
High Performance Computer Architecture
Prof. Ajit Pal

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 2

Performance

Hello and welcome to today’s lecture on performance and obviously, by that I mean

performance of the computer system.

(Refer Slide Time: 01:02)

And here is the outline of today’s lecture after giving a brief introduction, I shall define

what durably mean by performance. Then, I shall discuss about the iron law of processor

performance, the various factors on which the performance depends. And then, we shall

discuss, what do we really mean by processor performance enhancement and then I shall

discuss about performance evaluation approaches, after the performance is defined, how

can we evaluate performance and the various approaches that can be used. And another

very important aspect is performance reporting, how you can report the performance by

using a single number. And finally, I shall conclude my lecture by discussing Amdahl’s

law, which is related to performance measurement.

(Refer Slide Time: 02:09)

Performance measurement is very important because, it helps us to define one processor

to define, if one processor works faster than the other that means, we are discussing

about the high performance computer architecture. Obviously, we shall discussing

various techniques by which the performance of the processor can be improved or

enhanced. And in that context the performance plays a very key role and we have to see

how really you can measure performance and see it.

So, also it helps us to know how much performance improvement has taken place after in

cooperating some performance enhancement feature. So, you will see that we shall be

incorporating various performance enhancement features, whether in a compiler or in the

organization of the computer like pipe lining and various other things. And by doing so

how the performance is improving, that we shall know from this performance

measurement. And it also helps to see through the marketing hype, you know there is the

marketing hype that whenever a new processor introduces people say this is so much

better than other processors.

So, this how true is that hype that can be evaluated with the help of, with the help of

performance measurement. It will also provide answers to the following questions,

number one is why is some hardware better than others for different programs. So, you

will be measuring performance; obviously, by running programs and how a particular

processor is performing better, for a particular program than other program. So, that

particular analysis is very important and that answer will get from this particular topic.

Then, what factors affect system performance?

You will find that there are various factors which affect the performance obviously, the

first thing is the hardware. Hardware means the processor by with which the weight is

implemented and incorporating arithmetic logic unit then, register file, controlling unit

and so on. So, the hard ware which implements the processor that will definitely play

very important rule. Second important parameter is operating system, operating system

will schedule various tasks to the processor and obviously, operating system will also

play a very important role in deciding the performance of the processor. And also we

know, we will be using whenever writing program in a high level language. It is like c,

FORTRON and other programming languages, it has to be converted into machine

language before you can run on a processor.

And obviously, the efficiency of the compiler, the performance of the compiler will also

affect the overall performance of the system. So, these are the various factors which will

affect the performance. And last but not the least, how does machines instruction set

affects performance? You know a particular processor is characterized with the help of a

instruction set, as I briefly discuss in my last lecture.

Now, that instruction set can be different for example, it can be a for a risc processor

there can be one type of instruction set, for sisc processor instruction set is different. And

as the depending on the complexity and nature of instruction which we, which we shall

call as instruction set architecture, the, how the performance depends on that. So, that,

that, those thing those aspects are to be studied.

(Refer Slide Time: 06:22)

Question is how do you really measure performance obviously, it is time, time and time.

Time is the ultimate measure of performance and what kind of time? You will find that a

computer exhibits higher performance, if it executes the program faster. Obviously,

whenever you are trying to measure a performance, you will be measuring the execution

time. Faster is the execution time, the performance is better so, but whenever you

measure the time, there are various ways you can do it. For example if you, if you think

from this individual prospecting then, response time or left time is factor, which is

important to an individual user.

An individual user will submit a job, submit a task and after the task is submitted when

he get the result, that is the last time, that time is important when user. Because, that is

the time for which one has to wait for getting the result. On the other hand for a system

manager the perspective is different they are from system managers perspective, through

put is the most important parameter. Because he is more interested in a, in how many

jobs can be machine can run at once that means, in a multiuser, multi programming

environment a computer is executing many tasks of many users.

And obviously, how many tasks per unit time is executed by the processor, that is

important to the system manager. And what is the average execution time and how much

work is getting done by the computer. So, you can see these two are not really same,

response time and through put this two are not same and from individual point of view,

will be interested in response time, for system management point of view will be more

interesting in throughput.

(Refer Slide Time: 08:43)

Let us see what you really mean by elapsed time. So, it counts everything these can

memory axis waiting for IO running other program etcetera from start to finish. That

means, a job will be submitted and a fraction of CPU time, a particular user will get

during the running of his task. And obviously, there will be other times like the time

required speech from one task to another task, waiting time for IO and the operating

system time, these are the various times that will come. So, you can state it in terms of a

number and that number elapsed time is CPU time plus weight time, weight time can be

for waiting for IO, it can be waiting for other programs running etcetera.

It can be for because of phase fault, later on we shall discuss about all these things, then

comes the CPU times. So, the CPU time does not count waiting for IO or times spend

running other program. So, it is simply finds how the time required to perform a

particular task. So, it can be divided into CPU time, user CPU times plus system CPU

time. Obviously, operating system cause will be involved, when a particular user is

running a program. So, CPU time is equal to user CPU time plus system CPU time, then

elapsed time is equal to user CPU time plus system CPU time plus wait time.

So, that means elapsed time fees particular user encounters can be divided into three

component, user CPU time plus system CPU time plus weight time, but for this

particular course, our focus is on user CPU time. We shall not be bothered about system

time or the weight time, when the processor is running somebody else’s job. So, we shall

be primary concerned about user CPU time, that is the CPU execution time or simply we

shall call it execution time. So, that is time spend executing the lines of code that are in

our program. So, a particular user is running a program and how much time is required to

run that particular program, that is the time that will be used as the as a measure of

performance.

(Refer Slide Time: 11:15)

Now, whenever you try to measure a performance, you know performance is a relative

thing for some program running on machine x is equal to performance x is equal to 1 by

execution time. So, execution time and performance is inversely related because, the

larger the execution time, performance is worse, smaller is the execution time

performance time better. So that means, a larger execution time will lead to inferior

performance. Now, whenever you compare x with y, x is n times faster than y by that we

mean performance y is equal to n. So, this is how you shall try to measure performance.

(Refer Slide Time: 12:11)

Now before I go into these topics, another very important aspect I should tell, you know

you may be knowing that a computer is nothing but a sequential circuit, a sequential

circuit or finite state machine will require a clock. So, we are interested about time, how

do you relate time, actually it is related to clock, a computer is controlled to by a clock, a

processor. So, a clock is nothing but a repetitive, you know and this is called the time

period. Time period of the clock usually it is stated in terms of second or may be

whenever it is small, it is stated in terms of micro second or sometimes it is nano second

as the speed is increasing.

So, it is some form of time in terms of second may be micro second, nano second. So,

this is, this is, this may be called one clock period or time period. So, if tau is the time

period then the frequency of the clock is related to the time period in this manner, is 1 by

tau. So, sometimes you will see we shall try to express the execution time in terms of

number of clocks because, ultimately the processor is controlled by a clock and number

of clocks is related to the execution time.

(Refer Slide Time: 14:13)

So, let us see how we are going to express performance in terms of this various, this

clock frequency, clock time period. So, processor performance is equal to time required

to execute a program and it comprises three components. So, we can say that you know a

program is a set of instructions, then an instruction requires few cycles may be one, few

cycles, for few clock cycles to executor instructions then, one cycle will require some

time.

(Refer Slide Time: 15:20)

So, you can see we have got three important parameters a program can be decomposed

into a number of instructions, which you may call instruction count. Then each

instruction, instruction will require one or few cycles and then each cycle will take some

time.

(Refer Slide Time: 15:39)

So, this is what is shown here. So, that means, the processor performance is nothing but

instruction, number of instructions program you may call it instruction count. So, it

depends on the size of the code and then, the number of cycles per instruction that is

known as CPI of cycles for instruction. So, that CPI, the cycle for instruction can be one,

can be more than one and later on we shall see it can be less than one as well. So, and

then cycle time, clock cycle time I have already explained that is the time period, it is the

clock cycle time, that time period is can also change and.

So, it is a you have to consider all these three parameters and you will see that these three

parameters is affected by three important aspects. One is your architecture, architecture

is represented by the instructions set architecture, I have deeply discussed in my last

lecture and in a next lecture actually elaborate in more details. Then, the, the processor is

implemented for a given instruction set architecture. So, processor, instruction set

processor is essentially is represented by the implementation. So, then comes the

realization, realization is implementing the, a particular processor, instruction set

processor with the help of some electron circuit may be transistors or integrated circuit or

VLSI chip.

So, you can say there are several designs are involved in the, in the, in executing a

program or in the design of the system. Compiler designer, processor designer and chip

designer and their design will affect the overall processor performance. So, these three

factors are to be considered when we considering processor performance. So, actually

this is known as iron law of processor performance, product of these electrons, code size

that is instruction counts CPI and cycle time.

(Refer Slide Time: 18:20)

Now, that number of instruction per program or the instruction count will depend on

obviously, you may be asking what you really mean by number of instruction per

program. Say a program that source code will consist of several instruction, now that is

static in nature, but whenever you execute then we call it that number of instructions that

is executed by the processor. So, that means the size of the source code as got nothing to

do with the, or is really independent on the dynamic size of the code that is executed by

the processor. So, we are more interested on the dynamic size, not the static size of the

code.

So, static size of the code can be very small say, you have written a program where it is

looping. So, we looping within the source size is this, but it may be looking thousand

times. So that means, this code will be repeated thousand times so, you have to take into

consideration that the dynamic size, that the total number of instruction is getting

executed. So, do not get confused with the source code size. So, it is essentially the

instructions executed not the static code size. So, this particular factor instruction count

is dependent on three important parameters. It is first of all it depends on the algorithm,

your implementation a particular algorithm and the way the algorithm is implemented,

you can define some better algorithm to reduce the size of the code.

It also depend on the compiler, complier can perform a number of optimizations to

reduce the size of the code. So, those who have attended a course on compiler, they must

have studied various compiler optimization techniques. So, the size of the dynamic code

will dependent on the compiler then, last but not the least it will depend on the

instruction set architecture that means, instruction which can be executed by the

processor. So, you can see instruction count is dependent on several factor then, cycles

for instruction is dependent on the ISA and the CPU organization. That means, that

instruction set up architecture as I said it can complex instruction set architecture, it can

be reduce instruction set architecture.

So, depending on the complexity of the instructions the cycles that will be that means the

average number of cycles that is required by the instructions. That means, how do you

measure CPI, CPI you measure CPI is equal to total number of instructions executed or

you can say time to execute number of cycles, so not this. Total number of instruction

cycles, total number of not instruction number of, I should say clock cycles by total

number of instructions. So, these are the ratios will decide CPU. So, total number of

clock cycle by total number of instructions for a particular program. So, it is the

dynamic, that number is dynamic, dynamic in the sense while executing what is the total

number of instructions.

So, it is it determined by the ISA and the CPU organization, the way the CPU is

organized later on we shall discuss about in detail about this and overlap among

instructions reduces this term. So, we shall discuss about different technique for reducing

the CPI like techniques like pipelining and other things, by which this CPI can be

reduced. Then the last time, the cycle term is determined by the technology organization

and design. So, first factor is determined by the technology, technology means the VLSI

technology, as you know the various site technology is improving over time.

And you may have heard of Moore’s law, I briefly mention in my last lecture about it

and as for most law as you know, the size of the device is reducing every 18 months the

size is becoming half. And as the size becoming half, the capacitance is getting reduced

and then it is becoming faster. So, the technology is determining the cycle time, cycle

time in the earlier it was, it was micro second now it has become nano second. Because,

clock rate of the processor as you know earlier it was, the clock frequency was few mega

hertz.

Now, the clock frequency of the modern processor is splatted in terms of giga hertz, how

it happens? That is primary because of the advancement of technology and of course, it

is also dependent on the organization particularly pipe line and clever circuit design. So,

you can see these three factors, together decides the processor performance.

(Refer Slide Time: 24:25)

And obviously, whenever you, you decide about improving, to improve the performance

of processor, you will see that all processor performance enhancement technique voice

down to reducing one or more of these three terms. So, in the here we have discussed of

three terms, you will see that whenever you try to improve processor performance either

we try to reduce the instruction count. Or we try to reduce the CPI or we try to reduce the

cycle time or sometimes more than of these two times together we try to. So, now the

question is some techniques can be used to reduce one term without effecting others.

In other words what I am trying to tell, there exist some techniques which does not affect

others. For example, whenever the technology is enhanced, when you are going from one

technology generation to next technology generation, circuit is becoming faster. So,

other things are reaming same. So, the cycle time is getting reduced, but CPI will be

remaining unaffected and also the instruction count also will remain be affected, if only

the technology enhancement is considered. So, the one is input hardware technology

similarly, whenever you go for complier occupation techniques, you remove some dead

code and various other compiler optimization techniques we use, what happens by using

this techniques?

The instruction count reduces without effecting CPI or cycle time. So, such type of

performance optimization techniques are preferred because, these techniques does not

affect other parameter. Only it affects only one of the three parameters. So, these are

preferred however, there are, there exits other technique which are inter related some

technique can reduce one of the terms, but may increase other terms.

(Refer Slide Time: 26:50)

So, let me explain with the help of the example. Let us consider CISC and RISC. So, in

whenever you go for complex instruction set architecture, we know that instruction count

reduces. So, instruction count reduces whenever you for CISC so, on the other hand in

case of RISC this instruction count increases. Because, number of instructions required

for a RISC CISC processor is roughly three times, may be three times more than CISC

processors. So, we find that one particular parameter is decreasing for CISC and

increasing for RISC.

On the other hand if we consider CPI, cycles per instruction then we will find whenever

you are executing a complex instruction obviously, the number of cycles required to

execute the complex instructions, number of cycles would be more. So, it will increase

this CPI, on the other hand the risc processor since the instruction are simple and you

know the number of cycles required to execute a simple instruction obviously, the CPI

will reduce. So, you can see whenever we go for, we go for and decide I mean compare

between CISC and RISC, you can see for one particular parameter is getting reduced. On

the other hand the other particular parameter is increasing.

So, as consequence we cannot really say that this is better, this is inferior. Because they

are inter dividend there is some kind of inter relations. SO, CISC ISA reduces instruction

count, but in CPI similarly another technique we shall discuss later on, which is known

as loop unrolling. So, with the help of loop unrolling, what we do a particular loop is

unrolled say for example, a loop without unrolling may require the lesser memory in

your program. And obviously, the whenever you do loop unrolling what happens? The

number of instruction increases, the code size increases, code size increases, no sorry, the

dynamic code size will reduce.

Because, whenever you do loop unrolling this static code size reduce, but increases, but

dynamic code size reduces. Because, many loop unrolling those decisions, wherever you

take, if there will be decision making things, those decision makings will be reduced

whenever you go for loop unrolling. So, you will see the code size will reduce that

dynamic code size, I should write dynamic code size, dynamic code size will reduce in a

loop unrolling technique. That means, you can say that instruction count will reduce

however, what will happen? Whenever you are executing the program, because of the,

you know the static size of the code that you have to load in a program, what can

happen? The, it will lead to increase in CPI because of, because of you know hazards

whenever the static code size increases then, the hazard increases, as the results the cycle

per instruction increases.

So, later on we shall discuss more detail about loop unrolling and we shall see how

dynamic code size reduces, but CPU can increases because of various hazard that may

occur whenever you try to execute a code. So, the loop unrolling reduces instruction

count, but increases CPI. So, you can see there are many factors which are interrelated

and in such cases, we have to be very careful whenever you try to measure the

performance by using these techniques.

(Refer Slide Time: 31:42)

Earlier, one very important parameter was MIPS or mega flops. MIPS stands for million

instruction per second and MFLOPS stands for million floating point operations per

second. So, these two were extensively used 30 years back as a measure of processor

performance that means, higher the MIPS rating, the one used to consider, why processor

used to be considered faster. Similarly, higher the m flops rating, a processor used to be

considered faster.

(Refer Slide Time: 32:49)

But it has some draw backs, we shall see, what do you really mean by MIPS? MIPS is

instruction count by excision time into 10 to the power 6 or you can say that clock rate

by CPI cycles per instruction into 10 to the power 6. So, MIPS can be calculated by

executing a program and it can be found used for comparison, but let us see what kind of

problem face whenever you use MIPS and as a measure for performance. We encounter

three significant problems when we use MIPS and these problems are so severe that,

somebody commented meaningless information about processing speed.

So, although for many years MIPS are used as a matrix performance measurement for

long time. One important factor is MIPS is instruction set independent, as I have already

told that instruction set architecture plays a very important role in deciding the

performance of the processor. But it can be shown that MIPS is independent of the

instruction set architecture, the reasons for that is you know it is dependent on the

technology of the processor. We have seen that clock rate by CPI into 10 to the power 6.

So, it can be, it can be instruction set MIPS is instructions set dependent. That means, the

instruction set dependency is occurring because, you can see CPI is there, CPI is

instruction set department. And as a consequence, the MIPS is dependent on the

instruction set, simply we cannot really tell in terms of MIPS, we have taken, we have to

also take into consider instruction set architecture. Second is MIPS varies between

programs on the same computer that means, whenever you take different programs,

different programs and run on a single processor then, we will find that MIPS rating is

different for different programs.

That means, you cannot really tell that the higher the MIPS rating means, this is better

because, for a particular the value of MIPS may be better and for another program value

of MIPS maybe inferior, which is shall illustrate with example. Third problem is MIPS

can be very inversely to perform, I mean that is the reason why somebody commented

meaningless information about processing speed. So, let us illustrate with the help of an

example and why MIPS does not work.

(Refer Slide Time: 35:32)

So, let us consider the following computer and we are using two compilers, compiler one

and compiler two which are design for the same processor, same computer. And we have

got three types of instructions category a, category b and category c. Category a

instructions require one cycles, categories b instructions requires two cycles, category c

requires three cycles. Now a compiler one generates category a instructions, which is 5

and category b generate 1 instruction of a category b and category c another 1

instruction.

On the other hand the compiler 2 generates 10 instruction of category 1, 1 instruction of

category b and 1 instruction of category c. So, your CPI is equal to CPU clock cycles by

instructions count, that is your CPI and now what you can do? You can measure the total

number of CPI into n, take the summation by the instruction count for all instruction.

(Refer Slide Time: 36:55)

And then, you can find out the CPI for the compiler 1 and CPI for compiler 2. So, for

CPI for compiler 1 is, we have seen that the type of instructions is 5 that means, I mean 5

is the number of instructions. So, it requires one cycle then 1 instruction of 2 cycles and

another 1 is instruction for 3 cycle into 10 to the power 6 and CPI and total of CPI is 5

plus 1 plus 1 into 10 plus 6. So, you get the CPI, cycles per instruction is 1.43 that is for

compiler 1 and so MIPS rating will be 100 megahertz by 1.43 that means. So, it is

operating at 100 mega hertz. So, 100 megahertz by 1.43 we get MIPS rating of 69.9, that

is MIPS rating for compiler 1 on the same processor.

Now CPI for compiler 1 can be calculated in a similar way 10 into 1 plus 1 into 2 plus 1

into 3 summation of that into 10 by 6 by 10 plus 1 plus 1 into 10 by 6 that is the total

number of instruction, that is the instruction count and this gives you a CPI of 1.25. So,

we find that MIPS rating for compiler 2 on the same processor is 80. So, 100 megahertz

by 1.25. So, we find that compiler 2 has a higher MIPS rating. So, it should be faster

because, MIPS rating for compiler 1 for the processor is 69.1 and here it is 80.0. So,

compiler 2 has a higher MIPS rating and should be faster.

(Refer Slide Time: 38:57).

Now, let us see whenever we translate it in terms of CPU time, that instruction count into

CPI by clock rate for the complier 1, we get that is 0.10 second, that is the execution

time. And for the complier code, the generated by compiler 2 execution time is 0.15

second. So, we find in this case earlier we found that MIPS rating that compiler 2 was

giving you better performance, but on the other hand you know the CPU time

corresponding to code generated by compiler 1 is lesser. So, therefore, program one is

faster despite lower MIPS rating. So, we can say MIPS rating is not really reflecting the

processor performance.

(Refer Slide Time: 39:48)

And what you can do, you can calculate overall CPI this way, this is the instruction

architecture. Different types of instructions ALU operation is 50 percent, load instruction

is 20 percent, store instruction 10 percent, branch instruction 20 percent and these are the

corresponding CPI and these are the frequency of appearance in a particular program.

So, for a particular instruction, for a particular instruction, for the particular instruction

mix and you can find out the overall CPI in this way 1 into 0.4 plus 2 into 0.27 plus 2

into 0.13 plus 5 into 0.2. So, this gives you overall CPI of 2.2. So, for a particular

program so, we find this how one can calculate CPI.

(Refer Slide Time: 40:44)

Now, whenever you try to measure performance, you have to use some program, what

kind of program and these programs are known as benchmark program. So, you can see

the benchmark programs can be, can have 5 different level. Number 1 is real

applications, real applications that will be running in your computer, in your day today

like compilers, editors, various scientific programs, graphics application and so on. And

unfortunately for these real applications there is a problem of portability because, these

application will be dependent on the operating system, as well as the compiler. For

different computers the operating system can be different, compiler can be different, as

result portability is a problem whenever try to compile the performance of real

applications.

So instead of that, one can consider modified application that means, you take, you

consider a particular application then, you modify a particular application and tailor it

and improve the portability. So that, the portability is improved or it can test specific

features of the CPU. So, specific features of the CPU that means, graphic feature or

digital signal application DSP features that may be present. Those particular aspects can

be specially tested by modifying the applications then, the third level of benchmark

known as kernels. Kernels are very small and key pieces of real applications and since

these program is very simple can be 10 to 100 lines of code and examples those are

Livermore loops, 24 loop kernels and LINPAC linear algebra package. This can be used

as a for the measure of the performance. So, these are known as the kernels.

(Refer Slide Time: 43:01)

And the forth category of toy benchmarks, which are also simple program may be 10 to

100 lines of code and which are easy to type and run on almost all computers. And these

are the applications which are typically given as assignment in your, to the students may

be in the first year. Like quick sort, merge sort these program can be used, can be

consider as toy benchmark, which can be use for the purpose of testing. However, there

is an another level, which is known as synthetic benchmark. So, synthetic benchmark

means you have created benchmark to analyze the distribution of instructions over a

large number of practical programs.

That means, you have instruction of architecture, even to test how different type of

instructions are executed by the processor. So, some synthetic benchmarks are created

and synthesize a program that has the same instruction distribution as a typical program.

However, these programs have no real meaning to an user because, these are, they do not

give you any meaningful result and examples of this synthetic program are Dhrystone

Khorner stone, LINPAC these are the some older benchmark problems.

(Refer Slide Time: 44:30)

Now a day’s however, people depend on SPEC, SPEC is system performance evaluation

cooperative. So, recently this is the recently used popular approach where, a collection of

benchmark are put together to measure the performance of the variety of applications.

So, here we are not dependent on a particular application, we have chosen application

from different fields which are used to measure the performance. So, SPEC is a nonprofit

organization, this is the website www.spec.org and they have developed benchmark

programs, which can be CPU intensive benchmark for evaluating processor performance

for workstation. So, different benchmark programs have been developed for the

measurement of performance of work stations, servers and so on.

(Refer Slide Time: 45:31)

So, this is the history of SPEC first round was SPEC CPU 89, 10 programs yielding a

single number. Then second round SPEC CPU 92, where 6 integer program and floating

points where used. Then of course, compiler flags can be set differently for different

programs in this particular case. Third round was SPEC CPU 95 so, you can see have

been enhanced, the benchmark programs have been change at the processor technology

improved. So, here 8 integer program and 10 floating point programs are used and in this

particular case single flag setting is allowed for all programs. You have seen in the

previous case compiler flag settings can be different for different programs.

Then, the fourth round is SPEC CPU 2000, which is presently used SPEC CINT 2000

has got 12 integer programs and SPEC CFP 2000 has 14 floating point and single flag

setting for all programs and these programs are written either c, either in c or c plus plus

or Fortran 77 or Fortran 90.

(Refer Slide Time: 46:50)

So, here is the list for integer component of SPEC CPU 2000. So, you can see there are

12 program getting on c or c plus plus and performing different function like

compression, FPGA circuit placement and routing, c programming language compiler

and so on.

(Refer Slide Time: 47:10)

Then you have got the floating point component of SPECCPU 2000, where you have got

14 different programs written in c or Fortran 77 or Fortran 90. And various functions

which is performed are given here. So, you can see physics, quantum, chromo dynamics,

shallow water modeling. So, various applications from different fields of scientific

computing, image recognition, seismic wave propagation, image processing,

computational chemistry, number theory. So, instead of floating I mean considering a

one particular application. So, different applications of different fields have been taken to

evaluate the performance.

(Refer Slide Time: 47:53)

 Then comes the question of the reporting, how do you really report with the help of

single number? So, you have run may be 14, 12 integer programs and 14 floating

programs and those, they are to be compiled and a single number has to be used to give

the measure of performance, how can be done? So obviously, whenever you want to do

that, you can visit website for more detail for documentation and whatever measure we

use it should reflect the execution time. So, the single number result can be either

arithmetic mean or it can be geometric mean of normalized ratio for each code in the

suite. It has been found that arithmetic mean although gives you some measure of

execution time, it is not very good.

Because, if you take one computer as reference, you get one value, if you taken another

computer is reference, you get different value. So, arithmetic is I mean some have lacuna

or pitfall. Similarly, geometric mean is although it is good because, it gives a single

number, but unfortunately it does not give you the measure of execution time. Another

term that is used is weighted arithmetic mean, which summaries performance while

tracking execution time. So, this has been found to be good. So, in addition to using a

benchmarks weight, what do you have to do? You have to report precise description of

the machine.

Because, platform is plays a very important role, what CPU you are using, what

processor you are using, what is the on chip case, what is the off chip case, what is the

main memory size all these parameters will affect the execution time. So, this particular

whenever you report, you have to give precise description of a machine because, if you

change some parameter of machine, if you increase the case memory size execution time

can be different. So, platform information has to be provided whenever you report the

performance. Then comes the compiler flag setting so, report compiler, what compiler

flag setting has been used, whenever use different compilers for different programs like

c, c plus plus, Fortran 77 seven or Fortran 90.

(Refer Slide Time: 50:36)

Our discussion will not be complete without considering Amdahl’s law. So, it quantifies

overall performance gain due to improve in a part of computation. Normally you know,

we cannot really improve performance of all the aspects. For example, we may improve

floating point processing by adding a coprocessor. So, only performance on floating

point program execution will improve, but not the other type of programs. So, in that

context Amdahl’s law states that performance improvement gained from using some

faster mode of execution is limited by the amount of time, the enhancement is actually

used.

That means, you have to consider the gain that has taken place for that part only. So, you

can say that speed up that is achieve by improving performance of a particular aspect is

called to the ratio of execution time for the task, without enhancement by execution time

for the task using enhancement. That enhancement can come in different forms, may be

in the form of the, CPU, the floating point processor and or the compiler or various other

aspects.

(Refer Slide Time: 52:08)

So, speed up tells us how much faster a machine will run due to enhancement and

whenever we use Amdahl’s law two things you should be, one should consider. Number

one is fraction of the computation time in the original machine, that can use the

enhancement. So, if a program executes 30 seconds and 15 second of execution uses

enhancement then, that fraction is half. That means, that entire program may not be using

that enhancement that has been incorporated in the system. So, that is what is stated in

this. Second is improvement gained by enhancement, we have to consider overall

enhancement, if enhancement task 3.5 seconds and original task took 7 seconds, we say

speed up is 2.

(Refer Slide Time: 53:03)

Now let us see the formula that we use for the speed up. So, we can say that execution

time for the new system after enhancement is equal to execution time old into 1 minus

fraction that is the enhanced, plus fraction that is enhance by speed up that is enhanced.

So, fraction of enhancement that takes place is taken in to consideration in this formula

and you can find out the execution time using this formula. And then, you can find out

the overall seep up, that is called, that is equal to execution time by the old system and

by the execution time by the new system. And that you can find out from this, that is

equal to 1 by 1 minus fraction enhancement this one, plus fraction enhancement by speed

up enhanced.

So, this formula there is do not try to just memorize it these equations and these equation

and plug numbers into them. So, what you should do, it is always important to think

about the problems too. You have to consider what problem you are testing for what

application those problems are decided and accordingly, you have to choose, you have to

see on what aspect the improvement has to be done and that will lead to find

enhancement in performance. So, we can summaries our lectures by mentioning the

points to remember of this lecture. First of all we have seen that processor performance

is dependent on three factors, the code size that is instruction count then into CPI cycle

per instruction and cycle time.

So, you have to consider all these three together whenever you try to compare processor

performance and particularly, we have seen these terms are inter related. So, you have to

minimize time, which is the product not the isolated terms. So, you may reduce cycle

time, but it may affect others as you have already seen. So, you have to consider all these

three factor together.

So then, the use of bench mark suite to measure performance I have already told the use

of SPEC. And you have to report with the help of single number and to do that we have

seen, you can use different techniques, but we have seen that weighted arithmetic mean

gives you good result because, it ultimately tracks the execution time. So, with this we

have come to the end of today’s lecture on processor performance, in our next lecture we

shall discuss about instruction set architecture.

Thank you.

