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Hello and welcome to today's lecture, we have discussed various techniques for 

increasing the instruction level parallelism to enhance the speed of processor in the last 8 

and 9 lectures. So, before we start, a new topic that is how you can enhance the speed of 

memory by using hierarchical memory organization, today we shall discuss about some 

problems, in this tutorial class. 

(Refer Slide Time: 01:34) 

 

So, first problem is using Amdahl's law compares speedups of a program that is 98 

percent vectorizable, for a system with 16 64 256 and 1024 processors what would be 

reasonable number of processors, to build into a system for running such an application. 
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As you know the speed up can be expressed in the form of an equation, where speed up 

will be equal to 1 by 1 minus fraction enhanced, as you know a fraction of the program 

can be executed in enhance form. So, 1 minus fraction enhanced plus fraction enhanced 

and divide by the speed up, because of enhancement. So, here the speed up, that we are 

discussing maybe because of several reasons, the speedup may arise, because of you 

know pipelining, because of you know as you know, you can use parallelism, we have 

already discussed various techniques. 

Whatever you do, that may not be applicable, to all parts of the program or you may use 

a special processor, like floating point processor. So, in such a case enhancement will 

take place, only in the small part. So, using this expression, we can do the computation, 

so if you consider 16 processors, it will be speedup will be equal to 1 by 0.02 that is 1 

minus this 90 percent is vectorizable, vectorizable means you have got a vector 

processor, where you can execute in parallel, 90 percent 98 percent. 

So, 1 minus 0.98 is 0.02 plus 0.98 by 16 where, 16 is the number of processors, you can 

use whenever you do the vector processing, so since you have got 16 processors, this will 

be 0.98 by 16. So, the speed up that you get is 12.3 by using sixteen processors, so in a 

similar way, you whenever you use 64 processors, you get a speedup of 28.3 and 

whenever, you use 256 processors, you get speedup of 42 and similarly whenever, you 

use one 1024 processors, you get a speedup of 47. 



So, as you can see here, the cost performance ratio, that means the number of processors 

that you are utilizing is increasing, but the speedup of increasing and not increasing at 

that rate. So, if you consider, this cost performance, cost means, essentially in this 

particular case, cost represents number of processors and performance means, speedup 

that you have achieved by using, so many processors. If you consider that, you will find 

that, for the first case speedup is very close to 1, it is 16 by 12.3, because 16 is a number 

of processors and speedup is 12.3 16 by 12.3. 

In the second case, it is 64 by 28.4 little less than 4 on the other hand, in this particular 

case, it is 256 processor you are using and 42 is the speedup. So, you are cost 

performance ratio is 256 by 42, it is close by 6. On the other hand in this case, whenever 

you go for 1024 processors, you get only a speedup of 47. So, where is marginal increase 

in speed up from 42 to 47, although the cost is increasing cost by cost performance ratio 

is quite high 21, in this particular case; that means, 01024 by 47. 

So, therefore, we find that, since the speedup is increase in speedup is marginal and cost 

performance is increasing significantly, whenever we go from 256 to 1024 processors. 

So, reasonable number of processors that, you can use in your system is 42, so you can 

conclude from this observation, so the second problem that, we shall be discussing is 

also related to this.   
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In this case using Amdahl's law compare speedups, for programs with vectorizability 

decreasing from 98 percent to 95 percent 90 percents 85 percent 80 percent. Here, the 

objective is to see, how these speedup changes as the vectorizability or later on, we can 

say in terms of your instruction level parallelism, you can say vectorizability. 
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So, or it can be instruction level parallelism, a kind of another parameter, I mean what is 

the parallelism that is exists in a program, so vectorizability and instruction level 

parallelism is somewhat, similar in notion. So, as you as the instruction level parallelism 

decreases, there also we will find that, you will not get good speedups. Similarly in this 

particular case, we are considering in a context of vector processors, where you can 

perform computation in parallel using a large number of processors. So, as the 

vectorizability decreases, how the performance degrades, even if you increase the 

number of processors. 
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So, that is the study that, we can make from this problem, so we can see here, the 

vectorizability is decreasing, for a system with number of processors increasing from 4 

to 16 to 64 and 0 1024. So, we shall be increasing the number of processors and for 

different cases of the vectorizability. So, solution is given in this case, in the tabulated 

form, so whenever the vectorizability is 98 percent and as you increase the number of 

processors, we can see the speedup is increasing, but obviously, the cost performance 

will be decreasing as you increase the number of processors. 

So, for 4 processors, you are getting a speedup of 3.77, it is very close to 1 for 16 

processors again little less than 1 and as we have discussed in a first problem and in this 

case as we have seen that, the reason will the number of processors that, you can use in 

your system is 40 is 256 and you will get a speedup of 42 40, roughly close to 42. Now, 

if the vectorizability decreases to 95 percent, you can see for the same number of 

processor the speedup is less, so speedup is less, but the speedup decreases more rapidly 

as we increase the number of processors. 

So, you can see here the speedup is 9.1 for 16 processors little more than half, I mean 2 

is to 1, then for 64 processor, it is close to I mean, it is 4 is to 1, for 256 processor, it is 

less than 10 about, 12 is to 1. And so you can see the speedup is decreasing, compared to 

the previous case, similarly as you have decreased the vectorizability, similarly for 90 



percent vectorizability, we see the speedup for different number of processors is 

increasing, but there is very small increase, as you go for larger number of processors. 

So, as you increase the larger number of processors the speedup does not increase much 

and similarly for 80 percent increase, 85 percent vectorizability in a program. You find 

that speedup is 2.76 for 4 processors 16 for 4.92 processor 6.12 for 64 processor and you 

can see, if you even, if you increase from 64 to 256 processors, the speedup is only 

increasing by fraction; that means from 6.12 to 6.52. And again, if we increase the 

number of processors to 1024, the speedup will be only 6.63, so very small increase in 

speed up. 

And similarly, for 80 percent vectorizability, situation is that much more worse, as you 

can see for 4 processors, we get a speedup of 2.5 for16 processors only 4 4 is to 1 cost 

performance for 16 64 processor little more than 4 and you can see it, does not exceed 5, 

even for 1024 processors. So, what is the lesson that, we learn from this observation. 
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So, the lesson that, we learn from this observation is from it is evident from that table 

that, as the vectorizability decreases, the speedup keeps on decreasing, for a given 

number of processes that, we have seen. Moreover the speedup decreases rapidly for 

higher number of processors, therefore it is more cost effective to use large number of 

processors, when vectorizability is high, so that means, if we translate, it in terms of I L 

P. 
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So, unless you have large ILP instruction suction level parallelism, you cannot really go 

for, I mean large number of stages in a pipeline or if you are using superscalar processor 

then you should not increase. If you increase go for say superscalar processor then you 

should not increase the number of functional unit in the superscalar, if the instruction 

level parallelism is not high, that means, that is the reason why. You will see the number 

of functional units used in superscalar processors does not exceed beyond 6 typical 

values are 456 not more than that and this is what we have learned from this problem. 
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Let us now switch to third problem, in this case a workstation uses 1.5 mega hertz 

processor with a claimed MIPS rating of 10 MIPS rating, to execute a given program 

mix assume a 1 cycle delay, for each memory access, what is effective CPI of the 

computer, CPI of the processor. You can see in this particular case, the MIPS can be 

expressed as clock rate by C P I into 10 to the power 6, also CPI is equal to, so you can 

therefore, CPI that you get is clock rate by MIPS into 10 to the power 6 and by 

substituting different values, we get 1.5 into 10 to the power 6 by 10. 

So, into 10 to the power of 6, that is on y only 1.15, so CPI is equal to 0.15, what does it 

mean, it is a superscalar processor and since it is superscalar processor, that is why you 

are getting a CPI of less than 1. So, CPI of less than 1 can be obtained, for superscalar 

processors and in this case, you get CPI of 1.5 and that is a reason, why you know, in 

case of CPI, in case of superscalar processor and normally instead of stating in terms of 

CPI, it is stated in terms of instruction per cycle IPC and that will be more than 1. 
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Let us now go to the second part of the problem is, let the processor speed is upgraded to 

30 mega hertz clock keeping the memory system unchanged, if 30 percent of the 

instructions require 1 memory access and another 5 percent requires 2 memory accesses 

per instruction. What is the performance of the upgraded processor with the compatible 

instruction set and equal instruction count in a given program mix. 



So, in this particular case, what is happening, you have increased the speed of the 

processor and however, using this value the 30 percent of the instructions require 1 

memory and 5 percent requires 2 memory. So, if we substitute it, here that is your 

vocalist average number of memory accesses per instruction will be 0.3 into plus 2 into 

0.05 that is 0.4, so number of extra cycles will be 0.4 0.04 into 1. So, if we had this with 

0.15, we get a CPI of 0.55. 

So, that means, were adding with the previous case, whatever we got that is your 0.15, 

now because of the memory accesses, there is a delay and so your CPI is now 0.55. So, 

with this CPI, we get a MIPS rating of 30 by 0.55 that is your 54.5, so that is the MIPS 

rating that, we get in this particular case. So, we can see although, it is a superscalar 

processor with a large, I mean quite large degree, we are not getting much benefit, 

because of the delays in the memory. 
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So, now let us switch to problem 4, in case of problem 4 consider the following code 

segment, code sequence of MIPS, where the each instruction carry their usual meaning, 

add R 2 comma R 5 comma R 4. So, here you are writing the value into add 2 by adding 

the content of R 5 and R 6 and so it in the second instruction again, you are adding the 

value of R 2 with that of R 5 and storing, it loading it in R 4. And here, it is a store word 

you are storing the content of register R 5 into memory location, computed by adding 

100 with the content of R 2. 



So, you find that and 4th instruction is again an add instruction, which is storing the 

value of the content of R 2 and R 4 in register R 3. Now, we find you have got a number 

of the question was enlist each of the data dependencies present in this code along with it 

is type, specify which of the data hazards present in the above code sequence can be 

resolved by forwarding, justify your answer. Now, you see this instruction one and 

instruction 2, these 2, they have read after write hazard, because you know, you are 

reading after this write. 

So, there is read after write hazard busy between the instruction 1 and instruction 2 

similarly, instruction 1 and 3 also has a has got a read after write hazard. Because, you 

are using R 2 to compute the effective address, that is used for the purpose of storing in 

memory location, I mean in memory, in content of R 5 is being stored in a memory 

location computed by using R 2 100. 

So, again this is a read after write hazard similarly the 4th instruction is also having a 

read after write type of hazard, because of R 2 R 2 and your writing value of R 2 in 

instruction 4 and there is another hazard present here, you see that, between R 2 and 

instruction 2 and instruction 4. So, that content of that R 4, you have loaded in I mean, 

the computed by using the content of R 2 and R 5 and stored it on in R 4 and R 4 is being 

used instruction 4. 

So, you find, there are 4 read after write type of hazards, the question naturally arises, 

which of them will lead to hazard will all of them lead to hazard or some of them will 

lead to hazard and then we can answer the second part. So, let us see, which of them will 

lead to hazard, let us consider the 4 instruction. 
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That you know, that you can write it, in this way instruction fetch, instruction decode 

instruction execution then memory access and write back and second instruction decode, 

instruction fetch, instruction decode, instruction execution, memory and write back. 

Third is instruction fetch, instruction decode, instruction execution then your memory 

and write back and this is the 4th instruction fetch, instruction decode, instruction 

execution, memory operation and write back. Now in between, you have got the registers 

pipeline registers present in all the cases, so here also you have got pipeline registers 

present in all the cases. 
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Now, the question was enlist each of the data dependencies present in this code specify, 

which of the data hazards, present in the above code sequence can be resolved by 

forwarding. First of all, let us find out, I mean we have already considered the data 

dependencies and now, which of them can be resolved by using forwarding, let us see. 
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Now, whenever this instruction execution is going on, this instruction execution has 

already taken place, so directly you can provide the data by forwarding from here to 

here. So, the first hazard, as you can see can be overcome by first the hazard that will 

arise will overcome by using forwarding, then 2nd 1 here, 2nd 1 again can be overcome 

by using forwarding, so you can see by using forwarding, this can be overcome. 

Now, the 3rd hazard that, you have already discussed that between 1 and 4, read after 

write although, there is a dependency, but by the time that instruction execution is taking 

place data is now is already available in the in the register. So, you can directly feed it 

from here to the 4th instruction, so you can see here, this will this 4th instruction will not 

lead to any hazard, so there is no need for forwarding in this case. 

So, only 1 and 2 will require forwarding 1 and 2 can be resolved by using forwarding, 

the 3rd one need not be resolved by using forwarding, because already, the data has been 

written in to the register, it can be written from the register itself. So, there is no need for, 

reading it from the pipeline register, but it can be read from the architectural register, that 



is present in the ALU, so it can directly read from R 2 itself, so it will come to the can be 

provided to the instruction. 

Now, let us come to the 4 last one between 2 and 4, you see your 2 and 4, you are here, 

you will be reading, so that now the forwarding can be done, because it is available here, 

reading will take place here. So, you can from the, from this stage, you will do the 

forwarding and it will go to the instruction execution stage, so you will require 3 

forwarding to resolve the hazards and that is what I have written 1 2 4 can be resolved by 

forwarding ALU output and memory output. 

However, the 3rd one does not lead to any hazard, so this was this is the problem that 

deals with the dependencies and hazards that can be resolved by using forwarding. So, 

forwarding is a expensive hardware that is used, but this is very useful from this, as it is 

clear, it can overcome lot of hazards with the help of the forwarding unit. 

(Refer Slide Time: 24:42) 

 

Now, let us come to the problem 5, time required to perform instruction fetch is 4 

nanosecond, instruction decode is 2 nanosecond, instruction execution is 3 nanosecond, 

operand fetch in memory is 4 nanosecond write back is 2 nanosecond. So, what has been 

done here, we are considering a processor. 
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Where the instruction fetch can be done in 4 nanoseconds, instruction decode can be 

done in 2 nanoseconds, instruction execution can be done in instruction execution can be 

done in 3 seconds then memory operation can be done again in 4 nanosecond. Because, 

instruction fetch is reading from instruction memory and this memory operation is 

usually, involved with that data memory. So, again four cycles will be required and then 

final operation that is your operand fetch or write back you can say, in is performed in 2 

cycles. 

So, these are the, this is the value, that is given in your that can be performed, now 

whenever you implement single cycle, non-pipelined processor then what you try to do, 

you execute, you perform all the operation in 1 cycle. That means, the instruction fetch 

maybe, it is taking 4 cycles instruction decode 2 cycles then 3 cycles 4 cycles. So, 4 2 3, 

I mean, nanosecond 4 nanosecond 2 nanosecond 3 nanosecond 4 nanosecond and 2 

nanosecond. 

So, the they will be considered in one cycle, since this is the single cycle then it will 

require, how much time, it will require 4 plus 2 plus 3 plus 4 plus 2 that means, total 

number of cycles that, you require is 10 plus 15 nanosecond. So, 15 nanosecond will be 

the time period, of the single cycle implementation, however, the clock frequency, that is 

the speed, which is specified in terms of clock frequency will be 1 by 15 into 10, the 

power 9 hertz or you can say 1000 by 15 mega hertz. 



Now, this is for single cycle implementation, now let us assume that, we are interested in 

multi-cycle implementation that means, each of these operations instruction fetch, 

instruction decode instruction execution memory and write back all are performed in 

different cycles, in a multi-cycle implementation. So, as you know, there are 3 possible 

alternates, single cycle, multi-cycle then pipeline, so before we consider pipelining, 

pipelined in multi-cycle implementation, what will be the number of cycles required. 

Number of cycles will be the clock frequency will be decided by you know, that the time 

period of the clock will be 4 nanosecond, that is the time period and the frequency clock 

frequency, that means, your speed will be 1 by 4 that is 1000 by 4 mega hertz, that is 

your 250 mega hertz. So, whenever we go for multi-cycle implementation this 

instruction fetch, instruction decode, instruction execution memory and write back all 

these cycles may not be required to execute in different programs. 

For example, whenever you are using ALU operations, if it is a load store architecture 

and memory operation is performed separately by using, load store architecture and ALU 

operations are performed separately. In such a case, this particular clock cycle will not be 

necessary, whenever it is ALU type instruction on the other hand, if it is a memory type, 

then it will be required. So, in such a case all the 4 cycles 5 cycles may not be required, 

in different instructions to execute different instructions. 

However this speed will the clock frequency will be 250 mega hertz and if all the cycles 

are required, total time will be longer then single cycle implementation. However, you 

may be asking, what is the benefit of multi cycle implementation, the benefit of multi-

cycle implementation is the hardware resources, that is required can be less. Why the 

hardware resources that is required can be less, for example, the you can use same 

memory, there is no need for 2 separate memories, you can use same memory, whenever 

you go for multi-cycle implementation. So, multi-cycle implementation will not require 2 

separate memories, similarly you will not require 2 ALU, for these 2 operations. 
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So, that is why multi-cycle implementation requires lesser hardware, so that is the 

reason, why multi-cycle implementation is also popular and compared to non-pipelined, 

because in non-pipelined all of them are performed in single cycles, so you will require 

separate hardware resources, for performing all these 3 operations. Similarly whenever 

we go for pipelined implementation, we require separate hardware resources, why have 

you require different hardware resources, because you will see different instructions will 

be executed in a overlap manner. 

So, you will require to separate memories for 1, for I mean 1 for instruction and another 

for data, you will require 2 separate functional units maybe, for instruction execution and 

for computation of whenever, you perform the here, you will perform the computation of 

that P C plus 4. So, you will require separate hardware in your pipeline implementation, 

that means, in the, if you consider the hardware requirement, the single cycle and 

pipeline implementation will require more hardware. And regarding the clock frequency, 

for pipeline implementation, the for pipeline implementation the clock frequency will be 

same as the multi-cycle implementation. So, that way it will be a clock speed wise, it will 

be same, let us see the answer for this. 
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So, what will be the clock speed, for non-pipelined single cycle processor, based on the 

same technology 5 stage pipelined processor is designed using latches requiring 0.5 

nanosecond, what is the clock speed of the pipelined processor. So here, additional delay 

will be required, because of the latches; that means the I told you that, the clock 

frequency will be same, for multi-cycle implementation and pipeline implementation. 

But that is not true, if we do not assume that, the latches will have 0 delay, if we assume 

non 0 delay for latches, then the speed of pipeline processors, for the clock frequency of 

pipelined processor will be more. So, you have to and the delay of the latches and 

assuming that, there is no stall, what is the speed up of the pipelined processor with 

respect to the non-pipelined processor to execute 1000 instructions. So, this is your 

problem, we have already discussed different 3 different situation, now let us go to the 

solution. 

So, time period for the non-pipelined single cycle processor will be 15 nanosecond, as I 

have told, so the frequency will be 1000 by 15 mega hertz, similarly for pipeline 

processor, it will be equal to maximum of the stage time. So, in this case maximum is 4, 

so you will require 4 plus delay of the latch, which has been given as 0.05 that is, that 

means, equal to 4 plus 0.05. So, you will require a frequency speed of 1000 by 4.5 mega 

hertz, that is that will be the speed of operation, for this particular pipelined 

implementation. 



And as I have already told for, if it is multi-cycle implementation then speed will be 

thousand by 4, now speedup is will be equal to 1000 into 15. 
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That is the we know that, speedup is calculated in this way time for execution, for non 

pipelined and by time for execution time for pipelined, in our case the time required 

execution time required for non-pipelined will be equal to we are executing 1000 

instructions. So, 1000 into 15 nanosecond, so that is the time required, for non-pipelined 

implementation on the other hand time required, for pipeline implementation will be 

equal to 5 plus 1000 minus 1 k plus n minus 1, as you know into 4.5, that is the time 

period of the I mean, the period of the pipelined processor. So, this value is roughly 

equal to 3.32, so you can see in this case the speedup, ideal speedup is 5 instead of 5, we 

are getting 3.32. 
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So, we are getting a speedup of 3.32, even though there is no stall, but because of the 

increase in you have to consider clock frequency corresponding to the delay of the 

largest stage, I mean maximum stage and also, because of the delay of the latch. So, you 

see, even without stall, your pipelines implementation will give lesser speedup, now let 

us switch to problem 6. 
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So, consider of 4 stage floating point adder with 10 nanosecond delay per stage name the 

appropriate functions to be performed by the 4 stages, find out the minimum number of 



clock periods, required to add 100 numbers, that is Z is equal to A 1 plus A 2 in this way, 

you have got 100 numbers using the pipelined adder. Assume that, the output of stage 4 

is routed back to either of the 2 inputs with delays equal to multiple of the clock period. 

So, I have already discussed about 4 stage, I mean floating point pipelined adder and as 

we have seen the functions to be performed by the 4 stages are given here, number 1 is 

adjust significant, you have 2 adjust the second significant corresponding to the exponent 

of the largest significant, I mean to the 2 exponents will not be same. So, you have to 

adjust the significant corresponding to the number having higher exponent then you have 

to add the significant in the second stage. In the third stage, you will normalize the sum 

and in the fourth stage, you will round off the sum, if you have got leading 0s. So, these 

are the 4 operations to be performed in the 4 stages. 

(Refer Slide Time: 38:47) 

 

I have already discussed about, these in my in one of my previous lectures and with the 

help of an example. So, how the adjustment of the significant is required here, for 

example 2 numbers although, we have considered decimal numbers situation will be 

same, for binary numbers, you are adding 2 numbers, but here you have to adjust the 

significant for example, in this case it is minus 1. 

So, the significant has been adjusted, for this to make the exponent same 10 to the power 

1 then you will be adding the significant to get the sum of the significant, now you may 



be asking 1 question. Sometimes, we use a term called fraction for significant, why you 

are using the name significant, conventionally. 
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Whenever we normalize a floating point number, usually you shift in such a way that, 

you start your number starts after the decimal point, it can be 1 0 0 0 1 0 that means, after 

the decimal point, it is 1, I mean, I am considering the case for decimal numbers. So, 

then you have got other numbers, so this is how normalization is done, but there is a I 

triple E standard, I triple E 7 5 4 standard, where the where after normalization, the value 

is 1.0, that means, it is one before the decimal point and that means, your shifting by 1 

and remaining numbers can be here. 

Question is why this has been done I triple E 7 5 4, the reason for that is by considering 

this, you are getting one additional bit in your fraction and as a consequence resolution is 

increasing and to increase the resolution that is used. So, in such a case, we cannot really 

call it a fraction, we have to give a separate name that is why, it is called significant. 

Anyway, so these were the 4 stages that, we have discussed, however our pipeline has to 

be little different compared to the pipeline, that is been shown in this diagram, because as 

you have seen. 
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Our requirement is assumed that the output of stage 4 is routed back to either of the 2 

inputs with delays equal to a multiple of the clock cycles, to achieve this, we have to 

modify the pipeline little bit. 
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And the modified pipeline is shown in this diagram, here what has been done, the 4 

stages are here adjust significant adjust add significant normalize sum, round off sum, 

the traditional stages that is required for hiding floating point numbers are given here. 

And these 3, these are, these blue-colored, I mean these are is essentially the latches, so 



latches are shown in between different stages, now you see the output is routed back to 

the input. However, you will require to separate latches for the 2 operands and then they 

are routed through multiplexers. 

So, in the multiplexers, you can feed either the number that is coming, that means, A 1 to 

A 100 that, you can feed or you can take the output and you can, that means, that is 

latched, that is been stored in these latches. They can be fed to this through this 

multiplexers that means, one of the operand can be say A 1 and 2 operands that can be 

fed is 1 is A 1 another is A 2 or it can be A 1 is fed here. And a number, I mean the 

output of the pipeline, that can be fed back and that will go through, this multiplexer to 

one of the as operand to the floating point pipeline adder. 

So, in this way, you can do that or what can happen, you can set the output in 2 different 

latches and then both of them can be fed, to the input of the pipelined floating point 

adder, through this multiplexers. So, to add this, I mean to achieve this flexibility, we 

have added, these multiplexers and obviously, they will require separate clocks for 

latches and control signals, for these multiplexers, in other words the controller of this 

floating point adder will be little more complex. 
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Now using these type of pipelined adder, let us see how the computation is being 

performed. So, the operation performed in different cycles are given here, on the left 

hand side, you have got the clock numbers 1 2 3 4, so in the first 4 clock cycles, you are 



adding the numbers A 1 plus A 2, we are generating partial sum, then we are adding A 3 

and A 4, which can be done, as I told by feeding here, A i and A j, that means, A 1 A 2 is 

fed here and they are selected and applied to the pipeline adder. 

So, this is how the first input is going then the second input is going and after at the end 

of 4th cycle, you will get the output, the output will be available from this stage, at the 

end of 4th cycle and that is being shown here, on the on this right side column. Similarly 

A 3 plus A 4 is fed in the second cycle and output will be available in the 5th cycle A 5 

and A 6 is fed in the 3rd cycle, output is available in the 6th cycle and a 7 plus 8 A 8 is 

fed in the 4th cycle and output is available in the 7th cycle. 

Now the control will be changed and in the 5th cycle, what will be done 5th 6th 7th, in 

the remaining cycles, what will be done, one input will come as you have seen in the 5th 

cycle. So, output is generated in the 4th cycle, which is stored in this latch, which has 

been latched here and that will be fed to 1 of the inputs, in the 5th cycle. So, this A 1 2 A 

1 2, that means the result of the addition of the number A 1 and A 2, that is been fed to 1 

arm of the adder and A 9 is fed to another arm, that means, A 9 is fed here and a that a 1 

2 is fed from here to through this multiplexers, through another input. 

So, this is how in each cycle will be feeding 1 input and partial sums will keep on 

accumulating in the pipelined registers and they will be keeping, they will keep coming 

to these inputs, where they will be latched and they will be used as input, as it is shown 

in different cycles. So, in this way cycle 5 67 8 9 and it will continue, till clock number 

96, so till clocks number 96, it will continue and where, you will be feeding 1 input from 

the output of the of the pipeline. 

And another input will come from this, from the numbers that is been given, so in this 

way, it will continue and you can see, these 4 numbers, I mean partial sums you can say, 

that in clock cycle 96. This is been available and in clock cycle 98, this is been available, 

that means, this partial sum, that means, the partial, you can see, that the addition of 

numbers, has now has is grouped into 4 and those 4 groups will, now available in the 

pipelined registers. 
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So, in one group you have got addition of A 1 plus A 2 plus A 9 plus 9 plus 413, in this 

way, it will continue till A 97, then another group, that means, this is one sum and 

another will be A 3 plus A 4 plus A 10 plus A14, in this way, it will continue till A 97 

98. 3rd group is a A 5 plus A 6 plus A 11 plus A 15, it will go to A 99 and the 4th group 

will be, so these are the partial sums, which are available in the pipeline registers. So, A 

6 plus A 7 plus A 8 plus A 12 plus A 16 plus in this way, it will continue till A 11 100. 

So, you can see, now all the numbers are added, but they are available in different 

pipelined registers, so this is available in the 96 cycles and this is available in 97 cycl,e 

this is available in a 98 cycles, this is available in 99 cycles. So, now, you have to add 

these 4 numbers, how these additions will be carried out. 



(Refer Slide Time: 49:20) 

 

So, to perform the addition of these 4 numbers, what you have to do you have to wait for 

multiple of cycles, because you have to load the first number, this number and second 

number. So, one will be available in this latch another will be available in this latch, so 

this output will be available, so in the in one cycle, it was latched here in another cycle, it 

was latched here. So, in 2 latches, these are available and then by selecting multiple 

flexors, you will be it will be fed to the to this pipelined adder. 

So, you can see in the in 98 cycles, you will be able to start adding the first 2 partial 

sums, that means, first 2 partial sums addition will start in a 98 cycle, similarly addition 

of this, can start in the 100 cycle, because output is available in the 100 at the end of 100 

cycles. So, you can see in 100 cycles, this is been started and results will be these 2 

results will be available in 102 cycles, since it is starting at 98, it will be available in the 

100 and first cycle and this will be available in the 103rd cycle and these partial sums has 

been shown as S 1 0 2 and 1 0 4. 

So, these 2, now you have to add and which can be fed to the pipelined only at the end of 

1 0 4 cycle, so in the 1 0 4th cycle, you can feed these 2 numbers. So, in between there 

where they, were latched in these 2 latches and now in the 104 cycle, that S 1 0 2 and S 1 

0 4, that means, S 1 0 2 is obtained by adding, these 2 and S 1 0 4 is obtained by adding 

these 2. So, now, you have got the sum of these 2 and you have to add these 2 numbers 

and which 1 can be fed in the 104th cycle. 



So, as you feed it in the 104th cycle, you will get the result in the 107 cycle, so that 

means, the total the final output, you will be getting at the end of 107 cycle. So, you can 

say that total number of cycles required is 4, for the first 4, where 8 numbers were fed to 

the pipeline, then you will require 92 remaining numbers, were fed, I mean 8 plus 92 

remaining 92 numbers, were fed then you will require 2 cycles, to which cycles for 

adding these 2 head cycles for this. 

And then finally, 3 cycles you will require and total is 107 cycles, so this is the last 

problem that, I wanted to discuss, in this tutorial and I suggest that, you solve problems 

from the book, try to solve. And that is the best way to learn a subject solving problems 

and that is the reason why, I have discussed some problems in this particular tutorial and 

maybe later on, I shall discuss, some more problems in other tutorials. 

Thank you. 


