
High Performance Computer Architecture
Prof. Ajit Pal

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 19

 Hardware-Based Speculation

 (Refer Slide Time: 01:01)

Hello and welcome to today’s lecture on Hardware-Based speculation. We have

discussed various techniques, we improve the instruction level parallelism and we have

seen that, dynamic instruction scheduling can boost pipeline performance, particularly it

effectively takes care of data hazards. Then we have discussed various control hazards

for higher performance and particularly for higher performance, it is very important to

control hazards that we have seen. And we have introduce the concept of branch

prediction to overcome control hazards and by using sophistic I mean, suitable technique

of branch prediction we have seen, how the performance can be improved.

And in the last lecture, we have discussed dynamic instruction scheduling along with

efficient branch prediction and we have seen, how it can significantly improves

performance. Now, hardware based speculation represents a subtle, so it represents a

subtle, but very important extension of the idea of hardware based instruction scheduling

with branch prediction. So, it is say, extension of the previous techniques that we

discussed in the last lecture, this an a extension of our branch prediction with dynamic

scheduling.

What it does, it follows the predicted flow of data values to choose when to execute

instruction. In other words, it is a kind of data flow execution and operations execute as

soon as their operands are available. So, it is not that way much different from the

techniques that I discussed in last lecture that is, dynamic instruction scheduling along

with efficient branch prediction, but there will be some important differences. And we

shall see, what are the differences and how this dynamic instruction scheduling along

with I mean, hardware based speculation is introduced.

(Refer Slide Time: 03:18)

The need for hardware based speculation is coming from, particularly from wide issue

processors. So, you have seen the superscalar processor, which are considered as wide

issue processor that means, your issuing more than one instruction per cycle. So, in such

cases we will find that, depending upon the application, the branch frequency that is

present in the program, for in each cycle, one will encounter the branch instruction. That

means, a wide issue processor may need to execute a branch in every cycle to maintain

performance.

And just predicting branch may not be enough to get the desired amount of instruction

level parallelism. That means, the instruction level parallelism that can be achieved

simply by branch prediction is not enough, will not be able to keep various processing

elements for functional units that is present in a superscalar processor. And we have seen

in superscalar processor, you got multiple functional units, it is essential to keep them

busy to get higher throughput.

So, the solution is speculating the outcome of branches and executing the program, as if

guesses were correct. Earlier, the execution when not performed at the boundaries of

control dependences, particularly until the control defenses were not resolved,

subsequent instructions were not executed. But, here where going a step further, so

execution will continue in the speculated direction and it will perform I mean, it will

assume that, this speculation is correct and it will perform fetch issue and execute, as if

branch predication were always correct.

So, you are going ahead with execution of instructions assuming that, your speculation is

correct. However, whenever you do that, you have to provide mechanism to handle

situation when the speculation is not wrong that means, speculation is a kind of guess,

guess may turnover to correct, it may turnover to wrong. So, whenever it turns out to be

wrong, you have to take appropriate step such that, you do not get incorrect result. That

means, you have to undo the execution that has been performed and how that can be

done, we shall discuss in detail.

(Refer Slide Time: 06:24)

In a recollect tomasulo’s approach, which you have discussed earlier, so until the

controlling branches have executed, instructions only allowed to be fetched and issued,

but not actually executed. That means, the controlling branches must be executed only

then the instruction can be executed. But before that, it can be fetched, it can be issued,

multiple issue can take place, but execution will not take place. And as I mentioned,

speculation takes this approach a step further, it will actually executes an instruction

based on branch prediction.

So, here we are also doing branch prediction, but in the direction of branch prediction,

earlier execution were not continued, but here we are continuing.

(Refer Slide Time: 07:19)

And essentially, this hardware based speculation combines three ideas, the three ideas

are number 1 is profile based dynamic branch predication, to choose which instruction to

execute. So, you will be using some profile based prediction technique, may be that

correlating predictor or tournament predictor, some subsequent prediction technique, to

choose which instruction to execute, then speculation to allow instruction to execute

even before control dependences are resolved.

So, earlier I mean, dynamic scheduling with branch prediction, we were not allowing

this, but now we are allowing to execute before control dependences are resolved. So,

earlier, the instruction were not execute until the control dependences were resolved, but

this is the step we are doing in case of hardware based speculation. Now obviously, in

such a situation as I have told, this can be done with the ability to undo the effects of

incorrectly speculated sequences.

Earlier, what was the meaning of execution, by execution what we are doing, we are

performing with the execution, writing the result in the memory or register, but if you do

that, you cannot undo it. So, permanent irrevocable changes technique place, so that has

to be somehow stuffed and dynamic scheduling to deal with the scheduling of different

combination of basic blocks. So, it is doing branch prediction, speculation along with

dynamic scheduling to deal with the scheduling of different combination of basic blocks.

So, at the branch point, you will be going through different direction and you will

encounter different basic blocks. So, in the predicted direction, it will continue to execute

the basic blocks and this particular approach have been used in almost all modern

processors like power pc, Pentium, alpha, AMD athlon, etcetera, almost all processors,

modern processors.

(Refer Slide Time: 09:51)

Now, what we shall try to do, we have already discussed in this in details, the tomasulo’s

scheme, but tomasulo’s scheme cannot be exactly followed, we have to made some

modifications. So, what kind of modification can be done, you can extend the tomasulo’s

algorithm to support the speculation by doing two things. Number 1 is separate the

bypassing of results among instruction from actual completion of an instruction, so what

we can do, we can execute an instruction, produce result.

But, those results will not be written in the memory or in registers, but they will continue

to pass values to other instruction as when they need. And another step you have to

follow, allow an instruction to execute and to bypass it is result to other instructions as I

have told, without allowing the instruction to do any updates that cannot be undone. That

cannot be undone means, if you perform writing into a register or in a memory location,

that cannot be undone, that is a permanent change.

So, that will be allowed instruction with speculated result becomes speculative that

means, it remains speculative until writing is done. When it is been done, when an

instruction is no longer speculative that means, the outcome of branches is already

decided then it is no longer speculative. Now, we know that, these instruction were

supposed to be executed, so only then when an instruction is no longer speculative, allow

it to update the register file or memory.

So, we have to reach that point when an instruction is no longer speculative, it is actually

known that, that instruction will be I mean, those control instructions that means, the

condition has been evaluated, the target at this is known, only when these two are

known, we know whether an instruction is speculative or not speculative. So, when these

two are known then an instruction is no longer speculative, only then you can make the

parliament changes.

And this additional step is called instruction commit that means, what we are doing, we

are breaking up the execution into two parts. We are performing the execution, we are

doing the competition in a shadow, but permanent changes taking place in the commit

stage, we are adding in additional stage known as commit stage.

(Refer Slide Time: 13:04)

So, the key idea is allow instructions to execute out of order, but to force them the

commit in order, so this is a very important statement. That means, we are allowing the

instruction to execute out of order, but we are in forcing the instructions to commit in

order, as it is present in your program order such as, updating state or taking an

exception. These are done only if, in this will prevent any irrevocable action until an

instruction commits.

So, this is the basic idea behind this hardware based speculation, when it is implemented

on top of the basic tomasulo’s approach. So, you have to separate the process of

completing execution from instruction commit. So, completion after instruction means,

an instruction have been executed, it has produce result and commit means, although

results have been produced, the result have not been return into the registers or in

memory location, that is performed in the commit stage.

 So obviously, this will require additional set of buffers to hold results of instruction that

have finished execution, but have not committed. That means, he will obviously, without

any additional buffer, you cannot do it, you have to give the results value generated by

instructions to be passed on to other instruction, unless you store it in some buffer, you

cannot do it. So, you will require addition buffer and from those buffers, it will pass on

to other instructions and that particular buffer is known as reorder buffer.

A source of operands for instructions, so reorder buffers will be source of operands for

instructions, it will supply operands in the interval between be completing of instruction

execution and instruction commit. That means, even before the I mean, the memory or

register update take place, from the reorder buffer, it will provide the operands for

different instruction. And for this duration, that between the completing of instruction

execution and instruction commit, reorder buffer will be the sources of operands.

(Refer Slide Time: 15:59)

Of course, you have to take into account an exception and interrupts as well, speculation

means, it will guess and check important for branch prediction, need to take our best shot

at predicting branch direction. So, this is a very important thing, first of all your

performance will heavily dependent on the correctness of your prediction. So, you have

to use sophisticated branch prediction techniques and if we speculate and are wrong,

need to backup and restart execution at the point, at fetch we predicted incorrectly and

this is exactly the same as precise exception.

That means, if we can do that then this will overcome the precise exceptions, so precise

exceptions essentially wants this and if something is wrong, we have to back up and

restart execution to the point at which we predictor incorrectly. So, this is how the

precise exception are overcome and techniques for both precise exception and interrupts

exception and speculation is same. Essentially, by using this approach in order commit,

we are able to overcome the precise interrupts and exceptions.

An exceptions are handled by not recognizing the exception, until instruction that caused

it is ready to commit in ROB. So that means, whenever an exception is detected and it is

kept pending, until it reaches the commit stage in the ROB. So, whenever before

commiting is done and if a particular instruction need to be discarded then the exception

operations to perform is also discarded. So, both are discarded, not only the instruction,

but the exception conditions.

So, if a speculated instruction raises an exception, the exception is recorded in the ROB

and that is why that means, the ROB keeps an information about the exception. And if it

needs to undone then whenever it will be I mean, we can keep that information until

commit and only when it is committed then that exception is allowed to happened. So,

that is why, reorder buffer is present in all new processors.

(Refer Slide Time: 18:49)

So, whenever we go for reorder buffers, there are two basic changes, two major changes

compared to the tomasulo’s scheme, number is he will require reorder buffers that is, an

addition. And elimination of the store buffer, earlier we were having, you may recall

that, in our tomasulo’s basic approach, we had store buffer and load buffer separate. But

now, the store buffers are no longer required, the reason for that is, the store buffer

function is taken care of, why the buffers present in reorder buffer. So, this leads to

elimination of the store buffer, whose functions are integrated in the reorder buffers.

(Refer Slide Time: 19:43)

So, you require additional set of registers called reorder buffers, store results of

instructions in shadow that have completed, but not yet committed. Why we are calling

them reorder buffer, there is a name assigned to it, the reason for that is, even though

instructions may complete in any order, they are reordered in reorder buffer so that, they

can committee in order. That means, instructions are executed, their results are stored,

but in the order, in which commit is changed with the help of this reorder buffer and that

is why, the name calling it reorder buffer.

So, it puts instruction back to order, instruction enter ROB out of order, instructions

leave ROB in order. By in order, out of order mean, with respect to the program order, in

the program they seen, this sequence in which they appear with respect to that and results

of an instruction becomes visible externally when it leaves ROB. So, until an instruction

leaves ROB, it does not become visible to outside world, outside world means, to the

programmer, who is a executing it is program.

For example, if a program does single stepping, executed instruction one of the other, so

in a such case, until that register operation or memory operation is performed, it will not

be visible to the programmer. So, that is why, results of an instruction become visible

externally when it leaves ROB and that means, registers updated and memory updated.

(Refer Slide Time: 21:38)

So, in case of tomasulo’s algorithm, once an instruction writes, it is result, any

subsequently issued instructions will find result in the register file with speculation, the

register file is not updated until the instruction commits, I have repeated in several times.

And we know definitely that, instructions should execute thus, the ROB supplies

operands in the interval between completion of instruction execution and instruction

commit.

So, ROB is a source of operands for instructions just as reservation stations, earlier we

were using reservation stations to provide the operands to the functional units, you may

call that, but now, we are using reorder buffers, from where the operands are available.

Now, essentially what it is doing, ROB extends the architecture registers like reservation

station. So, as I mention earlier, reservation stations are performing the role of additional

register, which is not present in processer.

Similarly, reorder buffers are also essentially extending the register set, registers not

available in the processer architecture is now may be I mean, it is partially available in

the reorder buffers. So, you may consider, it extends architecture registers like

reservation stations.

(Refer Slide Time: 23:22)

So, this is the schematic diagram, this shows how the tomasulo’s algorithm I mean, have

been extended, you may recall that, we had one store buffer here. But, that store buffer

has been removed, in place of that we have put reorder buffers at the top and from the

you can see, reorder buffer is connected to the common data bus. That means, whenever

in the functional units, memory unit or adder unit or multiplier unit, when they produce

any result, they straight away go to the reorder buffer.

So, they are not going earlier, they were going to different buffers present in the

reservation stations, they were going to the other buffers. But, now we can see, that

interconnection has been removed, it goes only to the reorder buffer and from the reorder

buffer, they can be stored, they will go to the register, they will go to different

reservation stations.

It will go to the reservation stations, it will also go to the memory unit I mean, in case of

I have to write it I mean, if it has to written in the memory in case of stored I mean, from

reorder buffer then it will be stored, that is why this store buffer is not present here, it

will come from the reorder buffer. However, load buffers are necessary, because they

will provide the load addresses, they will compute the addresses it will present here, then

load buffer will be present here, it will come from the address unit.

And the data may be available from here, which will be written I mean, in case of load,

address will come and then it will go to the reorder buffer and from where, it will go to

the register, so this is how load operation will perform. You cannot really get rid up

reservation stations, although we have reorder buffers, the reservation stations cannot be

removed, because they will provide the operands into the multiplier. However, earlier

you were keeping track of, from fetch functional units, the output will come to the

reservation stations.

But here, you have to keep track, you have to keep kind of tag, from which reorder

buffer will come I mean, there is a reorder buffer number. Reorder buffer 1, 2, 3 and so

on and it is a entered in the form of a first in first out, FIFO and the reorder buffer

number will be tagged here. And so from the corresponding reorder buffer number,

operands will come and then it will be stored in the reservation stations and from the

reservation stations, it will go to the different functional units. So, that part is not

changed and that is the reason, why we cannot get rid up reservation stations. Although

partially the functions earlier performed by reservation stations or the performing reorder

buffers but not fully.

(Refer Slide Time: 27:03)

So, with this basic structure in mind let us see, what are the different entries that is

present in the reorder buffer. So, each entry in the reorder buffer contains four fields,

there will be 4 fields in reorder buffer, number 1 field is instruction type. The

instructions can be broadly divided into 3 categories as you can see, number 1 is branch,

branch has no destination result. Second is a store has a memory address destination that

means, you have to store in a memory location.

And branch means, simply it will jump a particular address, so there is no destination

result and register operation, which are related to ALU operation or load. So, ALU

operation on load is performing in the same way, as we have seen in this diagram.

Whenever you perform ALU operation, it will be data will go to the registers, in the

same way data will go to the memory unit, it will come from the reorder buffer. So, ALU

operation and load is somewhat similar, it is different from store, so because they have

registered destination.

So, these are the three different instruction types and that you have to, that is kept in one

of the fields of the reorder buffer. The second field is the destination, the registered

number for loads and ALU operations or memory address for stores, where the

instruction result should be written. So, there is a destination field, which gives

information about the register number, in case of register operation and memory address

in case of store, where the instructions result should be written.

Then, the third field is a value, value of instruction result until the instruction commits,

so as I mentioned repeatedly, from the common data bus, the values will come to the

reorder buffer, as the functional units does some computation and the computation result,

those values are stored in the reorder buffer and this is the field, where the value will be

stored. Then you have got another field, which is ready, so it indicates that, instructions

has completed execution and the value is ready.

So, whenever an instructions is issued, it gets an entry in the reorder buffer and as it goes

to two different stages like execution, right. Right means, right on the common data bus

and until it commits, it remains in that particular reorder buffer and that is the reason,

why you have to keep track of it. So, indicates that, instruction has complicated

execution and value is ready, value is ready means, it has to be written, either in the

register or in the memory location, to be written in the destination.

So, destination is known and when it is ready, it will go to the destination and the value

is also known. So, the value is known when the ready flag becomes 1 then that value has

to be written in the destination register or memory location. So, this is not cell, the

information or the data structure that is being maintained inside the reorder buffer, these

are the four fields, it is been done.

(Refer Slide Time: 30:51)

Now, lets us see, so on the hold instructions in FIFO order as I told, first in first out

order, exactly had issued that means, the way the instructions have been issued in the

same order, it is kept in the reorder buffer in the form of first in first out I mean, that is

your data structure, first in first out data structure. When instruction complete, results

placed into ROB that means, supplies operands to other instructions between instruction

execution complete and commit, as I already told.

So, he will requires more registers like reservation station that means, the number of

registers that is present in the reorder buffers will be much more, that is present in the

architecture registers present in the processor. And tag results with ROB buffer number

instead of reservation station, so that means, ROB buffer number that means, you have to

keep track, where the data will be available. So, that is done by keeping that result with

ROB buffer, number instead of reservation station and instruction commit, when values

at the head of ROB is placed in the registers. And as a result, it is easy to undo

speculated instructions on mispredicted branches or exceptions, we shall discussed it in

little more detailed later.

(Refer Slide Time: 32:31)

Now, let us look at the four different steps that is being perform whenever you go for

speculative execution or hardware-based speculation, so it is also called a speculative

execution. So, first step is issue, so issue an instruction if there is an empty reservation

station and an empty slot in ROB. So, here you see, structural hazard will result, if either

there is no empty reservation station or there is no slot in the ROB. So, both has to be

available for issuing an instruction and instruction cannot be issued, until both the things

are available.

So, send operands and reorder buffer number for destination, this stage is sometimes

called dispatch, so you may have heard of this term dispatch. So, this issue is essentially

dispatch, which sends operands and reorder buffer number for destination. Then second

step is execute, so whenever an instruction is issued, it can perform execution when both

operands ready then it can be executed.

If one or more operands not yet available then what has to be done, we have seen,

whenever an operand is not available, it will be obviously be produced by some

functionally unit and that functional unit will write it on the common data bus. So, you

have to keep on monitoring the common data bus, so monitor common data bus and wait

for the register to be computed that means, it avoids read after write type of hazards and

this particular step is sometime called as issue.

Then, executing an instruction may take multiple cycles, as I have already mentioned

depending on the instruction type, if it is multiply, it will take more number of cycle than

addition, if it is division then it will take still more number of cycles than multiply. So,

that whenever execution takes place, it may take multiply cycles depending on the

instruction type. Then comes the write result, here whenever we say write result, earlier

write result was essentially writing into the memory location or registered, but here it is

not so writing means, writing on the common data bus.

So, whenever execution is complete, the result can be written on the common data bus

and it is received at waiting reservation stations and ROB. So, the data goes to the

waiting reservation stations and ROB, obviously it goes to through ROB and for store, it

is written in the value field of the ROB. So, if it is store instruction, we have seen that,

store buffer is no longer present.

So, since store buffer is no longer present, it is written into the value field of the ROB

and subsequently, in the commit stage, that writing into the memory will take place. It

will store the data in the corresponding memory after the address is note.

(Refer Slide Time: 36:16)

Then, comes the last step that is, the commit step, so commit can be broadly divided in

three different types, normal commit. Normal commit, when instructions at head of

reorder buffer and result is present that means, it will reach, it is FIFO First In First Out,

it will reach the head of the reorder buffer at some point of time, as the clocks are

progressing. And at that point, if the result are present, it will update register with result

or store to memory and remove the instruction from the reorder buffer.

So, you see, as soon as an instruction is, in the first step, if that instruction is entered into

the reorder buffer. And at the commit stage, at the end of the commit step, it is removed

from the reorder buffer after performing permanent change in the processor. That means,

writing into the register or in the memory location and store is done, is somewhat similar

to normal commit, except that memory is updated, rather than registers. So, in the

previous cases, we have seen that, in normal commit, essentially register are updated, but

here you are updating memory.

Then, branch with incorrect prediction, so now you have to take necessary steps so that,

a branch which was executed computation was performed, but it has now turnover to be

incorrect. So, ROB is flushed, execution restarted at correct successor of the branch and

this is sometimes called graduation, so commit step is sometime called graduation. So,

once an instruction commits it is entry into the ROB is reclaimed and the registers

memory destination is updated, as I have told, this is performed in the commit step.

(Refer Slide Time: 38:24)

So, this is the simple I mean, this source how it takes place in different cycles, so first

instruction, one instruction, load instruction has been entered in the ROB ReOrder Buffer

number 1. And accordingly, destination registers in the reservation stations, update is

perform, you see here it is mentioned ROB number 1, earlier it as mentioned that,

execution unit that will produce result, but here it is not so it is tagged with the ROB. So,

the ROB will write into the register F 0 and load operation will perform that is being

shown.

So, the destination is F 0 and here you can see, it will be required in the second

instruction and here that address, it will be loading into the, that destination address is 10

plus R 2 that is, the address from where loading will take place. So, that is you have to

read it from memory, so it will go to the memory. Then the third instruction division,

here accordingly, the updating is done in the reorder buffer and also in that store buffer

and corresponding modification had done from memory.

And from memory means, this will read this from this, so that is been mentioned and the

floating point adders, this addition is performed by these floating point adders and the

corresponding entry into the reservation stations is performed and in the reservation

stations corresponding to this deficient is performed here. So, 3, 2, these are all

mentioned here that means, swap the result will go and from which reorder buffer it will

get operand, these are all mentioned here in the reservation stations.

So, you can see, we are using reservation stations buffers and also we are using reorder

buffers and in this way other instructions are entering the reorder buffers and the

computation is performed. And you can see, how the values or being stored here, this is

the value field where the values are stored and after performing addition, that value is

also stored. So, you can see, this is how the computation is done, now what about

memory hazards, because we have to overcome memory hazards and let us see, how the

memory hazards are avoided.

(Refer Slide Time: 41:32)

WAW and WAR hazards through memory are eliminated with speculation, because

actual updating of memory occurs in order, when store is at head of ROB and hence, no

earlier loads of store can still be pending. So, you can see that, in reorder buffer, since it

is here the entity take place in order in the same program order and since the commit

operation is performed with the help of the ROB, so these two hazards, WAW and WAR

type of hazards through memory are completely eliminated.

And read after write hazards through memory are eliminated by two restrictions, what

are the two restriction, by not allowing a load to initiate the second step of it is execution,

if any active ROB entry occupied by a store as a destination field that matches the value

of the A field of the load, so this is how read after write hazard is eliminated. Another is

maintaining the program order for the computation of an effective address of a load with

respect to an earlier stores, so the read after write hazards are also overcome in this way.

So, these restrictions ensure that, any load that accesses a memory location written to or

by an earlier store, cannot perform the memory access, until the store has written the

data. So, this is how, by committing in order, you are able to overcome all the different

types of hazards that may occur, while execute programs.

(Refer Slide Time: 43:22)

So, let us take up few examples, so this is a simple example, this is a straight line code,

two load followed by, multiple followed by, it is followed by subtraction, division and

then addition.

(Refer Slide Time: 43:38)

Let us see, this is the, in this particular case as you can see, only the first two load

instruction has completed and it has perform commit, so it has perform commit and the

result has been written into the registers F 6 and F 2. So, the value that was obtained is

given here, 34 plus the content of the register R 2, that was added to get the address and

from there, the value was obtained and that is being written into the register F 6.

Similarly, the value was obtain from the memory location by adding the content of R 3

with 45 and then after getting the value, it was written into the register.

And although the other instructions are I mean, the execution has started, although

several other some computed execution, the multiplication is at the head of the ROB. So,

these two have completed, now this one is at the head of the ROB and this will take some

time to get to complete. So, the subtraction D, this particular instruction, 4 th instruction

and the instruction 6, these two, they will take smaller time.

So, they have already completed their execution, so but they are not allowed to commit

due to the letters you have multiplied D. Because, if their committing is done in order,

since this is at the head of the ROB, unless this performs commit, the other two although

they have produced result, they have completed execution, but they will not perform the

commits step.

The value column indicates the value being held, so here you can see, this particular

value being held is here and the value for this instruction is also held here, so the values

available, which can be passed on to other instructions. If other instructions need them,

but they will not be committed into the registers, until this multiplication D is performed,

which is at the head of the ROB at this point. So, the value column indicates the values,

but as shown in the informed, we do not show the entries for the load store cube, but the

entries are kept in order.

So, this is a snap shot of a particular step, when we have seen these two instructions

multiplication and division, these two instructions have not yet completed executions,

others have already completed execution. And the state of reorder buffer is shown here

and the status of the floating point registers are also shown in this particular diagram.

(Refer Slide Time: 47:08)

Now, let us consider another example involving a loop, so this particular instruction is

involving a loop. And we have seen, we can go I mean, beyond the loop boundary in the

predicted direction.

(Refer Slide Time: 47:22)

And this is the reorder buffer and these are the F register status, we can see that, these

two instructions have committed load and multiple D has committed. Committed means,

they perform writing into the registers F 0 and F 4 and however, the other instructions

have, although all the other instructions have already completed the executions and

hence, no reservation stations are busy and none are shown. Reservations stations are not

shown here, the remaining instructions will be committed as fast as possible.

So, these instructions, execution have been completed, but they have not yet been

committed, so they will be committing as soon as possible. And the first two reorder

buffers are empty, but are shown for completeness that means, these two reorder buffers

are empty, but it is shown here, they are no longer busy, you can see the reorder buffers.

So, you can fill two more instruction here and they can be pushed out, so these two are,

now instruction 3 is at the head of the buffer. So, this commit will be performed and then

this commit will be performed, so casually one after the other the commit operations will

perform.

(Refer Slide Time: 48:56)

So, this is a third instruction, third example, here we shall explain with the help of super

scalar. That means, issuing two instruction and we shall show, how issuing can be done

without speculation and with speculation.

(Refer Slide Time: 49:14)

So, this is the multiple issue without speculation, so you can see, your issuing two

instruction at a time I mean, across the loop. So, first two instructions are issued then the

second two instructions are issued then third instruction is issued. Unfortunately I mean,

3 rd cycle this BNE instruction is issued, but unfortunately in the 3 rd cycle, you cannot

issue this instruction, because there is a loop dependent I mean, this instruction is

dependent on that.

So, the LD following BNE cannot start execution, because it must wait until the branch

outcome is determined, so this type of program with data dependent branches. So, you

can see, data produced by one loop is being used by another loop, that because of this

dependency you can see, in the 3 rd cycle, you cannot issue this instruction. And later on,

we shall see in the speculation step, when we shall so multiple issue in speculation, they

are, how this can be overcome.

So, it will proceed in this way, in the different clock cycles, various operations will be

perform and it will write the common DB at the clock cycle here, this is without

speculation, so reorder buffer is not present. So, here performing everything with the

help of reservations stations and it is writing into the common database. So then it is

performing in the 5 th clock cycle, it gets the operand and in the 6 th clock cycle, it will

perform the execution and these two are dependent on that, so the results will be passed

on these two instruction.

And in the 7 th cycle, they will perform the execution and in this way you can see, it will

proceed and however, as you can see, here it has to wait for one cycle, because of this

data dependent branches. So, one cycle will be wasted here and later on, we shall see

whenever we do it with speculation then this cycle will not be wasted, because it did not

wait for this particular instruction, this control dependences are over come. So, this will

proceed only when control dependences are overcome and that is reason, why you

require this particular, this addition on cycle.

It cannot be issued, load instruction cannot be issued unless the control dependences are

resolved. So, in this way, it will proceed 10 cycle, 12 cycle, it will complete this. Then it

will provide data upto this store data and is the dependent on that, so it will get the

corresponding data then here again, it has to wait till this control dependences is

resolved. So, in this way, it will continue in the 16 th cycle, 14 th cycle, this load will

initiate, it will effect two cycles to complete and then it will provide data to this

particular instruction.

And then in the 18 th cycle, this will complete execution and data will go to that and in

this way you can see, the multiple issue without speculation is performing. And it is

requiring 19 cycles to perform the execution of this instructions that means, three locks

are getting executed in 19 cycles.

(Refer Slide Time: 53:11)

Now, let us see, how long it takes whenever you perform multiple issue with speculation,

so here, different cycles as shown when an instruction is executed and when the read

access is performed and when committee is being performed. So, first part is identical,

but here you can see, this load instruction has already when issued, it did not wait for this

control dependence to be resolved, because we are doing it with speculation. So,

although this execution is completed in 7 cycle, but it has been issued in the 5 th cycle.

Execution here is done in the 4 th cycle, issued is 4 th cycle, but execution has taken

place in the 5 th cycle. So, you can see, the advantage of speculation is demonstrated

here, so in this way, it will proceed and you can see in 14 cycles, it will perform

computation, compared to earlier we have seen, it required 19 cycles. So, you are gaining

5 cycles to complete execution of 3 loops by using speculation.

(Refer Slide Time: 54:37)

Now, very quickly let us look at the advantages of speculation, the process are with ROB

can dynamically execute code while maintaining a precise interrupt order, and flushing

any pending instructions in the ROB, so it maintains precise interrupt order. Early

recovery from branch misprediction, so if there is a misprediction, the processor can

easily undo speculated actions, when a branch is found to be mispredicted.

How it is does, by clearing all the ROB of all the entries that appear after the

mispredicted branch. That means, after the mispredicted branch, all the other instructions

are first out, but all the instructions before that mispredicted branch are retained. So, by

allowing those, that are before the branch in the ROB to continue, so these flushing is

done. And as a consequence, it can recover early from branch misprediction and

particularly, the performance is heavily dependent on the branch prediction technique

that I have already discussed.

(Refer Slide Time: 55:41)

Then, load and store hazards are eliminated I have already discussed in detail, a store

updates memory, only when it reaches the head of ROB. WAW and WAR type of

hazards are eliminated with speculation and actual updating of memory occurs in order

as I have told. And RAW hazards through memory are maintained and how it is

maintained, not allowing a load to initiate the second step of it is execution.

And check, if any store has an destination field that matches the value of the load, as it is

shown with the help of these instructions. So, you can see, the destination address is

same for this load and store, so this checking is performed that effective at this

calculation is done.

(Refer Slide Time: 56:31)

An exception processing is performed, if a specified speculated instruction raises an

exception, the exception is recorded in the ROB as I told earlier and not recognizing the

exception until it is ready to commit. So, until it reaches the head of the ROB, it does not

perform the commit, so the exception is flushed along with the instruction, when the

ROB is cleared.

And if an instruction reaches the head of ROB, it is no longer speculative, however all

these things whenever you include, it had significant complexity to the control. That

means, the control unit of the processor becomes very complex and as a result, it will

lead to larger chip area and higher power dissipation.

(Refer Slide Time: 57:28)

As it is a evident from this particular table, we can see this Pentium processors, which

are best on super scalar architecture, they are requiring significantly larger chip area 130

millimeter square, 180 millimeter square, 106 millimeter square, in spite of the reduce

dimensions used I mean, as the device size is reducing, so this is the area. On the other

hand, for the processors which are not super scalar, which are VLIW, I have already

mentioned about them, they require significantly larger chip area.

(Refer Slide Time: 58:16)

So, chip area is more and particularly we will see, because of larger chip area, the power

dissipation is also more. So, it is comparison of heat dissipation is shown here, this is

corresponding to Pentium III processor playing a DVD at and the temperature profile is

shown, which reaches 105 degree centigrade. On the other hand, in case of Crusoe

processor, which is best on VLIW architecture, not a superscalar architecture, same

program is running, but core temperature is reaching only 48 degree centigrade.

So, we have discussed in detail various techniques, which are used in implementing

superscalar processors, in spite of the fact, they consume a larger chip area and high

power dissipations, they are very popular. But, we are gradually reaching a point of

diminishing return or we are reaching a point, where beyond which you cannot proceed,

because power dissipation is reaching very high level.

So, what is the other alternative available, you will see the other alternative is not

increasing the number of five line stages, not increasing the frequency, but to go for

multi core, which I shall discuss in my subsequent lectures. But, before that, in my next

lecture, we shall start with memory hierarchy, because performance of processor is not

only dependent on the processor, it also depends on the memory, so that we shall start

our discussion in the next lecture.

Thank you.

