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Lecture - 11 

In Quest of Higher ILP 
 

Hello, and welcome to todays lecture on in quest of higher ILP; ILP stands for 

instruction level parallelism. In the last couple of lectures, we have discussed how 

pipelining can be implemented and how instruction level parallelism is exploited in 

implementing pipeline.  
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So, today we would like to go Beyond pipeline, we have already seen the characteristics 

of pipelined processors, in case of pipelined processors, we have seen maximum 

performance that you can achieve is close to one instruction per cycle. That means even 

if there is no stall, no hazard then we cannot achieve beyond this, you can this is the 

upper limit of instruction level parallelism that you can achieve. Second thing is one 

instruction is present in the pipeline at a time. That means although we shall be executing 

different instructions I mean different parts of the instruction in a overlapped manner. 

But at a particular instant of time if you look at we will find that only one instruction is 



in the pipeline. And we have discussed about the baseline scalar RISC here a term scalar 

is introduced. So, this scalar is introduced to specify that you have got processor that 

executes one instruction at a time. 

And later on, we shall discuss about super scalar where you will see more than one 

instruction can be executed at a time. So, the main characteristics of these baseline scalar 

RISC processors are issue parallelism is only one. That means at a time only one 

instruction is issued operational latency is equal to 1 that was assumed that the latency is 

1. And peak instruction per cycle you see earlier we were using a term called CPI cycle 

per instruction that was obviously was greater than 1 in case of your greater than equal to 

1 in case of pipeline. But now we are trying to introduce another term which is the just 

the reverse of CPI here instruction per cycle why you are doing this the instruction per 

cycle is a that number will be more than 1. So, since we want CPI less than 1, we want 

instead of CPI we shall using the terminology ICP which will be more than 1 in the 

processors that we shall be discussing after this. 

So, in up to the pipeline processor, we were discussing CPI because the number of 

instructions cycle per instruction that was more than 1. So, it is just a terminology CPI 

and IPC they represent the same thing one is the inverse of the other that is all. Now, the 

question is can we go beyond it so pipeline processors we have explored in details. And 

we have seen, what are the different types of hazards? Structural hazard, data hazard and 

control hazard and how these hazards can be overcome by using suitable techniques. We 

have used loop unrolling; we have used software pipeline to overcome data hazard. We 

used enough additional resources to overcome structural hazard. Of course, we have not 

discussed in detail about controlled hazard that we shall discuss subsequently. Now, how 

can we go beyond pipeline? 
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And these limitations, we have highlighted several times. So, in case of scalar pipelines 

maximum throughput is bounded by one instruction per cycle. Inefficient unification of 

instructions into one pipeline, you try to understand this particular point. The instructions 

as you know can be categorized into different types, we know that the instructions are 

number one is data transfer. 
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Then data manipulation and there are several control instructions or these are also known 

as control transfer. And there are few instructions which are known as status 



manipulation instructions. In spite of the fact, we know that these instructions do not take 

same time for execution. For example, data transfer instructions in RISC those are load 

and store. So, these instructions will involve memory, in spite of the fact the instructions 

involve memory will take longer time; we group them with data manipulation 

instructions which are where the ALU operations are performed using registers 

obviously to get operands from the register takes smaller time. And they will take 

smaller lesser time to execute, but in our pipeline whenever we considered, we consider 

a single pipeline having different stages instruction phases, instruction decode, memory, 

execution memory and write back. 

So, using the same pipeline we were trying to execute different types of instructions; 

obviously, it is little not only little unrealistic in fact is it can be really implemented in 

this phase. So, this inefficient unification of instruction into one pipeline ALU operation 

memory stages with diverse which are very diverse. Then floating point operations 

particularly, we see whenever we try to implement floating point operations in a 

processor they are quite complex. And they will involve several cycles and obviously, if 

we try unify them with the help of a single pipeline system. Then it is not feasible, but 

we assumed some assumptions were made with considered that they will take each stage 

will take only one cycle. 

So, with the based on that assumption we we have implemented pipelining. And another 

very important limitation of scalar pipelines were rigid nature of in order pipeline. You 

know we are one instructions is getting entered until that instruction is execution of that 

instruction is completed, we cannot issue another instruction. So, as a consequence what 

is happening at a if any instruction is stalled then subsequent, the subsequent instructions 

cannot be issued or executed. That means because of this in order nature of instruction 

issue which is done one instruction per cycle this limitation is coming. So, if a leading 

instruction is stalled every subsequent instruction is stalled. So, these are the limitations 

of scalar pipeline and obviously our objective of this lecture that is beyond pipelining 

would like to overcome these limitations. 
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So, here the main objective is to have higher ILP processor so an ideal CPI of 1 can be 

achieved by eliminating data and control hazards that we have seen. So, CPI less than 1 

or IPC greater than 1, whatever way you will say we would like to improve the 

performance further and we may try to achieve CPI less than 1 or IPC greater than 1. 

And in this connection 2 basic approaches have emerged, first one is known as very 

large, large instruction word VLIW and second approach is known as superscalar. So, 

first approach that VLIW, we shall discuss today and superscalar processors we shall 

discuss later. 
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And just let me highlight the key differences between these 2 approaches before I discuss 

in more detailed about VLIW. So, VLIW in case of VLIW processor, the compiler has 

complete responsibility of selecting a set of instructions to be executed concurrently. 

Obviously, if we want CPI less than or IPC greater than 1, we have to concurrently 

execute more than 1 instruction question naturally arises who will identify those 

instructions who have which can be executed concurrently. And the primary requirement 

is that they should be independent so that can be that difference leads to 2 different 

approaches. The first one that VLIW; in this case the compiler is given the complete 

responsibility of selecting a set of instructions to be executed concurrently. And obvious 

consequence is that hardware will be simple. 

But it will require a smart compiler that means the complexity is passed on to the 

software designer who are developing the compiler instead of passing on the complexity 

to the hardware designer who are implementing the processor. So, in this case the 

compiler will be complex the hardware will be simple in case of VLIW. On the other 

hand in case of superscalar architecture you will find that the instructions which can be 

issued or which can be executed concurrently is identified by the help a hardware not by 

software. And there are 2 basic approaches; one is known as statically scheduled 

superscalar processor. So, in this case multiple instructions are issued and then they are 

executed in order. 



So, statically scheduled superscalar processors will perform multiple issue of 

instructions. And that will be done by hardware and in order execution of an instruction 

will take place. On the other hand the dynamically scheduled superscalar processors 

where sophisticated techniques like speculative execution branch prediction those things 

will be done. And in such cases you will find it will be, it will allow out of order 

execution. That means instructions will not only I mean they will be issued out of order 

and execution will take place out of order. 
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So, that will be done by by incorporating these techniques like speculative execution 

branch prediction and so on. So, in this particular case; obviously, in case of superscalar 

processor you will require more hardware functionalities and complexities. And we shall 

see the processor will be very complex they will consume lot of power and compared to 

VLIW processors. So, you may be asking that why VLIW processors are important the 

reason for that is hardware cost and complexity of super scalars is a major consideration 

in processor in design. Because hardware is very complex they will require lot of chip 

area they will that means the complexity will be very high that that and the power 

dissipation will be very high. 

And to overcome that VLIW processors will rely on compile time analysis to identify 

and bundle together instructions that can be executed concurrently. So, the compiler will 

do analysis on the instructions and identify which instructions are independent. And then 



it will bundle together instructions that can be executed concurrently and these 

instructions are packed and dispatched together.  
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So, what you are doing you are identifying several instruction may be say 4 to 8, 4 to 8 

instructions which are identified by the compiler then you are packing them into a single 

instruction. So, instruction 1; instruction 2; instruction 3 and instruction 4 so these 4 

instructions are put together into a single VLIW instruction. And as a consequence the 

size of the instruction is long, because a single instruction I mean normally in pipeline 

processors you will find that instruction with these only this much. But since you have 

packed or bundled several instruction in a single instruction in a VLIW processor the 

instruction with these longer And that is a reason why this is known as very large 

instruction word. So, the name has been derived from this, because the length of an 

instruction is longer so for example, if it 32 bit. So, if you pack 4 instructions; you will 

require that means it is 4 word 4 into 4 16 bytes. So, 4 byte 4 byte 4 byte 4 byte so you 

may require 16 bytes for a single instruction and these instructions are stored in the 

memory. 

So, after the compiler you know source code is applied is applied to the compiler and 

compiler will produce that object code. And in case of superscalar processor, the object 

code will consist of instructions. And these VLIW instructions that means each 

instruction is of 4, I mean will comprise of 4 instructions next instruction will also 



comprise of 4 instructions like that in this way they will be stored in the memory. Then 

they can be fetched in order and executed in order. So, after the instructions are bundled 

together to form very large instruction word they are stored in the memory cache 

memory or main memory whatever it may be. Then they are fetched one after the other 

the way simple instructions are fetched and executed in a pipeline processor. 

So, after the compilation is done you are your that if you look at the source code; you 

will find the instructions are like this which are large instruction words. So, may be each 

of 16 words 16 bytes and static instruction issue, capability static instruction issue means 

since it is done at compiled time. We are calling it static instruction issue, because as I 

have explained at compiled time the compiler is analysing. And then they are statically 

they are generated then they are stored in the memory. So, at run time there is no change 

so at run time they are fetched one after the other and then they are executed in the same 

order. So, in fact this concept has been employed in several commercial processors 

including Intel I a 64 processors this VLIW architecture. 
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And as I have already mentioned VLIW processors deploy multiple independent 

functional units so what do you really mean you have got several. 
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You will require multiple function units say if you are issuing 4 instructions you will 

require 4 functional units in a single CPU. And these functional units will be fed by a 

single VLIW instruction as we have already mentioned it consists of 4 operations or 4 

instructions. So, each field will feed to this functional unit 1; functional unit 2; functional 

unit 3; functional unit 4. So, different functional units will be fed by instruction 1; 

instruction 2; instruction 3 and instruction 4. These functional units obviously need not 

be identical and in fact they are not identical. For example, some of them can be integer 

units some of them can floating point units some of them can be load units that means 

which performs only loading which will perform I mean load and store operation so 

specialised and fourth type can be branch unit. 

So, that means these functional units are not identical they are capable of performing 

different types of operations. For example, integer units will be able to perform addition, 

subtraction, multiplication, division of integers or various logical operations. Similarly, 

floating point units will perform various floating point operations floating point I mean 

addition, subtraction, multiplication, division, the load store unit will be responsible for 

storing register values into the memory or loading memory contents into registers. So, 

their job is specialised so this is this type of multiple functional units actively present in 

superscalar processors and early VLIW processors operated lock step. That means there 

were no hazard detection hardware at all. 



So, it was assumed since the compiler has done the job they have already identified that 

there will be no they are independent and that is how they have been issued. So, there 

was no hazard detection that was necessary that is known as lock step execution. That 

means one say a bundle of instructions are executed then next bundle of instructions are 

fetched and executed that is how it proceeded. So, because of some reason if a bundle 

gets delayed for example, may be because of say cache miss or in such a case it will be 

delayed. So, load store unit will get delayed instead of loading from the cache memory 

have to load it from the main memory since such a case it will be delayed. So, a stall in 

any functional unit caused the entire pipeline to stall so that is how it is implemented. 
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So, let us now consider a 4 issue static superscalar processor during fetch superscalar 

means here we are trying to tell that you have got multiple functional units, and during 

fetch stage 1 to 4 instructions would be fetched. And the group of instructions that would 

be issued in a single cycle are called an issue packet or a bundle. So, if an instruction 

could cause a structural or data hazard it is not issued that means here the compiler does 

the analysis. And finds out whether a particular instruction would cause structural or data 

hazard structural hazard means there is no enough resources. So, if enough resources are 

not available then that instruction is not issued of if it identifies that there is data hazard. 

So, there is data dependency among instructions they are also not issued. That means the 

instructions have to be completely independent only then they are issued with the help of 

this v l I d processors. 
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So, here for example, one single VLIW instruction these are separated separately targets 

different functional units. Obviously, they have to be executed concurrently and each 

field should target different functional units as I have already told. For example, so here 

some practical or commercial processors which are based on these VLIW approach are 

multiflow, TRACE, Texas instruments, C6X, titanium IA 64 by Intel then Crusoe 

processor by transmeta. So, these processors these are commercial processors which 

were based on VLIW approach so and a bundle in these cases in all these cases the 

processor the compiler will issue a bundle. I mean the processor will issue a bundle issue 

a bundle means. It will fetch an instruction and that instruction comes comprises few 4 

field and they are fetched together and the 4 operations will be issued. So, the bundle is 

issued. So, you can see you have multiple functional units so this is a add r 1, r comma 2 

comma r 3. So, this will be issued to one functional units so this is a obviously; this is a 

this is a integer functional unit. 

So, it is it is performing addition of integers similarly; this is a load store unit to which 

this instruction is issued load r r 4 comma r 5 plus 4. Similarly, mov r 6 comma r 4 this; 

this is again a data transfer instruction, but between registers. So, this will be also be 

performed by functional units then multiplication another integer unit which is used 

which will perform the multiplication. It will take 2 operants from registers and perform 

multiplication and store the result in a register. So, you can see this is the schematic 



explanation for a VLIW instruction which is the generalised you know generalised 

picture but. 
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For different processors I mean there will be some differences I shall consider in detail 

one particular type. So, these I have already mentioned in the issue hardware is simpler, 

because here issue hardware is not doing analysis on the instructions, because that 

analysis has been performed by the compiler. So, as a consequence the issue hardware is 

simpler compiler has a bigger context from which to select co-scheduled instructions. 

And compilers however, do not have runtime information such as cache misses. I have 

already explained that at compiled time many thing which can happen at runtime is not 

known. That means at runtime cache miss is a phenomenon which will happen only at 

runtime which cannot be predicted at compiled time. 

That means whether cache miss will take plus by looking at the set of instructions one 

cannot say that a cache miss will occur. So, scheduling is therefore, inherently 

conservative, because that means the instruction level parallelism that it can exploit is 

that scope is limited. For example, branch and memory prediction is more difficult. So, 

whether a branch will be taking place or not and and memory prediction that means the 

effective address value whether they are same or not that identification is also difficult 

that can be identified only at runtime. And as a consequence difficult VLIW processors 



are limited to 4 way or eighth way parallelism as I have already told that the number of 

instructions that can be issued in parallel is restricted to 4 to 8 in case VLIW processors. 
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So, this is in the context of that transmeta Crusoe processors I have already mentioned 

transmeta that is a name of a company they introduced their processor named as Crusoe. 

crusoe processor that in for that Crusoe processor. Then Crusoe processor that is a VLIW 

that used a VLIW architecture and there what they said that an instruction of VLIW 

processor is called molecule and each field is called atom. So, as per their terminology 

transmeta terminology, so each molecule consists of 4 atoms. So, you have you have got 

different functional units floating point unit, integer unit, load store unit and branch unit 

and in 4 fields instructions of those types are packed and then they are issued 

simultaneously. So, a compiler generates long instructions having multiple operations 

meant for different functional units and the group of instructions that can be issued in a 

single cycle are called an issue packet or a bundle. 
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So, let me illustrate this VLIW execution with the help of the same example that we have 

discussed in the context of pipelining. So, same programme high level language 

programme where you are adding a scalar value s 2, different elements of array and the 

result is stored in the in the memory. So, and this is the corresponding mips code for that 

particular programme which I have explained earlier. Now, let us see how we can, how 

we can run this or how this particular programme can be run on a VLIW processor. So, 

here VLIW processor is assumed to perform 5 operations; 1 integer, 2 floating point 

operations, 2 memory references each requiring 16 to 32 bits field. 
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And here the same instructions are getting executed. So, here what has been done the 

loop has been unrolled this particular role has been unrolled 7 times to avoid delays. 

Because you require more instruction level parallelism to feed the different functional 

units and that is a reason why you will you have to unroll many times. And that unrolling 

has been done 7 times to avoid delays and 7 results in 9 clocks we can see or one point 

here what is being done each line corresponds to a single VLIW instruction.  

So, here you have got 1 2 3 4 5 6 7 8 9. So, that means you will require 9 clock cycles 

whenever you execute it with the help of a VLIW processor. So, this whenever you do 

that it results in 9 clocks or 1.2 clocks per iteration. So, 1.29 per iteration and you are 

performing 23 23 operations in 9 clocks average of 2.5 operations per clock. So, that 

means in terms of your simple pipeline what will you say here IPC is 2.5 instruction per 

cycle is 2.5, because you are able to perform two point operations per clock. 

But one point you should notice that the instructions is the instructions are having 1 2 3 4 

5 fields, out of these five fields in many for if you look at different instructions you will 

find the different fields are empty. What does it mean? That means that that the compiler 

has failed to identify independent instructions which can be executed concurrently. So, it 

does not mean that you have got 4 fields or 5 fields that does not mean that all the fields 

can be filled up by the compiler. Compiler may not be able to fill up these fields and as a 

consequence some of the fields will remain empty what do you mean by they will remain 

empty you have to fill up those fields with the help of an instruction known as no 

operation or no op that means nothing is being performed. So, if you look at the different 

instructions so let us assume that it has got 5 fields. 
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These are the subsequent instructions now one field, second field, third field, fourth and 

fifth field. So, what can happen if you look at the different fields? You may find that 

these two fields have been field up other, three has remained unutilised or these these 

three fields have been filled up two has remained unutilised or these these three fields 

have been filled up. These two fields have been filled up and or it may be like this field 

has been filled up; this field has been filled up; this filled has been filled up and this way 

some of the fields may remain unfilled.  

So, in such a case what will happen that utilisation of the functional units will not be 100 

percent that means the utilisation of the functional unit will be less, because some of the 

fields have remained unutilised. So, that is the situation here also. So, only 60 per cent of 

the functional units are used. So, if you look at you will find that 3 fields have remained 

unutilised in the first instruction, 3 fields have remained unutilised in the second 

instruction. One field has remained unutilised in a third instruction 2 fields have 

remained unutilised in the fourth instruction and like that. 

So, and another point you must also notice you will require more registers in VLIW that 

is the characteristic, because whenever you do loop unrolling you need more registers to 

avoid constraints. And whenever you go for VLIW you require more instruction level 

parallelism. So, the loop unrolling required for achieving higher ILP is more we have 

seen in the context of simple pipelining the unrolling of 3 times or 4 times was enough.  



And that was built to provide you enough instruction level parallelism and without any 

stall. But whenever you are you are going for VLIW processor; you will require more 

unrolling to have higher ILP, and the as a consequence you will require more registers in 

the VLIW. That means the VLIW processors should be provided with more number of 

registers and here as you can see you have got you have utilised all the, I mean 32 

different registers floating point and fixed point registers. Most of the since the 

operations are floating point operations all the floating point registers the 32 floating 

point registers have been used effectively and is spite of that your functional utilisation is 

only 60 per cent So, this limitation you have to accept whenever you go for VLIW 

architecture. 
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Now, I was talking about one processor that is transmeta’s Crusoe processor that is 

transmeta’s Crusoe processor that is say commercial processor it allows two different 

types of instruction formats memory compute ALU and immediate, immediate means 

immediate data field or memory compute ALU branch. So, we find that using these 4 

fields you can have 5 different types of operation slots ALU operations typical RISC like 

ALU operation. Then compute integer or floating point ALU operation where these 2 

fields compute field then memory field a load store operation. The first field and branch 

a branch instruction this is here is a branch and immediate a 32 bit immediate data that 

can be provided. So, you find 32 32 32 32 that means 32 into 4 that is the, that is a size of 

the instruction in case of this transmeta’s Crusoe processor. 
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And I have already told that long instruction word called molecule can be of 60 4 or one 

twenty eight bit long a molecule can contain up to 4 RISC like instructions called atoms 

because here you are forming a bundle with 4 instructions all atoms get executed in 

parallel molecules are executed in order. So, this is these are the typical characteristics of 

VLIW processors and the same thing is followed in transmeta’s Crusoe processor. And it 

uses a simple in order 6 stage pipeline for integer. So, we find that not only you have got 

multiple functional units the functional units itself can be pipeline. So, that is additional 

thing additional complexity that is being incorporated. 

So, the functional units will be will be pipelined so 6 stage pipeline for integer 

instructions to fetch stage decode register read register write back. So, these are the 

pipeline stages that is present in for the integer instructions similarly 10 stage pipeline 

for floating point and 4 additional execution stages. So, we require 10 plus 4 4 stages for 

floating point.  
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So, we find that different instructions will take different time to execute they will not 

take same time so that is present in transmeta that is done is, Transmeta’s Crusoe 

processor and that is the implementation of transmeta’s Crusoe processor. This is the 

VLSI chip layout it can operate in the range of 500 to 700 megahertz L 1 cache is 128 

kilobyte, L 2 cache is 256 kilobyte, main memory is DDR SD RAM typ. It can upgrade 

to SD RAM type north bridge is integrated package is this is the package in which is the 

474 BGA and Fab partner IBM anyway. And process technology is 0.1 these are the 

details of implementation die size is 73 millimetre. 
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And that the production started in mid 2000 and this is the basic approach that is being 

followed in transmeta’s Crusoe processor. They have used a Nobel concept known as 

code morphing software. What is this code morphing software? This code morphing 

software; what it does? It translates from one instruction set architecture to another 

instruction set architecture. So, for example, the instructions that it will fetch will 

correspond to X86 ISA then code morphing software CMS will covert it transform it into 

VLIW instruction set architecture. So, this is a special software code morphing software 

which is provided by transmeta to translate from one instruction set architecture to 

another instruction set architecture. Why it is it being done? This is being done, because 

they found that most of the application softwares are available for you know X86 

processors that is Pentium and other processors. 

So, the application software will correspond to X86 or Pentium like processors. Then 

they are converted into instruction set architecture of VLIW and that can run in the 

VLIW processor that is you at the centre you have got this VLIW engine. That means 

outer layer correspond to PC and other internet applications operating system windows 

Linux and so on. And in between the VLIW engine and the outer layer application 

software, system software you have got this code morphing software which is acting as a 

interface between the two. So, which morphs X86 to VLIW and it is a high speed low 

power engine VLIW plus code morphing is equivalent to X86 compatible solution. That 



means the programme which has been developed for Pentium can be run on this 

particular processor. 
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And this code morphing software is a it is a dynamically fundamentally a dynamic 

translation system a programme that compiles instructions for instruction set architecture 

instructions for instructions architecture into instructions for another instruction set 

architecture. So, as I mentioned X86 code is compiled into VLIW code. So, what is 

being done here code morphing software insulates X86 programme from hardware 

engine’s native engine instruction set. So, what is the main benefit of this approach? The 

main benefits of this approach as we know with the advancement of technology, we keep 

on adding new generation of processors Pentium 1, Pentium 2, Pentium 3, Pentium 4 and 

so on. 

So, like that this VLIW processor which was developed by transmeta back in 2000 they 

that will also keep on upgrading and their functionality their can be improved so as it is 

being done what has to be changed. So, as you change the VLIW engine what 

modification is required in your system? So that the users can user is not affected user 

interest is not affected only change that is required is the code morphing software that 

means as you change the VLIW engine. The code morphing software needs to be 

modified and that is being provided by transmeta even not affected. So, that approach is 

followed by transmeta so the native instruction set can be changed arbitrarily without 



affecting any X86 software at al. And only code morphing software needs to be ported so 

that is the only modification that is required. 
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And this code morphing software this that learn and optimises the application that means 

this code morphing software, what it does from the first experience that code morphing 

software can be made more and more sophisticated to facilitate to provide give you more 

and more optimisation. And so that is that provides a platform for future extensions and 

here is some comparison about the that with Pentium and transmeta processors on the 

that second line, first line gives you different types of processors that is implemented 

mobile Pentium 2 mobile Pentium 2, mobile Pentium 3, transmeta TM 3120, TM 5400. 

So, that is latest and the process technology that is used where point to 5 micron. Then 

subsequently .18 micron and for transmeta TM 3120, .22 micron and for transmeta TM 

5400 .18 micron and on chip cache was smaller for Pentium processors. But for 

transmeta the on chip cache size they could provide was larger, because they were able 

to provide more cache memory in the processor. 

Because the processor was simple since the processor was simple they were requiring 

lesser chip area that means that real state silicone real state that were consumed by 

processor part was smaller. And as a consequence they were able to provide more cache 

memory and that is why for TM 3120 96 kilobyte and for TM 5400 128 kilobyte. And on 

chip L2 cache they were present for mobile Pentium was 256 kilobyte and for transmeta 



TM 3120. There was no on chip L2 cache, but for TM 5400 the on chip L2 cache that 

was provided was 256 kilobyte. But in spite of higher cache memory you can see the die 

size is smaller for transmeta processors. So, you find that that for mobile Pentium 2 130 

millimetre square for mobile Pentium 2 another version 180 millimetre square or 106 

millimetre square using smaller dimension .18 micron technology. But for transmeta it 

was around 77 of 73 millimetre square so with smaller die size this was possible. So, the 

particularly the code morphing software simplifies the chip hardware that is the 

conclusion from this. 
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Now, what is the impact of this? We can see this is an example here you have got X86 

memory after the translation, this is the VLIW code 4 fields are filled up and no 

translations found. So, there will be some there will be blanks. 
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That is quite natural. 
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So, this is the actually it is done in 2 steps that code morphing operation is done in 2 

steps. First it finds out the, those it finds out the it divides into RISC like operations, and 

in the second step. 
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It does the forming the, that translates into VLIW codes. So, here this is the output; this 

is the Intel X86 instructions and this is the morphed version of the VLIW instructions. 

So, this is how it is being done so. 
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But the main benefit that you get from this VLIW processor is demonstrated by the help 

of this diagram. You can see here you are running the same programme one in case of 

Pentium 3 which is playing a DVD player. And you can see the temperature profile the 

Intel inside, Intel the temperature is reaching 105 centigrade. It is getting heated on the 



other hand in case of Crusoe processor model we find that that is you TM s 5400 playing 

the same programme your temperature is only 48.2. 

So, if you consider from the view point of low power now a days you know low power is 

becoming increasingly important particularly in portable applications most of the 

devices. Now, a day’s you know laptop p d a’s, cell phones and hot note in all these 

cases they are driven by battery since they are battery driven. It is very important to have 

lower power consumption and also you know that that temperature which is inside 

decode is decides the reliability of the processors for higher reliability lower temperature 

is also very important. It has been found that for every 10 degree rise in temperature 

reliability becomes half. So, in that context this transmeta’s approach is quite good. So, 

we find that running the same programme it leads to smaller power consumption. 
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So, here some of the VLIW problems is identified. Large number of registers needed in 

order to keep functional units active. Large data transport capacity is needed between 

functional units and the register file and between the register files and memory. And high 

bandwidth between instruction cache and fetch unit, because it has to be done in higher 

speed so one instruction with 7 operations each of 24 bits. So, number of that means the 

instructions that you have to fetch at this rate 128 bits per instructions that has to be 

fetched. So, these are the some of the limitations present in VLIW. 
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And which can be overcome another problem is large code size partially because of 

unused operations and wasted bits in instruction words. Incompatibility of binary code 

and if a if for a new version of the processor additional functional units are introduced 

then the number of operations possible to execute in parallel is increased, instruction 

word changes old binary code cannot run on this new processor. So, that means the, that 

backward compatibility cannot be easily mended in VLIW architecture. However, if you 

have got that approach that software like code morphing software then of course, there is 

no problem anyway these problems can be overcome in superscalar architecture in spite 

of larger chip area and larger power dissipation. And you will see that that superscalar 

architecture has been more accepted than VLIW because of the limitations that I have 

mentioned. So, with this let us stop here. 

Thank you. 


