this can be your 8 bit data. So, this concept is
known as sign extension that means your extending sign bit to fill up the remaining bit of
the data so if this is the case for when data is 8 bit that is byte if the data size is 16 bit
that is your half word in that case. Also, the same thing is done the concept of sign
extension is used to fill up the remaining bits; you may be asking why is this necessary

this Is necessary.

When will be doing say addition with the help of an adder you will applied one operand
to one and another operand to another if this data is said 8 bit, but the adder is of 32 bit.
So, obviously you can at add an 8 bit data with another operand it is 32 bit, so what we

have to do we have to apply sign extended data to these so that you can apply both the

operands as 32 bits. You will get a 32 bit result, so that is the reason why sign extension
is used so sign bit extended to fill the 32 bits. Now, only 32 bit units can be loaded into
floating point registers and 32 bit real numbers are stored in even numbered floating
point register and 64 bit real number s are stored in two consecutive floating point

register.

So, we have seen it is suppose not only 32 bit single position floating point real number,
but also 64 bit double precision floating point real number. That is the reason why you
will require either a single register or two register depending on whether it is a single
precision or double precision. There is some convention for representing floating point
numbers this is this is known as IEEE 754 standard for representing floating point
number, | request to capitulate this standard of floating point number where we will see
how it is used for example are 32 bit that is a single precision.

It uses 8 bit exponent and 32 bit significant and for double precision it use a 11 bit
exponent and 54 bit significant. So, that is how the floating point number are represented
with the help of IEEE standard 754, IEEE floating point number that means what we are
doing we are we are dividing 32 bit. Here, we got sign bit and then 8 bit significant and
remaining, sorry this is your exponent and then remaining bits are 23 bits significant. So,
this is 23, this is 8 this is 1 that makes 32, so this is how the floating point number
represented. The processor can do processor on the make processing can do processing
on these different types of data by it word single to double precision single position

floating point numbers.

(Refer Slide Time: 17:37)

MIPS Memory Organization

~+ MIPS supports byte addressability:

= it implies that a byte is the smallest unit with its
address;

= 32-bit word has to start at byte address that is
multiple of 4;

= Thus, 32-bit word at address 4n includes four bytes
with addresses: 4n, 4n+1, 4n+2, and 4n+3.

=16-bit half word has to start at byte address that is
multiple of 2; Thus, 16-bit word at address 2n includes
two bytes with addresses: 2n and 2n+1.

= it implies that an address is given as 32-bit unsigned

So, this is the data types in MIPS and | have already explained MIPS supports bite
addressability, it implies that a byte is the smallest unit with its address and 32 bit words
as to start at byte at this address that is multiple of 4. | have already explain the thus 32
bit word at address 4 n includes 4 bytes with addresses byte 4 n 4 n plus 1, 4 n plus 2 and
4 n plus 3 and 16 bit half words to start at byte address. That is multiple of 2 thus 16 bit
word at address 2 n includes 2 bites at this addresses 2 n and 2 n plus 1 at it implies that
an address is given as 32 bit unsigned, so however although we at this will start this way

your number has to be 32 bytes.

(Refer Slide Time: 18:22)

MIPS Instruction Formats

R-Type Instruction Fields

- op: basic operation of instruction, called the opcode
—rs, rt: first, second register source operand

- rd: register destination operand

- shamt: shift amount for shift instructions

- funct: specifies a variant of the operation, called
function code

op rs rt rd shamt | funct

6 bats 5 bits 5 bits 5 bits 5 bits 6 bits

Now, let us come to the instruction formats | have already told that the instruction size is
also 32 bit and how 32 bit instruction size has been used to represent different formats.
Let us see | have discuss about different addressing modes in general term, obviously all
these addressing modes that have discuss are not supported by MIPS. A subset of MIPS
is supported MIPS, let us see what are the addressing mode that is supported by MIPS
with the help of different instruction formats. Number one is known as r type of
instruction fields, r types stand for register types that means your operands are in the
register. Here, you can see the 6 bit is the op code field operation code and thenrsr t,

these are the two first and second register source of operand.

So, that means you will get two operands from to register r sand r t that r s and r t can be
those 32 bit one, 1 mean two of the 32 bit register that | have already discuss and r d is
again another general purpose. Again, it is the destination register at store, the result will
be stored and this shift amount for sift instruction this one is only used when you are

performing shifting.

So, you can not only do shifting by one bit you can shift you can shift a number is there
you can shift by 2 bits by 4 bytes by 8 bites that can be done with the help of 5 bit
number that can be specify with 5 bit number. So, you can shift up to 32 bit and as you
can see this is the shift amount which is provided as part of instruction, but this is
applicable only when you are using shift instructions. So, this field is not use for all other
instructions is used only for shift instructions, then function specifies a variant of the
operation called function code, so it is normally not use, but only in case of special

situation this is used.

(Refer Slide Time: 20:41)

MIPS Instruction Formats

* |-Type Instruction Fields
- Opcode specifies instruction format

op IS It address

6 ats 5 bats 5 bats 16 bats

« J-Type Instruction Fields

op address

6 bats 26 bats

This is one type of instruction format second type of instruction format is known as |
type instruction format. So, in case of | type of instruction format as you can see your op
code part is remaining 6 bits and you have got two registers where the operands are
available that is 5 bits. It is available here 5 bits, it is available here, then this will
represent some memory address. We shall see how different addressing modes are

implemented with the help of this shall come to this again.

So, how to this instruction format is use to generate and memory at this with the help of
this 16 bit then there is a j type of instruction field which we got six bit op code followed
by 26 bit address. So, it has got only three types of instruction formats, but all of them a
32 bit r type | type and j type. So, they are different fields are shown here and we shall
see how they are used to generate the effective at this in different situation for example.

(Refer Slide Time: 21:47)

MIPS Addressing Modes

* Register Addressing
— Operand is a register (e.g., add $s2, $s0, $s1)

I op I s I rt I rd] I funct I Regster File

= Base or Displacement Addressing
- Operand is at memory location whose address is sum
of register and constant (e.g., Ilw $s1, 8($s0))

I op I rs] n I address I M

l Register]

Register addressing in case of register addressing these three registers are really
performing the source of operands and destination of result that means r s source of
operands. So, it is pointing to one of the registers you have got a 32 bit register file, so it
will point to one of the register for example, it can be s 2 dollar s 2 that is register dollar
is 0 dollar s 1. That means the we can add the contentof s0s2and s 1s0 and s 2 stored
the result in s 1, so that will be the that will be the register addressing. So, where all the
operands are involve the register and obviously here we using art type instructive format
and coming to base or displacement addressing.

As you can see here operand is at memory location whose address is some of the register
and constant, so here that 16 bit address field. You know this format we have seen 16 bit
is provided here that 16 bit is added with the content of registered that is less register. So,
it is called the base or displacement addressing, so there is a base register is 0 which is
used so here your using s 0, but you can do some other register. Then, you are using this
load word dollar s 1, so in your loading with the value of I mean content of a memory
location into a register s 1, so this is essentially load instruction and load instruction will

load some value from memory.

It will load into a registered and you can see the addressing how the effective generated
addressing effective generated by adding the content of a registered with this

displacement which is providing as part of the instructions. Now, let us come to

immediate addressing as you know an immediate addressing you provide the operand as
the part of the instruction. So, operand is constant within instruction, so it is add | stands
for immediate dollar s 1 comma dollar s 0 comma 4. So, 4 is the 4 is the constant, so you
are adding the content of a register and this will be storing the result in the memory in

the register, so this is immediate addressing.

So, we have seen that r s r t and this part is the that constant valued that is provided, then
you can have p c relative addressing relative addressing is very useful particularly in
situation where you will be doing let us say jam branch. This type of an instruction for
example, branch if equal that means the content of s 0 and s 1 are same we will branch to
memory location where that 16 which is provided here that as here | mean as the part of

the instruction.

That will be added with the content of the program counter to generate effective address
and i will branch to the memory location that is content of p ¢ plus 16, 16 is provided
here, | mean as part of the instruction. So, this is how p c relative addressing used to
generate the effective address with respect to the program counter. So, this is useful in
writing loops the program will be looping within a from one location to another with
respect to the present value of program counter you can specify the displacement and

accordingly it will be doing the looping.

(Refer Slide Time: 25:54)

MIPS Addressing Modes

* Pseudo-direct Addressing
— Address is 26 bits of constant within instruction
concatenated with upper 6 bits of PC (e.g., j 1000)

I ap I s l t l address I

I_" : ’—‘E WI“I

[B |

Then, it has got pseudo direct addressing, so pseudo direct addressing why it is call
pseudo direct addressing as you know in direct addressing that address has to be full
address in this particular case full address is 32 bit. So, you know we do not want to
increase the size of the instruction beyond 32 bit, so op code you have to leave 6 bit for
op code. So, you are left with only 26 bit, so you have got address is 26 bit of constant
within instruction is concatenated with 6 bit of the program counter. So, the six bit that
26 bit is concatenated with the program counter value 6 bit is the program counter value
6 bit will come from the 6 bit program counter concatenated and remaining 26 will be
taken from instruction. That will generate the effectiveness, so this is how pseudo direct

instruction addressing is done.

(Refer Slide Time: 27:09)

Survey of MIPS Instruction Set

* Arithmetic

* Addition

—add $s1, $s2, $s3 # $s1 = $2 + $53, overflow detected
—addu $s1, $s2, $s3 # $s1 = $s2 x $53, overflow
undetected

+» Subtraction

—sub $s1, $s2, $s3 # $s1 = $s2 - $s3, overflow detected
—subu $s1, $s2, $s3 # $s1 = $s2 - $s3, overflow
undetected

* Imnmediate/Constants

- addi $s1, $s2, 100 # $s1 = $s2 + 100, overflow detected
- addiu $s1, $s2, 100 # $s1 = $s2 + 100, overflow
undetected

Now, let us look at the survey of MIPS instruction set | have discussed about the various
data types | have discussed about different format, | have discussed about the various
addressing mode. Let us discuss some represent instructions and from the instructions set
for example, addition simple add with overflow detected add u overflow un detected. So,
you can perform addition without detecting overflow and you can perform addition
without detecting overflow.

Similarly, you can do subtraction detected and subtracted without detection of the
overflow. Then, you can add with some immediate data as | have already told and that

also you have got two a variation addition with a constant with over flow detected are

addition with a constant immediate value with over flow undetected. So, these are
various arithmetic operations, but these are some of the representing you have got to

multiply.

(Refer Slide Time: 28:24)

Survey of MIPS Instruction Set

* Arithmetic

* Multiply

—mult $52, $s3 # Hi, Lo = $s2 x $s3, 64-bit signed product
— multu $s2, $s3 # Hi, Lo = $s2 x $s3, 64-bit unsigned
product

* Divide

—div $s2, $s3 # Lo = $52/$s3, Hi = $s2 mod $s3
—divu $s2, $s3 # Lo = $s52/$s3, Hi = $52 mod $s3,
unsigned

* Ancillary
— mfhi $s1 # $s1 = Hi, get copy of Hi
- mflo $s1 # $s1 = Lo, get copy of low

So, here we will see that two register that means s 2 and x 3, so s 2 and s 3 are having the
operand and result will be store in a s 2 a because your result is 64 bit. Whenever you
will get 64 sign product in the same register s 2 and s 3 by which is provided as a part of
the unsigned product, then multiple unsigned product. Here, it is same except you are the
result is unsigned the numbers are unsigned, then you can do division again two register
involved two register s 2 and s 3 and you will be dividing that s 2 by s 3 so that higher
byte it will be dollar s 2 mode s 3.

So, this is how it will be perform the defection and defection unsigned will be done in
the similar way. There are some ancillary instruction m f h i is just essentially to get a
copy hi get copy of hi that means you are higher order bit. That means copy lower adder

bit getting copied, so these are some ancillary instruction.

(Refer Slide Time: 29:55)

Survey of MIPS Instruction Set

* Logical

« Boolean Operations
—and $s1, $s2, $s3 # $s1 = $s2 & $53, bit-wise AND
—or $s1, $s2, $s3 # $s1 = $s2 | $s3, bit-wise OR

* Inmediate/Constants
—andi $s1, $s2, 100 # $s1 = $s2 & 100, bit-wise AND
—ori $s1, $s52, 100 # $s1 = $s2 | 100, bit-wise OR

» Shifting :
—sll $s1, $s2, 10 # $s1 = $s2 << 10, shift left
-srl $s1, $s2, 10 # $s1 = $s2 >> 100, shift right

So, these are the arithmetic group then you add logical group and or it will perform bit
wise operation on the content of register s 1 and s 2 and sorry s 2 and s 3 results will be
stored ins 1 or dollar s 1, s 2 and s 3 that is here. It is or operation or dollar s 1 comma
dollar s 2 comma s 3, it means that it will perform operation of the content dollar s 2 and
s 3 and result it will be storing s 1 based on one. So, bit wise and or you can perform
addition with immediate data again it will perform operations with the content of with

the value that is provided as constants will be using here instruction format.

So, this hundred is provided as a part of instruction and it will do bit wise and or
operation store the result in s 1 and the content of s 2 result is storing s 1. Similarly, you
can do dollar s 1 comma s 2 comma 100 is the constants that is provided in the part of
instruction. So, you will be doing dollar in the s 2 will be or bit wise is or operation in
the hundred obviously inside extends of form and then it will store the result in s 1 and
you can shifting. Here, you may recall that 5 bits where use expressively left for shifting
operation so here you can do the shifting, so this ten the five bit is representing 10. So,
you are doing shifting constant of s 2 by 10 bit and shift left your doing storing store the
result in s 1. Similarly, here that 5 bit will providing 10, so it will do the shifting right

shifting of the content of s 2 and then it will store the resultinas 1.

(Refer Slide Time: 32:05)

Survey of MIPS Instruction Set

« Data Transfer

* Load Operations

—lw $s1, 100($s2) # $s1 = Mem($s2+100), load word
—lbu $s1,100($s2) # $s1 = Mem($s2+100), load byte
—lui $s1, 100 # $s1 =100 * 2216, load upper imm.

« Store Operations
—sw $s1, 100($s2) # Mem[$52+100] = $s1, store word
—sh $s1,100($s2) # Mem[$s2+100] = $s1, store byte

So, these are the logical operation then an apart from those are data manipulation on

instruction arithmetic and logical operations are data manipulation group instruction.

(Refer Slide Time: 32:25)

Survey of MIPS Instruction Set

« Data Transfer

* Load Operations

—Iw $s1, 100($s2) # $s1 = Mem($s2+100), load word
—1lbu $s1, 100($s2) # $s1 = Mem($s2+100), load byte
—lui $s1, 100 # $s1 =100 * 2416, load upper imm.

» Store Operations
—-sw $s1, 100($s2) # Mem[$s2+100] = $s1, store word
- sb $s1,100($s2) # Mem[$s2+100] = $s1, store byte

Then, you can do data transfer data transfer is essentially between memory to load and
store that means from load means you will be loading the value from memory location to
a registered and store is you will be storing value registered to memory location. So, you
have expressive load store instruction and so load dollar s 1, 100 and within bracket

dollar s 2 that implies that you are the content of s 1 will be taken from the memory.

Location effective address is generated by adding the content of register s 2 and adding

that hundred is that 16 bit provided by using that I type instruction format.

So, this is load 1 and this is load byte you can load a bit same way and memory location
is specify in the same manner. Similarly, you can perform load operation immediate, so
lower and upper that means, so here you can load a byte you can load 16 bit you can load
full word. So, all the three provided in this manner, so here it is load upper lower
immediate and lower immediate. Also, there is another instruction, then store operations

you can do store the content of a register into memory location.

Here, it is again using that | type instruction format, so the content of s 1 stored in the
memory location by obtained by adding the dollar s 2 plus 100 is provided. The part of
the instruction an immediate data, then you can to the byte storing here it is sword

storing here, it is byte storing.

(Refer Slide Time: 34:19)

Survey of MIPS Instruction Set

« Control Transfer

* Jump Operations

—j 2500 # go to 10000

- jal 2500 # $ra = PC+4, go to 10000, for procedure call
—jr $ra # go to $ra, for procedure return

* Branch Operations
- beq $s1, $s2, 25 # if($51==9$52), go to PC+4+100, PC-relative
- bne $s1, $s2, 25 #if($s1!=$s2), go to PC+4+100, PC-relative

* Comparison Operations

- slt $s1, $s2, $s3 # if($52<$s3) $s1=1, else $s1=0, 2’s comp.
- slti $s1, $s2, 100 #if($52<100), $s51=1, else $s51=0, 2's comp.
- sltu $s1, $s2, $s3 # if($52<$s3), $51=1, else $s1=0, unsigned
- sltiu $s1, $52, 100 # if($52<100) $s1=1, else $51=0, unsigned

Then, you will be having several control transfer operation like jump branch, so jump
2500, go to 10,000, so you have to multiply with four we have seen these are bitted that
is why your multiplying 2500 4 to go to this memory locations. Then, jump there is a
procedure call again you are performing p ¢ plus 4, so jump there is a procedure call go
to ten thousand jump at memory location provided p ¢ plus 4. So, r a you can see that last
registered and that 31 that is acting as a return address, so you are adding the p ¢ plus 4

that aggress. So, that is the return address whenever you are doing the procedure call.

Similarly, here also you can see go to return address for procedure return, so register r 31
is proving you the where the content of the providing store whenever you are performing
subroutine call. Whenever you will return that time that value is taken from that register
to jump to that memory location. So, it is not taking normally you know in many micro
many processes it is taken from stack, so it is storing stack, but instead of stack here it is

using special register which is part of an instructions.

Then, you can perform various comparison operations comparison operations, you can
do, so different types comparison operations unsigned signed and so on. So, later on |
shall give you some assignment for writing program in assembler language MIPS. So,
you have to know about various addressing mode different types of instruction, so when

you will writing program in a single language of MIPS.

(Refer Slide Time: 36:51)

Survey of MIPS Instruction Set

* Floating Point Operations

« Arithmetic

- {add.s, sub.s, mul.s, div.s} $f2, $f4, $f6 # single-precision

- {add.d, sub.d, mul.d, div.d} $f2, $f4, $f6 # double-precision

- Floating-point registers are used in even-odd pairs, using even
number register as its name

« Data Transfer
- {lwec1, swec1) $f1, 100($s2)
- Transfer data to/from floating-point register file

« Conditional Branch
- {c.lt.s, c.it.d} $12, $14 # if ($12 < $14), cond=1, else cond=0
- {bclt, belf} 25 # if (cond==1/0), go to PC+4+100

Then, it will perform various floating point operations, so various arithmetic operations
single procession and double processions and floating points are used in even odd pairs,
whenever you are using double precision you will be requiring two registers. So, even
odd pairs are used and using even number register as its name, so you have to give the

name of register, but it will involve the two register.

Similarly, you can do data transfer involving floating point operations, so transfer data 2
or from floating point register file that can be done and conditional branch can also be

done based on floating point result. So, depending on this operation whether the

condition satisfied or not branch will take or not. So, this type of different conditional

branches involving floating point operations is also provided part of the instructions.

(Refer Slide Time: 38:00)

Case Study

OMIPS Instruction Set Processor

Now, so far what | have done | have introduce to you instructions set architecture, now
what | shall do we have to design a procedure which will implement the instructions that

I have discussed, so | shall discuss about MIPS instruction set processor.

(Refer Slide Time: 38:27)

Introduction

O Starting point:
n The specification of the MIPS instruction set drives the design of the
hardware.
u Will restrict design to integer type instructions
U Identify common functions to all instructions, and within instruction
classes — easy to do in a RISC architecture
n Instruction fetch
m Access one or more registers
m Use ALU
O Asserted signals - a high or low level of a signal which implies a logically
“true” condition ... an “action” level. The text will only assert a logically
high level, ie., a “1",
O Clocking
m Assume “edge triggered” clocking (as opposed to level sensitive).
[Adstorage circuit or flip-flop stores a value on the clock transition
edge.
n Model is flip-flops with combinational logic between them
n Propagation delay through combinations logic between storage
elements determines clock cycle length.
mn Single clock cycle vs. multi-clock cycle design approach

Here, it is the different points that you have to remember first of all starting point is the

specification of the MIPS instructions set derives the design of the hardware. As |

already told instruction of architecture acts as a specification and that you have to the
processor designer have to use those instruction to realize the to implement the
processor. The second is and of course, to make the design simpler will restrict to integer
type of instructions.

We have already seen MIPS, MIPS providing operations, so floating point we are not
considering for the purpose of implementation to make to make the life simpler. We have
only we shall only take into consideration integer type of operations not floating point
then identify the common functions to all instructions and within instruction classes.
Whenever you realize a hardware you have to do kind of optimizations and that is the
reason you have to identify common functions to all instructions and within instruction

classes so that you can do instruction fetch access one or more register use ALU.

So, particularly by using risk architecture it is easy to identify the commonality of the
instruction and the various instruction classes and that will help you in simplify the
implementation. Otherwise, you know if it is not a risk processor that implementation of
the instruction will variable addressing i mean variable instruction format variable length
of instruction and operations. It is extremely difficult an asserted signals a high or low
level of a signals which implies a logically true conditions an action level that this here

statement all I am trying to tell signals are high active.

(Refer Slide Time: 40:47)

Hioh -actiu J

L | = O .jf L2 = ‘J

L]
— e _ [
:d""f }/';:-_,"", / L2 -(?-"1}1,.5'/. - & .'J i ;

You know it can be make it low active we can make high active suppose this is your
processor there is a input and that input whenever it is high active implies in this way.
On the other hand whenever it is low active it is represented in this way there is a circle
here. So, in this particular case it is assume that the inputs are signals are high active that
means you will be using this kind of convention, whenever you will be generated

statement instead of making low active.

Then, coming to the clocking we shall we are using edge triggered clocking as opposed
to level sensitive you know by clock we may this kind of signal which will be generated
by clock generated. It can be a crystal control accelerator which will generated fixed
clock now it can be either level density or it can be in our case, it will be assume that this
is edge generated that means all be changes will be taking place at the edges. So, this is
edge sensitive because these conventions are assumptions are very important whenever
you design a circuit because you have to use different components like flip flop. It has to
be edge flip flop not levels flip clocks, so in storage circuit of flip flop value on the clock

transition edge.

As | have already told model is flip flop is communication logic between them, so model
is here you have got some combination logic. Here, you have got flip flop of storage
element on either side, so your input is coming from flip flop combination circuit will be
performing different things that is your processor that we shall realize and store the result
in flip flop. So, that will be done in one clock cycles, now we assume single clock cycle
that means the combination | logic delay of this will be such that it will be one clock

cycle delay of the circuit will be same.

That means the clock frequency cannot exceed this, this is the time period clock
frequency cannot exceed 1 by t because that is the delay of the combination logic if you
use higher clock frequency, then you will get incorrect result here. So, that is the
assumption delay made propagation delay through combination logic between storage
elements determine the clock cycle length then single clock cycle verse multi clock cycle
what | shall discuss. Here, we are restricted to single clock design, you can design the
processor using multiply clock cycle and how it can be done, I shall explain later, but for

the time being we are assuming that it is a single clock based.

(Refer Slide Time: 44:20)

Single Versus Multi-clock Cycle Design

QO Start out with a single “long” clock cycle for each instruction .
m Entire instruction gets executed in a single clock pulse
m Controller is pure combinational logic
m Design is simple

= You would think that a single clock cycle per instruction
execution would give us super high performance - but not so:

Slowest instruction determines speed of all instructions.

U Because various phases of the instructions need the same
hardware resource, and all is needed at the same time (clock
pulse)

= Some hardware is redundant - another disadvantage of
single phase
Examples:
2 memories: instruction and data memory
2 adders and an ALU

Now, we are starting with single long clock cycle for each instruction that means to
perform each instruction respective of the type whether it is a data manipulation or data
transfer or branch or control transfer. Whatever it may be all instructions we are
assuming that they will perform in a single clock cycle and entire instruction gets

executed in a single pulse controller is pure combinational logic.

Since, it is done in a single cycles o clock controller is a pure combinational logic and
this is done to make the design simple. Later on, you know when we shall be considering
other things like pipe lining more complex things. Then, you shall see design will be
quite complex, but is the starting point to make the life simpler we are assuming that it is
single clock pulse. Now, you may think that single clock cycle per instruction execution

would give as super high performance.

(Refer Slide Time: 45:45)

A ‘ T
'(d:da N\ Wl —Car Tmlandat

\ -] - '
\ ,’ o b Lo L cl oC k

o b e
: 1 ! *
Id

So, what I am trying to tell you may assume that since everything each instruction
executed in a single clock cycle we shall get very good performance, but unfortunately
that is not true reason for that is the clock cycle frequency. This time period of the clock
will be determine by the worst case delay of an instruction suppose you have got
different instruction of different kinds and each of them will take different time to
perform for example, if it is a simple data manipulation. Then, for example, that
registered adding the content of register and storing the value in another register that may

take some time.

However, when will be redeem load type of instruction we have to either load some
value from memory to a register or store some value for register to memory. So, when it
will involve memory it will take longer time so instruction are not of equal length in the
sense execution will be different and your clock frequency f will be restricted a clock has
to be less than the f. You know the case instruction in other words the slowest instruction

will design the clock frequency.

So, you are not really achieving a much and frequency, you know the slowest instruction
determine speed of the instructions and because various phases of the instructions need
the same hardware another important aspect is you know. Since, you are doing
everything in one cycle you will require more hardware if you doing multiply cycle than

there is a possibility of reusing some of the functional units for different purpose. For

example, for the calculation of address to calculate for the performing addition. So, these
things can be done by using a single functional unit adder whenever you use multiply

clock cycle, but if you use single clock cycle.

Since, it is done in one goal you have to duplicate adders and will see the redone more
that means the hardware is redundant other disadvantages of single phase for example,
we shall be using two separate memories, and one is your instruction memory. Another
is your data memory one memory from where instruction should be fetch another

memory from fair data will fair whenever your performing load and store.

So, if you use multiply cycle multi cycle design then you can have a single memory, but
whenever it is a single cycle design you have to use two separate memories because you
have to fetch instruction and also load or store data. So, you have to in a single cycle, so
two separate memory will be required and as | already told 2 adders and an ALU.

(Refer Slide Time: 49:30)

Design Summary

O Has a performance bottleneck
m The clock cycle time is determined by the longest path
in the machine
m The simple jmp instruction will take as long as the load
word (lw)
m The instruction which uses the longest data path
dictates the time for all others.
O What about a variable time clock design?
m Still a single clock
m Clock pulse interval is a function of the opcode
El gverage time for instruction theoretically improves
ut
m It difficult to implement - lots of overhead to overcome

 Let’s start simple with a single clock cycle design for
simplicity reasons and later convert to multi-clock cycle.

So, here is our design summary, it has some performance bottleneck the clock cycle time
is determined by the longest path in the machine the simple jump instruction will take as
long as the load word. The instruction which uses the longest data path dictates the time
for all others, so this slowest instruction will decide the clock frequency what about
variable clock design. So, to overcome that there is one possibility that is your variable

time clock, so earlier we are assumed that each clock is same duration this one this one

all are of same duration. Instead of that, suppose you are performing each step smaller

time, so this is your cycle if it takes longer time will be like this.

It takes still longer time the clock cycle can be like this if it takes a smaller time another
clock cycle smaller duration. So, what you are trying to do you will be generating clock
cycle of different time period, so this is variable time clock. So, if you do that you are
performing each single cycles, but each clock cycle is different duration you may be

asking why not use this, but this will definitely complicate the design of the clock circuit.

Normally, you know you are using a crystal accelerator, so which will generate a fix
frequency, but whenever you go for this kind of variable clock then the clock frequency
is not fixed so your clock generated circuit will be very complicate. Also, you identify
what will be your exact timing, so clock pulse interval is a function of the op code, so op
code will design what will be the duration of this clock t 1 or t 2 or t 3 this will be

decided the op code.

That means after you use the op code, the op code will specify that this is the clock
frequency for this particular time for this particular instruction and accordingly the clock
has to be generated. So, this will make the design pretty complex, so let us start simple
with a single clock cycle design for simplicity reason and later consider multiple clock
cycle and incorporate more complexity like pipelining and other things. So, like this let
us stop here, let us stop here and we shall assume our discussion on the processor design

in a next class.

Thank you.

