High Performance Computer Architecture
Prof. Ajit Pal
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 13
Dynamic Instruction Scheduling

Hello, and welcome to today’s lecture on dynamic instruction scheduling. Earlier we
have discussed in detail about the static instruction scheduling which is done with the
help of compiler and we have discussed its limitation. And today we shall start our
discussion on dynamic instruction scheduling, and we shall see what are the advantages

and disadvantages, and here is the outline of today’s lecture.

(Refer Slide Time: 01:26)

Outline

»The need
»Dataflow execution

* Qut of order execution
~Advantages of scoreboarding
~A scoreboard for MIPS
~Four stages of scoreboard control
»Three components of the scoreboard
~»An Example

First 1 shall discuss about the need of dynamic instruction scheduling why it is
necessary? And we shall see it is a kind of data flow execution and which allows you out
of order execution. And particularly in this lecture | shall discuss about a technique
known as scoreboarding which was developed for CDC 6600. And of course, for CDC
6600 the scoreboard will be quite complicated to discuss in a classroom. So, a simplified
version that is for M | P S processor which we have introduced earlier has been
considered. And we shall discuss the scoreboard for M | P S which is simplified, but it
will definitely highlight the important characteristics of the scoreboarding. Because, both

M I P S as well as CDC 6600 are based on load store architecture and we shall see the 4

stages of scoreboard control and 3 components of scoreboard. And illustrate the

scoreboard operation with the help of an example

(Refer Slide Time: 02:57)

Dynamic Instruction Scheduling:
The Need

» We have seen that primitive pipelined processors tried
to overcome data dependences through:

Interlocking: brings down pipeline efficiency.

- Forwarding: many data dependences can not be
overcome this way

» Scheduling: Ordering the execution of instructions in a
program so as to improve performance.

- Software based instruction scheduling:

- Handicapped due to inability to detect many
dependences at compile time

Again this is the kind of recap we have seen that primitive pipelined processors tries to
overcome data dependences through interlocking. That means whenever there is a hazard
it stalls the processor which brings down pipeline efficiency. And we have also discussed
a an approach which is known as forwarding which is a hardware based approach where
we have seen operands are read form not from the actual registers. But from the
pipelined registers and with the help of that the data dependences stalls due to data
dependences are minimised or overcome. And we have also discussed scheduling of
instructions, software scheduling of instructions software scheduling ordering the

execution of instructions in a programme.

So, as to improve the performance we have seen how the data dependences can be
overcome or reduced by instruction scheduling. And particularly software based
instruction scheduling we have already discussed which can be done with the help of a
compiler. And | have mentioned that this software based instruction scheduling is
handicapped due to inability to detect much dependence at compile time. Because since
it is trying to detect dependences at compile time which will not arise I mean which
cannot be detected what will happen at runtime? And as a consequence its usefulness is

very limited or restricted.

(Refer Slide Time: 04:36)

Superscalar Pipeline Design

T

-?- Instruction Buffer

Decode

/

EE Dispatch Buffer

--\’- Issuing Buffer

EEENENEE Completion Buffer

-‘- Store Buffer
] W

Ajit Pal, IIT Kharagpur

And particularly in the context of Superscalar architecture we shall discuss about this
dynamic instruction scheduling the need is arising. Because of you can see the various
stages of superscalar processor it will have fetch stage, decode stage, dispatch stage,
execute stage, complete stage and retire stage. And as you can see the first part fetch,
decode and dispatch up to this it is in order by that in order I mean the order in which
instructions are appearing in the programme in the same order they will be read from the
programme. And it will be dispatched and then it will be registered known as issuing
buffer.

So, it is a multiple entry register and here there is a possibility of out of order issue. That
means the order in which instructions appear in a programme that can be changed. And
instructions which appear in the programme order at a later point later than another
instruction which may be issued for execution earlier. So, it will lead to out of order
issue and after the execution will be done with the help of different a number of
functional units. Since it is superscalar processor we shall be having multiple functional

units and those multiple functional units will have different amounts of latencies.

The latencies of different functional units will not be same the time needed for fixed
point addition cannot be same as that of floating multiplication or floating point addition.
And as a consequence you will see the execution outputs will be generated out of order.

So, out of order issue will lead to out of order execution and what will be done they will

be stored in a buffer called completion buffer. And completion buffer will allow you to
again produce the result in a in a kind of in order fashions. So, that the results ultimately
which is stored in the register or the status of the programme is changed the status of the
programme is changed.

In such a way that it will appear as if the instruction execution has taken place in order.
So, that is done with the help of you know after the completion of instructions they are
stored in a store buffer. And then they are retired that means return into the registers the
way the instructions have appeared in the programme order. So, this is how the
Superscalar pipeline design will take place and these various functionalities that | have

mentioned will be implemented with the help of hardware.

(Refer Slide Time: 07:32)

Superscalar Execution With Dynamic
Scheduling

» Multiple instruction issue:

* Very well accommodated with dynamic
instruction scheduling approach

~ The issue stage can be:
= Replicated, pipelined, or both

So, particularly this dynamic instruction scheduling is very important in the context of
multiple instruction issue which is done is superscalar processor. And the issue stage can
be Replicated, pipelined or can be both. Here how it can be done for a C I S C processor
is illustrated? As | have already told the techniques that | have been we are discussing is

applicable to R I S C processors, having load store architecture.

(Refer Slide Time: 08:27)

X86 Superscaler Approach

> Translate

Uit

T r

x86
Instructions Micro-ops

»Conventional superscalar out-of-order
CPUs use hardware to create and dispatch
micro-ops that can be executed in parallel

However this approach can also be used to C I S C processor with some modification in
the hardware, how is it done is... Shown in this particular diagram, here you have got x
86 instructions then you have got a superscalar decode unit and a superscalar translate
unit. So, that instruction decodes stage has been divided into 2 components and then the
complex instructions had decomposed into simple R I S C like micro-operations. That
means the single x 86 instructions will be decomposed into more than 1 simple R1S C
like micro-operations. Those micro-operations are sent to the dispatch unit. So, you can
see here we are not exactly executing the instructions of the complex instructions as it

appears in x 86.

So, to the dispatch unit various micro-operations or R I S C like operations are being sent
which can be issued to the multiple functional units and by the dispatch unit. So, this
multiple functional unit will then execute the instructions and obviously here the order
can be different. So, this is the in order retire unit which will ultimately produce result
and store in the registers the way the instructions have appeared in the programme order.
So, this is the in order retire unit so you can see how complex instructions Imean C 1S C
processors can be adopted to this approach | mean where you can use this R I S C like

dynamic instruction scheduling.

(Refer Slide Time: 10:30)

Dataflow Execution

« Based on the idea of data flow computation
--- “Execute an instruction as soon as its
operands are available.”

 Allow an instruction behind a stall to
proceed if it is itself not stalled due to a

dependency:
DIVD FO,F2,F4
ADDD F10,FO,F8
SuBD F12,F8,F14

* Enables out-of-order execution:
— Which implies out-of-order completion

.":\I Ajit Pal, IIT Kharsgour

Now, this dynamic instruction scheduling is based on a very simple idea that is known as
data flow computation. What is the basic concept of data flow computation? Basic
concept it execute an instruction as soon as its operands are available, you see you have

got a functional unit.

(Refer Slide Time: 10:56)

()

This functional unit will require 2 operands possibly that will come from 2 registers R 1
and R j. Since, we are considering R I S C processor having load and store architecture

load store architecture. So, the operands will be coming the source of the operands are 2

registers R I and R j. The basic idea in this dynamic instruction scheduling is as soon as
these operands are available in these registers, execute it provide it to the functional unit
or ALU and get it executed. So, this is the basic idea of data flow computation and you
may have heard of data flow machine which was proposed by Professor Arvind.

So, there also he used somewhat similar concept, but here it is done for dynamic
instruction scheduling that means it is based on execute an instruction as soon as its
operand are available. So, it is very easy to say this but it is hard to implement that
means when the operands are available in the registers you have to identify the hardware
has to identify. And as the instruction execution is progressing it has to closely
monitored various boxes operations been performed by different functional unit to keep

track of when the operands are | mean execution of some | mean operation is complete.

And it is going to write into a register and as soon as it is written into a register and if it
is a source of register it knows that it is available in the register. And so if both the
operands are available that execution can be started. So, it has to be done this way so and
whenever do it this will allow an instruction behind a stall to proceed if it itself not
stalled due to a dependency. That means we have already discussed about the data
dependency in case of true data dependency what happens a particular instruction will
produce a output which will be consumed by or used by subsequent instruction. So, in
such a case obviously there is no alternative, but to stall due to data dependency.
However various situations where instructions are not data dependent | mean there is no

2 data dependency.

For example, in this example you have got 3 instructions DIV D double F O, F 2, F 4
ADD D double F 10, F 0, F 8. Obviously the first 2 instructions that mean ADD D has 2
data dependency on DIV D. So, because it is producing a result which will be available
register F O which will be used by the subsequent instruction ADD D. However, if you
look at it this SUB D has no true data dependency on the previous 2 instructions? That
means the first instruction this third instruction is not dependent data dependent on the
first 2. However as you can see it is the second instruction is reading from a register and
third instruction is also reading from a register. So, although there is no dependency that
means it this can what can be done in such a situation after DIV D it is possible to

execute this instruction that SUB D.

So, in place of ADD D you can execute SUB D so that will lead to out of order execution
and obviously this will lead to out of order completion. But this out of order execution
and out of order completion will lead to other types of hazards that read after write
hazard is because of true data dependence. But other type of hazards may arise even
when there is no true data dependency. So, you have to overcome the other type other 2

types of hazards whenever you allow this out of order execution of completion.

(Refer Slide Time: 16:13)

Out of Order Execution

« An instruction is in execution:

—Between the time it begins execution
and it completes execution

* In a dynamically scheduled pipeline,

—All instructions pass through issue
stage in order (in-order issue)

Now, here is some kind of convention and instruction is considered to be in execution
between the time it begins execution and it completes execution. So, we shall say that
instruction is in execution when it begins execution between the time it begins execution
and it completes execution. So, in a dynamically scheduled pipeline all instructions pass
through is to issue stage in order as | have already mentioned. So, it leads to in order

issue, but it may lead to out of order execution as | have told you.

(Refer Slide Time: 16:54)

Advantages of Dynamic Scheduling

+ Can handle dependences unknown at compile
time:
—E.g. dependences involving memory
references.
+ Simplifies the compiler.
+ Allows code compiled for one pipeline to run
efficiently on a different pipeline.
+ Hardware speculation can be used:
~Can lead to further performance advantages,
builds on dynamic scheduling.

Ajt P, IIT Mharagpur

The advantage of dynamic scheduling is that can handle dependences unknown at
compile time. | have already mentioned that dependences involving memory references
which cannot be detected a compile time. But at runtime you know that particular value
will be written into a register from a particular memory location. So, the effective
address that is being generated can be same, but the instruction may look different. So, as

a consequence this kind of dependences can be handled by dynamic scheduling.

And one another very important consequence is that compiler is simplified it leads to a
simplifier compiler. And it also allows code compiled for one pipeline to run efficiently
on a different pipeline. Now whenever go for static instruction scheduling that is
instruction scheduling has to do instruction scheduling for a particular pipeline in mind.
Now, if the pipeline is changed that code compatibility is lost this that programme cannot
be executed in another processor having different pipeline.

But in this case whenever you go for dynamic instruction scheduling that problem does
not arise because that instruction scheduling and all these things we are doing at runtime.
So, if the pipeline is changed then hardware will automatically take care of it. And
another approach which | shall discuss that hardware speculation which is used in
modern processors can be used in dynamic instruction scheduling which cannot be done
in static instruction scheduling. And this particularly this hardware speculation is used to

improve the performance of the processor. And this can lead to further performance

advantages builds on dynamic scheduling. That means later when | shall discuss
hardware speculation we shall see that it cannot really it cannot be based on that static

instruction scheduling. It has to be based on it builds on dynamic instruction scheduling.

(Refer Slide Time: 19:42)

Overview of Dynamic Instruction
Scheduling

» We shall discuss two schemes for
implementing dynamic scheduling:

Scoreboarding: First used in the 1964 CDC
6600 computer.

Tomasulo’s Algorithm: Implemented for
the FP unit of the IBM 360/91 in 1966.

« Since scoreboarding is a little closer to
in-order execution, we’'ll look at it first.

o
5%
i

And there are 2 popular schemes which are available for dynamic instruction scheduling
which have been which were developed for 2 different very popular processors. First one
is known as score boarding so this score boarding was first used for back in 1964. So, in
those days there was no concept of concept of software pipelining was not known. And
obviously the instruction level parallelism was restricted only to the basic block. And in

those days that cache memory and other things were also not present.

So, even those days they developed a technique known as score boarding and that was
done for CDC 6600 computer. Of course, CDC 6600 computer has got large number of
functional units 11 functional units. But later on we shall explain scoreboarding actually
they the scoreboarding name has been taken from this processor CDC 6600. They gave

the name scoreboard for this particular hardware based dynamic scheduling approach.

And later on for IBM 360 390 in 1966 another approach was developed by Tomasulo.
Tomasulo was a scientist working in IBM and he developed that these approach this
dynamic instruction scheduling approach for IBM 360 by 91. This IBM 360 91 was a
very popular machine and this approach was developed particularly for improving the

performance of floating point unit. And both of these approaches I shall discuss one after

the other. But to start with let me focus on scoreboarding because it is little close to in
order execution. And later on | shall discuss about this Tomasulo is approach which

allows you out of order execution and out of order completion.

(Refer Slide Time: 21:59)

Scoreboarding

+ Scoreboarding is a technique to allow
instructions to execute out of order when
there are sufficient resources and no data
dependences

* Named after the scoreboard:
—Originally developed for CDC 6600.
« WAR and WAW hazards that did not exist in
an in-order pipeline:
—Can arise in a dynamically scheduled
processor

* The goal is to maintain an execution rate of
one instruction per clock cycle

e
F Y AJRt Pal, 1T My pir
f } i Fa o g
A\l

Now score boarding is a technique to allow instructions to execute out of order when
there are sufficient resources and no data dependences. That means scoreboarding checks
2 things number 1 is structural hazard structural hazard, that means structural hazard is
because of limited resources available in the processor. So, if resources are not available
obviously then an instruction cannot be scheduled. So, structural hazard is overcome by
looking at the resources available in the processor and second thing is that it also checks
data dependency true data dependency. So, whenever there is true data dependency so
whenever there is true data dependency. Then also instruction is solved however what it

does in both the case if enough resources are not available or there is a data dependency.

If an instruction is waiting for result generated by already scheduled instruction then it
will be also stalled. So, the way it resolves is by stalling and WAR and WAW hazards
that did not exist in order pipeline can arise in dynamic scheduled processors as | have
already mentioned. The goal is to maintain an execution rate of one instruction per cycle
that was the basic objective of the scoreboarding. That means it will overcome WA R
and WAW hazards which can arise in this approach. And of course, basic goal is to

maintain execution rate of one instruction per cycle. So, in this particular case every

instruction goes through a special hardware known as scoreboard and scoreboard
constructs. The data dependences of the instructions and that means it maintains a kinds

of database. And with the help of data base it maintains the data dependences.

(Refer Slide Time: 24:51)

A Few More Basic Scoreboarding
Concepts

* Every instruction goes through the
scoreboard:
—Scoreboard constructs the data
dependences of the instruction.
—Scoreboard decides when an
instruction can execute.
—~Scoreboard also controls when an

instruction can write its results into
the destination'register.

.
%%
Ly

Ajt Pal, IIT Khars gour

And it can decide only when there are no data dependences it will allow and instruction
to execute that means operands are available in the registers. So, another thing I should
tell you that you know scoreboarding did not allow forwarding. That means we have
already earlier discussed of concept of forwarding where the intermediate results are
taken from the pipeline registers, before the results are written into the registers. But in
this case you will see it is the results are taken from the register itself not from the
pipeline registers. That means bypassing and forwarding technique is not used in the
context of scoreboarding. And score boarding also controls when an instruction can write

its results into the destination register.

That means whenever you the data has to be registered into a register it will do the
writing by avoiding the WAW type of hazards which can arise whenever you go for
dynamic instruction scheduling. And this out of order execution requests multiple
instructions to be in the execution stage simultaneously achieved with multiple
functional units along with pipeline functional units. So, here actually there is no
distinction between multiple functional units or pipeline functional unit, both multiple

and pipeline functional unit allows you know issue of I mean execution of more than 1

instruction simultaneously. So, logically they will give the same result as you have

already seen so in this context.

(Refer Slide Time: 26:42)

Scoreboarding

+ Qut-of-order execution requires multiple
instructions to be in the EX stage
simultaneously:

— Achieved with multiple functional units,
along with pipelined functional units.

+ All instructions go through the
scoreboard:

— Centralized control of issue, operand
reading, execution and writeback.

— All hazard resolution is centralized in the
scoreboard as well.

Y

\T}

Ajit Pal, IIT Kharagaur

It does not really matter whether you are using multiple functional unit or functional
units of pipeline. So, all instruction go through this scoreboard which is the centralised
control of issue operand reading execution and write back. That means 4 operations like
issue of instruction, reading of operands, and execution of instruction, and write back all
these are controlled by hardware which is known as scoreboard. And all hazard detection

is also centralised in the scoreboard.

(Refer Slide Time: 27:16)

A Scoreboard for MIPS

Data buses - source of structural hazard

e —— el
'=- FP Mult o

= EP Mylt

ﬁ

————————] rteger Unit

T

Control/ Control/
status status

And this is the hardware we are eagerly waiting for as you can see for the simplified M 1
P S scoreboard where you have got only 5 functional unit that CDC 6600 has got 11
functional units for which scoreboard was developed. But this M | P S scoreboard which
has been which will be explained has got 5 functional units 2 floating point multiplier, 1
floating point divider floating, 1 floating point adder and 1 integer unit. And here is your
register bank and you have got these buses various buses and various buses are available.
And this is the scoreboard which controls different functional units and also controls the
registers. That means control reading of status controlling the registers controlling the
functional units all are done with the help of a centralised hardware, known as

scoreboard.

(Refer Slide Time: 28:31)

HW Schemes: Instruction Parallelism

Out-of-order execution divides ID stage:
1. Issue—decode Instructions, check for structural hazards, Issue
order if the functional unit is free and no WAW.
2. Read operands (RO}—wait until no data hazards, then read
operands
» ADDD would stall at RO, and SUBD could proceed with no
stalls.

Scoreboards allow instruction to execute whenever 1 & 2 hold, not
waiting for prior instructions.

Focusing on FP operations — assume no MEM stages

-,
Y ALP T M 3
{ ¥ N “ ¥ Age
L4 -

And to allow out of order execution they the id stages instruction decode stage has been
divided into 2 parts. The first part is known as issue and this issue stage will decode
instructions check for structural hazard. And it will issue in order if the functional unit is
free and no write after write. That means if there is no write after write hazard and if the
instructions can be | mean if the hardware is available issue will be performed. And the

then read operands wait until no data hazards then read operands.

That means here the reading is also taking place with the help of I mean that means
reading operation is also delayed | mean until the all the hazards are overcome. And
ADD D would stall that read operands and SUB D could proceed with no stalls. As we
have already seen that 3 instruction example that means that ADD D stall read operands
because of data dependency. But SUB D could proceed with no stalls because there is no
data dependency. So, scoreboard allows instruction to execute whenever that first

conditions are hold and not waiting for any prior instructions.

So, it is allowing you out of order execution so you can see here it is instruction phase
then issue is being done. And different functional units will take different time and after
the read operations are performed execution is done. Then the write is performed at
different instances of time. And that is controlled by with the help of the scoreboard by
avoiding write after read type of hazards in both the cases whenever you perform write

operation.

(Refer Slide Time: 30:45)

Scoreboard Implications

+ Qut-of-order completion => WAR, WAW hazards
+ Solutions for WAR
- CDC 6600: Stall Write to allow Reads to take place; Read
registers only during Read Operands stage.
Tomasulo: ster Renaming
« For WAW, must detect hazard: stall in the Issue stage
until other completes

+ Need to have multiple instructions in execution

phase => multiple execution units or pipelined
execution units

- Scoreboard replaces ID with 2 stages (Issue and RO)
+ Scoreboard keeps track of dependencies, state or
operations
Monitors e,very change in the hardware.
— Determines when to read ops, when can execute, when can
wb.
- Hazard detection and resolution is centralized.

Ajit Pal, IIT Kharagpur

So, out of order completions which may lead to WAR and WAW type of hazards are
overcome in CDC 6600 by stalling write stall write to allow read operations to take
place. Read registers only during read operands stage that means only after read
operands are complete then it is done. And later on we shall discuss about Tomasulo is
algorithm where register renaming was done. Register renaming has not been done in
this scoreboard and particularly for WAW type of hazard must be take hazard stall the

issue stage until other completes.

So, need to have multiple execution in execution phase multiple execution in units or
pipeline execution units they are same | mean so far as the functionality is concerned. So,
the id stage is replaced by 2 stages | have already mentioned and scoreboard keeps track
of dependences and state of operations. That means monitors every change in hardware |
mean whether execution is completes and also determines when to read operands when
can execute. And when can write back hazard detection and resolution is centralised as |

have mentioned.

(Refer Slide Time: 32:13)

Four Stages of Scoreboard Control

1. Issue—decode instructions and check
for structural hazards (ID1)

If a functional unit for the instruction is free
and no other active instruction has the same
destination register (WAW), the scoreboard
issues the instruction to the functional unit
and updates its internal data structure. If a
structural or WAW hazard exists, then the
instruction issue stalls, and no further
instructions will issue until these hazards are
cleared.

And it has got 4 stages of scoreboard control number 1 is issue it decode instructions and
checks structural hazards as | have already told. If a functional unit for the instruction is
free and no other active instructions has the same destination register. That means it
keeps track of the already issued instructions. And if the already issued instructions has a
destination register which is a source register of a particular instruction then it is
stalled.So, this scoreboard issues the instruction to functional unit and updates the its
internal data structure if a structural or WAW type of write after write hazard exists then
the instruction issue stalls. As I told the solution for this scoreboard is essentially stalling

and no further instruction will issue until these hazards are clear.

(Refer Slide Time: 33:16)

Four Stages of Scoreboard Control

2. Read operands—wait until no data hazards, then read
operands (ID2)
A source operand is available if no earlier issued
active instruction is going to write it, or if the
register containing the operand is being written by
a currently active functional unit. When the source
operands are available, the scoreboard tells the

functional unit to proceed to read the operands
from the registers and begin execution. The
scoreboard resolves RAW hazards dynamically in
this step, and instructions may be sent into
execution out of order.

Then read operands wait until no data hazards then read operands. So, reading of
operands is done in the second stage of instruction decode. And it resolves read after
write type of hazards dynamically as source operand is available. If no earlier issued
active instruction is going to write it or if the register containing the operand is being
written by currently active functional units. When the source operands are available the
scoreboard tells the functional unit to proceed to read the operands from the register and
begin execution. The scoreboard resolve read after write as | mentioned hazards
dynamically in this step And instructions may be sent into execution out of order so this

is how it is allowing an out of order execution if operands are available.

(Refer Slide Time: 34:12)

Four Stages of Scoreboard Control
3.Execution—operate on operands (EX)
The functional unit begins execution upon receiving
operands. When the result is ready, it notifies the
scoreboard that it has completed execution.

4 Write result—finish execution (WB)

Once the scoreboard is aware that the functional unit
has completed execution, the scoreboard checks for

WAR hazards. If none, it writes results. If WAR, then
it stalls the instruction.
Example:

DIVD FO0,F2,F4

ADDD F10,F0,F8

SUBD F8,F8,F14
CDC 6600 scoreboard would stall SUBD until ADDD
reads operands

\T}

Ajt Pal, IIT Mharagour

Then the third stage is execution stage and operate on operands the functional units begin
execution upon receiving operands when the result is ready it notifies the scoreboard that
it has completed execution. And finally come the write back stage it finishes the
execution by writing results into the register appropriate registers. So, once the
scoreboard is aware that the functional unit has completed execution the scoreboard

checks for W A write after read hazard if none it writes into the register in results.

So, you can see dynamically it overcomes w write after read type of hazards and writing
is done only when this type of hazard is not available if WAR is then stalls the
instruction. So, in this particular example CDC 6600 scoreboard stall SUB D until ADD
D read operands. That means you can see there is not 2 data dependency in this particular
case it is reading an operand. And it is being used here and here it is writing that means it
is a read after write type of operation.

So, this reading this sub d although there is no 2 data dependency. But there is a write
after read type of dependency and that type of hazard can occur. So, that is being
overcome by stalling these instructions SUB D instruction until reading operation is
completed by the second instruction. So, this is done dynamically with the help at the

write back stage so these are the 4 stages.

(Refer Slide Time: 36:07)

Three Parts of the Scoreboard

1.Instruction status: which of 4 steps the instruction is in

2. Functional unit status: Indicates the state of the
functional unit (FU). 9 fields for each functional unit

Busy: Indicates whether the unit is busy or not

Op: Operation to perform in the unit (e.g., + or -}
Fi: Destination register
Fj, Fk: Source-register numbers
= F';J'J. Qk: Functional units producing source registers
s
R]. Rk: Flags indicating when Fj, Fk are ready and not
yet read. Set to No after operand are read.

3.Register result status: Indicates which functional unit will
write each register, if one exists. Blank when no pending
instructions will write that register

,:_:\I Ajit Pal, IIT Kharsgeur

Now in addition to these stages it has got 3 three different parts to maintain the database.
So, first of all instruction status so which of the 4 steps of the instruction is in instruction
is in. So, for a, for the instructions which have been issued they can be in different stages
instruction issue reading operands execution or write back. So, it keeps a it maintains a
database about in which stage a particular instruction is in. And then functional unit
status it indicates the state of the functional unit 9 fields for each functional unit. So, you
can see database is quite completed so that different functional unit it has got there are 9

fields busy then operation to perform.

Operation can be addition subtraction multiplication divide and so on. Then F | the
destination register for a particular functional unit. And F j and F k they are as source
register numbers and Q j and Q k functional units producing the source register. So, you
can see not only keeps track of the source register numbers, but which functional units
will produce the result. And write into the registers that is also | mean maintained in this
data base functional units status database. And R j and R k flags indicating when F j and
F k are ready and not yet read that means the functional units may be, but the operands
have not yet been read that is being maintained with the help of this R k and R j flag bits.

So, there are 7 flag bitsbusy O p, F I, Fj, Fk, Q j, Q kand R j R k we shall see how they
are being used when instructions are in flight and then you have got register result status.

So, there are 32 registers and from which functional units these registers are being

written indicates which functional unit will write each register. If one exists black when
no pending instructions will write into the registers that means the registers will be
written by some functional unit. So, it is keeping track of which functional unit will write

into which register. So, this is the database that is being maintained.

(Refer Slide Time: 39:00)

Detalled preboardad FIDeE 3 0 0
'w I Wait until Bookkeeping
usy(FUJ « yes; Op[FU] « op;
Not busy (FU) Fi(FU) « 'D'; Fj(FU) « "S1%
Issue and not result FkiFU) « 'S2'; Q « Result{*S1’);
(D) Qk « Result{'S2'); Rj « not Qj;
0;::" Rj and Rk Rj + No; Rk « No
Execution = Functional unit
complete done
':(r“:!i!["ll’:zﬂfg' “H(if Qj{f)=FU then Rj(f) < Yes);
Wiite | (L TEiR) |10 QKA=FU then Ri(f) < Yes);
result o Result{Fi{FU)) « 0; Busy{FU) «
RK(f }=No)) No

And you can see this is the detailed scoreboard control pipeline control these are the is a
instruction status. And it will wait until functional units are not available and results are
not available only when functional units are available results are available instructions
are issued. And the various book keeping that is being done that means to maintain those
you know that 7 flag bits that is being shown here. So, busy Op, FI,Fj,Fk, Qj, Qk, R
J, R k and how they are how they are getting of the result. And doing the necessary book
keeping it is read operands R j and R k no or yes that is being done wait until these are
available. And execution complete that functional unit is whenever execution is complete

a functional unit is released.

And so if it is not busy a functional unit is released then here is the write result how
when the writing of result has to be delayed that is being mentioned here. And there are
various conditions it will do the book keeping and wait until the results can be written in
a proved register. And as a consequence what is being done particularly in the issue stage
WAW type of hazards are overcome and in the write back stage WAR type of hazards
are overcome. And of course, that the most common type the read after write that that

hazards which are essentially representing 2 data dependency those hazards are
overcome by stalling because if operands are not available. Then stalling has to be done
if the functional units are not available that is your structural hazard then stalling has to
be done so these are being done.

(Refer Slide Time: 41:12)

An Assessment of Scoreboarding

« Pro: Factor of 1.7 improvement for FORTRAN
and 2.5 for hand-coded assembly on CDC
6600!

- Before semiconductor main memory or caches...

* Scoreboard on the CDC 6600:
- Required about as much logic as a functional unit -

- quite low.
« Cons:

—Large number of buses needed:

« However, if we wish to issue multiple
instructions per clock, more wires are
needed in any case.

—Centralized hardware for hazard resolution.

Ajtt Pal, IIT Kharsgour

It has and for CDC 6600 there was improvement of 1.7 factors of 0.1 of 7 improvement
for FORTAN and 2.5 for hand-coded assembly. And of course, this was done as |
mentioned before main memory or cache memory | mean cache memory were available.
And for CDC 6600 surprisingly the hardware was not complex only equivalent to a
single functional unit. However 1 very disadvantage is that large number of buses needed
we have seen even for 5 functional unit you have got a large number of buses, because

you have to do parallel reading and writing.

So, number of buses is quite large however if we want to issue multiple instructions per
clock more wires are needed. In any case so centralised hardware for hazard then another
thing is the scoreboard effectively handles 2 data dependences minimises the number of
stalls due to 2 data dependences. And anti-dependences and output dependences are also
handled using stalls and we have seen which is done by the issue and write back stages.

(Refer Slide Time: 42:45)

Scoreboard Example

* The following numbers are to
illustrate behavior, not representative

LD -1 cycle

— (compute address + data cache access)
ADDDs and SUBs are 2 cycles
Multiply is 10 cycles

Divide is 40 cycles

Pt
{ }
Ll

Now let us consider illustrate the operation with the help of an example and to illustrate
the example we shall consider that the load has a 1 cycle latency and ADD D and SUB B
addition and subtraction has 2 cycles latency multiply has got 10 cycles latency. And
divide has got forty cycles latency some realistic numbers have been taken just to

illustrate the example.

(Refer Slide Time: 43:15)

Scoreboard Example

Instruction status Read Executi Write
Instructhion J k lszue opevanc complel Result

LD Fé M+ RI
MULTIFO F2 F4
ADDD Fé& Fé F2

Funetional undt g1atus dagr S1 S2 FUfor| FUfork F?
Time Name Busy Op Fi F Fk Q Ok Rj

Integer Ho
Mkt No
Mult2 Ho
Add Neo
[vade No
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30

FU

=
5%
Ly

Now here is the scoreboard, where you can see there are 3 stages an instruction status,

functional unit status and register result status. And these are the instructions to be

executed load there are 2 loads followed by multiplication, subtraction, division,
addition. So, these are the instructions essentially straight line code instruction which is a
basic block it cannot operate beyond basic block. So, these are the instructions to be
executed and right now you the instruction status functional unit status register result

status all are empty. Now, let us start execution with the help of scoreboard.

(Refer Slide Time: 44:03)

Scoreboard Example Cycle |

Instruction status Read Executic Wite
Instruction J k ssue operand compieh Mesult
LD F6 34¢ R2 1

MULTFO F2 F4

ADDDFE FB8 F2

Functional unit status dest S1 52 FUforj FUfork F?
Time Name Busy Op = I Ry Rk
Irteger Yes Load Fé R2
Mult] No
Mult No
Add Nao
Divide No

Regrster resull status

Clock ED E? E4 FE FB F10 F12 E30

1 FU Integer

()
Bl =

So, after first cycle the instruction is issued. So, here it shows it has been issued and
functional unit status shows that this that integer unit has become busy. So, it is yes it is
busy and instruction to be performed operation to be performed is load and destination
register here is F 6. So, F 6 is written here and source register is R 2. So, you can see
how the database is updated as you go to the cycle number 1 and here the functional unit
that is busy that register result status here F 6. So, it will come from the integer unit so
functional unit which will produce the result is shown here. So, that is after the first

cycle.

(Refer Slide Time: 45:01)

Scoreboard Example Cycle 2

nstruction status Read Execution Write
Instruction | Kk Issue operaicomplete Result
D F63+R2[1 2 .
[F2 45+ R MNote: Can't issue 12
MULTDFO F2 F4 because Integer unit
is busy. Con't issue
next mstruction due
ADCD F6 F8 F2 to in-order issue
E D':} onal L nit .-I_m = ast __';j \l_' ,";__ fo .‘I_., for Ei?7 Fk?
TimName Busy Op Fi Fi Fk Q Qk -'3‘ Rk
Integer |Yes Load F6 R2 No
Mult1 |No
Mult2 [No
Add MNo
Dwde [No
R == 5
Clock FO F2 F4 F6 F8 F10 F12 F3
2 FU| Integer
60
2 =

After second cycle you can the operation this particular operation that second that
operand read operands has taken place for in the second cycle. But cannot issue | 2
because integer unit is busy it has got only one integer unit. And so the load the second
load instruction cannot be unfortunately issued, because here it is a lead to a kind of
structural hazard. So, because of the structural hazard in a second cycle the second
instruction cannot be issued. So, next instruction due to due to in order issue, so it has

not anything much has changed except it has this particular status has changed.

(Refer Slide Time: 45:57)

Scoreboard Example Cycle 3

Instruction status Read E Fite
Instruction J k Issue operalco

LD F6 MeR2[1 2

MULTD FO F2 F4

ADDD F6 F8 F2

Functional unit status S1 52 FUfoFUforFj? F
Tim Name Fi Fk Q Qk R Rk
Integer R2 No
Mult1
Mult2
Add No
Dmwde [No
Clock FO F2 F4 F6 F8 F10 F12 F30
3 FU Integer
Fes
{
i

So, we go to the third cycle execution is completed and execution is completing, because
it requires 2 instruction. And you can see how the status is being changed here | mean

not much has been changed compared to previous thing, but only this has changed.

(Refer Slide Time: 46:25)

Scoreboard Example Cycle 4

nstruction status Read Execution Write
Instruction J K Issue operalcom ~

LD F6 34+R2[1 2 3 4

MULTD FO F2 F4

ADDD F6 F8 F2

Eunctional unit status dest S1 82 FUfoFUfor Fj? Fk?
TimName Busy Op Fi Fi Fk Q Qk R Rk
Integer |Yes Load F6 R2 No

Multi |No
Mult2 [No
Add Mo
Dmde |No

And it has gone to the write back stage it will write result into F 6 and after the writing of
result. You can see here that that functional unit is no longer written here, because now

the functional unit is released after it has completed that functional unit is released and

after it has completed the writing of result into the appropriate register R 6. So, here it is

not also shown now it wills we shall go to the fifth cycle. As we go to the.

(Refer Slide Time: 47:00)

Scoreboard Example Cycle 5

nstruction status Read Execution Write
Instruction J K Issue operaicomplete Result
¢ 'l

LD F6 34+R2[1 2

MULTD FO F2 F4 Now 12 iz issued

ADDD F6 F8 F2
Functional unit status dest S1 S2 FUfaFUfor Fj? Fk?

- AL o - fed ~ i - -~ =1
TimName Busy Op Ei F Fk @ Ok [=]

Integer |Yes Load F2 R3 Yes
Multl |No
Mult2 [No
Add No
Divde |No
<egitel es]
Clock F6 F8 F10 F12

5

m
S
i

=]
™

Fifth cycle the second load instruction is issued and second load instruction is issued and
you can see here this F 2 is the register in which result will be written. So, functional unit
is integer functional unit and the F 2 register will be written by this functional units and
integer unit is again busy it is performing. This load operation and destination register is
F 2 and source register is R 3 and this R k is yes as it is shown here. And now, let us go
to the fifth cycle.

(Refer Slide Time: 47:45)

Scoreboard Example Cycle 6

|nstruction status Read Execution Write
Instruction k Issue operaicomplete Result
LD Fé6 34+ R2| 1 2 3 4
MULTD FO F2 F4 | ¢
ADDD F& F8 F2
Eunctional unit status das! $1 S2 FUforjFUfor kFj? Fh
TimName Busy Op Fi Fi _Fk Q Qk Rk
Integer 1 F --
Muit1 fes Mult Fi F2 F4 b Yes
Mult2 |[No
Add No
Divide [MNo
Eeqister resylt status
Clock FO F2 F4 F6 F8 F10 F12 F30
6 FU |Mult
{1}
2

Sixth cycle now; here you see the third instruction has been issued. Because there is no
true data dependency and functional unit required is different. So, here it requires a
multiplier so since the multiplier is become busy now and various components like
destination register source register. And various other things are filled up appropriately
in this data base and this result register status is also properly mentioned. So, it has gone

to the sixth cycle.

(Refer Slide Time: 48:28)

Scoreboard Example Cycle 7

|nstruction status Read Execution Write
Instruction k Issue operalcomplele Result
LD F6 34+ R2 1 2 3 4
LL F + 5 6 f 13 stolled at read
MULTD FO F2 F4 | & because 12 isn't
7 complete
ADDD F6 FB F2
Eunctional unit status dest S1 82 FUforj FUfor kFj? Fk?
TimName Busy Op Fi Fi Fk Q Qk R R
Integes 3 K
Mult1 fes Mult FO F2 F4
Mult2 |No
Add
Drade [No
Begister result status
Clock FO_F2 Fd F6 F8 F10 _F12 3
7 FU My =
')
LYy
2

Now, it will go to the seventh cycle in the seventh cycle it will proceed to I mean
sequentially operand read it has completed execution it is it will complete. And it will
now issue the forth instruction, because we have got one divide so that subtraction so we
that integer this is available now. So, this particular functional unit is getting busy and
corresponding fields of those 7 fields are being filled up appropriately. Operation to be
performed destination register source register and so on and you can see various register.
I mean which will be written by different functional units are maintained by this register
result status. So, this is a clock cycle 7.

(Refer Slide Time: 49:31)

Scoreboard Example Cycle 8

Instruction status Read EX Write
Instruction j Kk Issue Op compl. Result

LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 T 8
MULTDFO F2 F4 | 6
SUBD F8 F6 F2 7
8
ADDD F6 F8 F2
Eunctional unil stalus dest S1 S2 FUTfoiFUfor Fj? Fk?
TimName Busy Op Fi Fj Fk Qf Qk Rj Rk
Integer |No
Multi Yes Mult FO F2 F4 Yes Yes
Mult2 No
Add f Sub F8 F6 F2
Divide Mult1
Register result slalus
Clock FO F2 F4 F6 F8 F10 F12 F30
8 o FU Mult1 Add

Now, we go to the clock cycle 8 as we go to the clock cycle 8 the integer unit will
complete its execution it will write the result into the register F 2. So, you can see here
there is no longer there is a mention about the integer unit and integer unit has become
free. So, here it is not yes it is no longer busy so integer unit is now free. But it has
already issued the remaining 3 instructions they will be in different stages of completion.
Because they are we have seen that multiplication takes longer time. Now let us see
although the instruction multiplication double instruction was it should, but F 2 and F 4
you see F it was waiting for the result for to be written by the second instruction. So, it
did not read the operands until this writing was complete so in the next cycle if we go

you see it will read the operand.

(Refer Slide Time: 50:33)

Scoreboard Example Cycle 9

nstruction status Read EX Write
Instruction] Kk IssueQOp compl Result
LD F6 34+ R2| 1 2 3 4 MNote: I3 and I4 reod
L 15+ R 5 7 operands because F2 s
MULTDFO F2 F4 & *) now available. ADDD (16)
- cant be ssued becouse
SUBD (14) uses the odder
ADDD FE& F8 F2
Eunctional unt status daest S1 S2 FUforj FUfork Fj? Fk
Time Name BusyOp Fi Fi Fk Q Ok Ri Rk
Integer | Nc
10 Mult1 +S t F F2 F
Multz |No
2 Add
Drade Mult1
Register result status
Clock F0 F2 F4 F6 F8 F10 F12 F30
9 FU {Mu
Feny
159
2

So, it has read the operand because now | 3 and | 4 read the operands because the F 2 is
now available. So, earlier F 2 was not available till the 8 cycle, but in the 8 cycle the
writing the write back operation has been completed. And it is the operands are now
available and you can see both these instructions where F 2 is the source operand or now

reading their operands.

So, they will go to the second stage of the pipeline that is you are read operands. And
this SUB D both of them will do that and here accordingly we can see the multiplication
and division these are in progress. And ADD is not yet released that this particular so
these 3 are in execution. Now and accordingly where the operands will be written are
mentioned multiplier will write on into F 0 adder will write into F 8 and divide will write
into F 10.

(Refer Slide Time: 51:46)

Scoreboard Example Cycle | |

Note: Add takes 2 cycles
so nothing happens in cycle
10. MUL continues

FUforj FU for k Fj? Fk?

Ok Ri Rk

Q) Ql R ¢
No N

Mult1

F10 F12 F30

nstruction status Read ExecuWnte
Instructio | K Issueoperaicompl Hesult
LD F6 34+ R2 | 1 2 3 4
I 4+ Ri| 5 6 7 8
MULFO F2 F4 | 6 9
; 7 1
8
ADDFE FB8 F2
ctional unit s dest 51 S2
imName BusyOp Fi Fk
Integer |No
8 Mult1 fes Mult FO F2 F4
Mult2 |No
0 Add
Divide
t“:ﬂ_ Ei;[[ES m Elﬂljl‘
Clock FO F2 F4 F6 F8
1 FU [Mult1
3]
2 —

So, we shall go to now cycle 11, in 11 it completed the operation and writing of the

result takes place in F 8. And this other things because this one multiplier and divide will

take more number of cycles so this multiplication will continue.

(Refer Slide Time: 52:15)

Scoreboard Example Cycle 12

Instruction status Read Exect Write
Instruction Jj k [ssueoperai compl Resuilt
LD F6 34+R2 | 1 2 3 4
MULTCFD F2 F4 9
1 12
ADDD F6 F8 F2
onal oest S1 S2 FUfaFUforFj? Fk
TimName BusyOp Fi Fi Fk Qj Qk Rj Rk
Integer |No
7 Muilt1 Yes Mult FO F2 F4 Ne No
Mult2 [No
Add No
Dmide Mult1
[-':] Ster resyit statys
Clock FO F2 F4 F6 F8 F10 F12 F30
12 FU |Mult1
o
)
2

So, we shall go to the 12 we have skipped few cycles and only in the twelfth cycle this

particular instruction this particular instruction execution is complete. So, it has read its

operand in ninth cycle execution it will take 2 cycles. So, in twelfth cycle the result is

written into register F 8. And then you will see the can be issued that that this instruction

can be issued in the next cycle.

(Refer Slide Time: 52:52)

Scoreboard Example Cycle |3
Instruction status Rea ecL Wil
Instruction K 1ss1¢ ope

LD F6 34+ R2 | 1 2 3 4

e

MULTD FO F2 F4 | 6 9 Mow ADDD s wsued
11 12 because SUBD has
completed

findl adate dest S1 S2 FUfor FUfor kFi? Fk
Tim Na BusyOp Fi Fi Fk Q .'..r'f. 7-:' R}
Integer |No
6 Muit1 Yes Mult FO F2 F4
Mult2 |No
Add Yes Add F6 FB8 F2 Yes Yes
Drade Mult1
Reqister result status
Clock FO F2 F4 F6 F8 F10 F12 E30
13 FU [Muit1 Add
63
2. ==

So, this instruction has been issued it the next cycle because operands are now available.
So, all the instructions have been issued now and they will be in different stages of
execution. The first instruction and this instruction execution have not been completed.
So, you see that out of order execution has taken place out of order completion has also
taken place, but writing of results has been done very | mean carefully such that hazards

are overcome.

(Refer Slide Time: 53:27)

Scoreboard Example Cycle 14

Instruction status Read Exect.Write
Instruction k Issue operai compl r“-’a:s_u..‘

LD F6 34+ R2 | 1 2 3 9
LC F2 45+ | 0 8 - 8
MULTDFO F2 F4| 6 9
f 8 T 1
8
ADDD F6 F8 F2 |13 14
Eunctional unit status dest S1 S2 FUfaFUforF? FK?
TimName BusyOp Fi Fi Fk Q Qf Ri Rk
Integer |No
SMultl |Yes Mult FO F2 F4 No No
Mult2 |No
2 Add Yes Add F6 F8 F2 No No
Dwide Mult1
Reqgister resylt status
Clock FO F2 F4 F6 F8 F10 F12 F30
14 FU [Multd Add
(i)
2l —

So, this is the 14 cycle now the operands are available it will read the operands.

(Refer Slide Time: 53:33)

Scoreboard Example Cycle |5

nstruction status Read Exec.Wnte
Instruction J k Issue operar compl Resuit
LD F6 34+R2| 1 2 3 4
LE F2 45+ R: 5 6 7 8 Note: ADDD takes
MULTDFO F2 F4| 6 g 2 cycles, so no
; 7 q 1M1 12 change

0

ADDD F6 F8 F2 [13 14

dest S1 S2 FUforjFUforkFj? Fk?
TimName BusyOp Fi Fi Fk Q Qk Ri Rk
Integer |No
4 Mult1 Yes Mult FO F2 F4 No No
Mult2 |No
1 Add Yes Add F6 F8 F2 No No
Dwde Muit1
Reqister result status
Clock FO F2 F4 F6 F8 F10 F12 F30
15 FU [Muitd Add]
M
2l —

And in the fifteenth cycle ADD D takes 2 cycles so no change.

(Refer Slide Time: 53:40)

Scoreboard Example Cycle 16

Instruction status Read Execu Write
Instruction J k Issue operaicompl Result
LD F6 34+R2| 1 2 3 4

LC F2 45+ R3 S 6 [B
MULTDFO F2 F4 6 g ADI[:D.comple.re.s but
: a9 MULTD and DIVD go on

a

ADDD F6 F8 F2 |13 14 18

Functional unit status dest S1 S2 FUforj FUfor k Fj? Fk?
TimName Busy Op Fi Fj Fk Q Qk R Rk
Integer |No
3 Multt Yes Mult FO F2 F4 No No
Mult2 |Neo
0 Add Yes Add F6G F8 F2 No No
Divide Mult1
e ar [as
Clock FO F2 F4 F6 F8 F10 F12 F30
16 FU [Mult] Add ' '

.. @

And we shall be ADD D completes and but multiplication and divide will go on.

(Refer Slide Time: 53:47)

Scoreboard Example Cycle 17
nstruction status Read ExectWrite

Instruction k Issue operal compl Result

LD F6 34+ R2 | 1 2 3 4
e re i_' A 2 9 8 ADDD stalls, can't write back
MULTDFO F2 F4| 6 9 due to WAR with DIVD
; F 7 9 11 12 MULT and DIV continye
ADDD F6 FB F2 113 14 16
Eunction it sta dest S1 for Fj? Fk?
TimName BusyOp Fi Fi Ri Rk
Integer |No
2 Multt |Yes Mult FO F2 F4 No No
Mult2 |No
Add Yes Add F6 FB F2 No No
Dmvde Mult1
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
17 FU [Mult? Add |

It will take several cycles.

(Refer Slide Time: 53:49)

Scoreboard Example Cycle 18

Instruction status Read ExecuWrite
Instruction | Kk Issueoperarcompl Result
LD F6 34+R2| 1 2 3 4
[F2 45+R3| 5 6 7 8
MULTDFO F2 F4| 6 9 MULT and DIV
B 7 9 ; i B continue
8
ADDD F6 F8 F2 |13 14 16 _
Eunctional unit status dest S1 S2 FUfoiFUforFj? Fk?
TimName BusyOp Fi Fj Fk Q) Qk R/ Rk

Integer |No

1 Mult1 Yes Mult FO F2 F4 No No
Mult2 [No
Add Yes Add F6 FB8 F2 No No
Divide (Mult1
Reqister result status
Clock FO F2 F4 F6 F8 F10 F12 F30
18 FU |f.‘,ui'r1 . Add :]

., 4

It will continue.

(Refer Slide Time: 53:51)

Scoreboard Example Cycle |9

Instruction status Read ExecuWrite
Instruction | k Issue operal compl Result
LD F6 34+ R2 | 1 2 3 4
D F24%#R3[5 6 7 8
MULTDFO F2 F4| 6 9 i MULT completes
9 n 12 af ter 10 cycles
8
ADDD F6 F8 F2[13_14 16 |
Functional unit status dest S1 S2 FUfaFU for Fj? Fk?
TimName BusyOp Fi Ff Fk Q4 Qk R Rk
Integer |No
0 Mult1 Yes Mult FO F2 F4 No No
Mult2 |No
Add Yes Add F6 FB F2 No No
Divide Muit1
R S I s
Clock FO F2 F4 F6 FB F10 F12 F30
19 FU [Mult1 Add

.. @

Multiplication completes after 10 cycles.

(Refer Slide Time: 53:58)

Scoreboard Example Cycle 20

Instruction j k Issueoperarcompl Resull
LD F6 34+ R2 1 2 3 4

LLC 2 4 5 6 7 8 MULTD completes
MULTDFO F2 F4| 6 9 19 20 ond writes to FO
f 9 1" 12

ADDD F6 F8 F2 |13 14 18

Eunctional unit status dest S1 S2 FUfoiFUforFj? F
TimName BusyOp Fi Fi Fk Q Qk R Rk
Integer |No
Mult1 |No
Mult2 |No
Add Yes Add F6 F8 F2 No No
Divide
Register result status
Clock FO F2 F4 F6 FB F10 F12 F30
20 FU| Add
(I-;
2l

So, in the 20th cycle multiplication is complete, but division will continue and

accordingly these are corresponding databases are updated.

(Refer Slide Time: 54:10)

Scoreboard Example Cycle 2|

Instruction J Kk Issueoperarcompl Result
ID F6 3+R2[1 2 3

© &

a MNow DIVD
reads because
FO is avalable

ol - = I
MULTDFO F2 F4 | 6 9 19 20
; ; 1

) 1 12
8 21
ADDD F6 F8 F2 |13 14 16
Eunctional unit status dest S1 52 FUfoFUfor Fj? Fk?
TimName BusyOp Fi FI Fk Oy Qk R Rk

Integer |No
Mult1 [No
Mult2 |No

Add Yes Add F6 F8 F2 No No
Divide
Register result status
Clock FO 2 Fd4 F6 F8 F10 F12 F30
21 FU| Add
i

So, scoreboard example after 21 only except divide and ADD D all execution are

complete.

(Refer Slide Time: 54:20)

Scoreboard Example Cycle 22

Instruction k Issueoperaicompl Result
LD F6 34+ R2 | 1 2 3 4
| F2 45+ F 5 6 7 8 ADDD writes
MULTDFO F? F4 e q 19 20 result becouse
: - - [:_‘ 1'1' 1, WAR is removed
8 21
ADDD F6 FB F2 |13 14 16 22
Functio nit status dest S1 S2 FUfoiFUforFj? Fk?
TimName BusyOp Fi Fj Fk Q Q Ri Rk
Integer |No
Muit1 |No
Mult2 |No
Add No
Drade
Reqster e
Clock FO F2 F4 F6 F8 F10 F12 F30
21 FU|
(1)

And ADD D is also completing in cycle 22 and only divide is left out.

(Refer Slide Time: 54:27)

Scoreboard Example Cycle 61

Instruction | k Issue operarcompl Resull
LD F6 34+ R2 | 1 2 3 4
MULTDFO F2 F4 6 g 19 20 DIVD completes
- y executon
) 1 12
8 21 61
ADDD F6 F8 F2 |13 14 16 22
Functional unit status dest S1 S2 FUftaiFU forFj?7 Fk?
TimName BusyOp Fi Fi Fk @ Qk R Rk
Integer |No
Mult1 [No
Mult2 |No
Add No
Divide
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
61 '-L,-'l

So, we have skipped large number of cycles because 40 cycles are need by divide. So,
accordingly we have skipped a number of cycles. Now, we shall go to the 60 first 61

cycles it is completing and now it will write the result.

(Refer Slide Time: 54:43)

Scoreboard Example Cycle 62

Instruction status Read Executic Write

Instruction k Issue operand compiet Result

LD F6 34+ R2 1 - 3 4
O F 5% R 5 q T a Execution is finished
MULTIF F2 F4 1 20
7 §] i 12
F F Fé 1 81
ADDDFE F8 F2 13 14 16 22
Eunctional unit st dest S1 S2 FuUforj Fufork Fj? Fi
Time Name Busy Op F Fi Fk O Qk Ry Rk
Integer No
Ml No
Muk2 Mo
Add No
0 Divide No
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
62 Fu
l\"il
2 —

Into the registers so all everything has been done execution is now finished. So, we have
seen how the execution has been completed we have already discussed this. And we shall
briefly mention about the limitation of scoreboard we have seen that amount of
parallelism available among the instructions is very restricted for reason for that is it is

restricting its window only to a basic block of a programme.

And we have seen that the within the basic block the instruction level parallelism is very
much restricted. And as a consequence it cannot really give you very good result
performance cannot be improved much. And second is the number of scoreboard entries
uh that is window is not beyond branch. So, if the execution is completed beyond branch
then that window of where the instructions which are considered by scoreboard is taken

can be completed.

(Refer Slide Time: 55:55)

Limitations of the Scoreboard

» The amount of parallelism available
among the instructions

» The number of scoreboard entries:
Window, not beyond a branch

» The number and types of functional units

» The presence of antidependences and
output dependences

But unfortunately the number of entries to the scoreboard is very limited because of the
limited size of window the number of and types of functional units. So, the number and
types of functional units has to be dependent 9 on the instructional level parallelism
available. And the window size there is no fun in having a very large number of
functional units, because that may overcome the structural hazard. But because of the
other type of other 3 types of hazards that may be stalls and performance cannot be

much.

So, the number and types of functional units are to be carefully chosen and the presence
of anti-dependences. And output dependences we have already see the anti-dependences
and output dependences are arising, Because of out of order execution and they are
tackled by scoreboard with the help of by stalling the stalling the by introducing stalling
cycles. And that is how the scoreboard is performing so in the next class or may be
subsequently we shall discuss about that another dynamic instruction scheduling
approach. That is Tomasulo is approach which was developed Doe IBM 360 and that is
more sophisticated. And we shall see how it overcomes some of the limitations of

scoreboard.

Thank you.

