
High Performance Computer Architecture 
Prof. Ajit Pal 

Department of Computer Science and Engineering 
Indian Institute of Technology, Kharagpur 

 
Lecture - 10 

Software Pipelining 
 

Hello and welcome to today’s lecture on Software Pipelining, we are discussing about 

data hazards. And in the last lecture we seen how we can minimize or reduce the data 

hazards; that means overcome the stalls with a help of a software approach know as loop 

unrolling. 

(Refer Slide Time: 01:15) 

 

What it essentially does, it increases the size of the basic block, so suppose you have got 

a loop in which these are the three instructions, which are data dependent. So, in the 

main body of the loop you have got three instructions a b c, and this is the data 

dependency graph. So, these three instructions are dependent as a consequence, they 

cannot be executed simultaneously or in a overlap manner. 

So, by using loop unrolling what is being done, a b c then if we unroll 3 times a b c and 

then a b c, so now you have got 6 instruction in your basic block. And since the 

instructions of the of different iterations or different loops are usually independent, 

within these 9 instructions the data dependency is obtain. So, instruction level 

parallelism is increased by using this basic block, and then these instructions are re 



scheduled to execute the program in such a way that the stalls are reduced, that is basic 

approach. 

(Refer Slide Time: 02:53) 

 

We have discussed in the last lecture and it is a software based approach, and we have 

also seen that loop unrolling with instructions scheduling have three different types of 

limits. Number 1 is that decrease in the amount of overhead, which is amortized with 

each unroll for example, if the loop is unrolled 8 times the overhead is reduced, from half 

cycles of the original iteration to 1 by 4. 

So, that happens and the growth of the code size due to loop unrolling, that leads to 

cache miss rates and consequence you cannot really unroll many times. Third limit that 

that is due to shortfall of registers created by aggressive unrolling and scheduling, and 

this is known as register pressure we have already discussed in detail issues. 

 

 

 

 

 



(Refer Slide Time: 03:41) 

 

And you have seen that loop unrolling improves the performance by eliminating 

overhead instructions loop unrolling is a simple, but useful method to increase the size of 

straight line code fragments. This is a sophisticated high level transformations, which 

leads to significant increase in complexity of the compiler, so this loop unrolling and 

instructions schedule is done at the cost of increased complier complexity. But, we have 

seen in spite of that fact it has got some limitations, because it increases the size of the 

quad that leads to cache misses and other things. 

(Refer Slide Time: 04:34) 

 



We shall discuss about another approach where some of these limitations are overcome, 

and this is known as software pipelining, and this eliminates the loop independent 

dependence through code restructuring. So, by restructuring the code the loop 

independent, dependences are eliminated and; obviously, it leads to reduced number of 

stalls it helps to achieve better performance in pipeline execution. And one more one 

very important factor is as compared, to simple loop unrolling consume less code space; 

that means, size of the code is small, now let me explain how exactly it is been done. 

(Refer Slide Time: 05:19) 

 

So, let us start with the gain the same data dependency graph a b c, this is your data 

dependency graph, and whenever we try to execute in a pipeline manner. We may write it 

this way a b c, then in the next cycle a b c, next cycle a b c, next cycle a b c, a b c and so 

on. Now, if we look at these we find that we can divide these into three parts, in this case 

you can see this instruction c of the first iteration, say maybe iteration i, instruction b of 

iteration i plus 1, and instruction a of iteration i plus 2. 

We can combine them, and for single loop where these three instructions will be 

executed, since they have been taken from different iterations. They are presumed to be 

independent; that means, this c this b this they belong to different iterations, and as a 

consequence they are independent; that means, here we can see that c b a, c b a, this will 

form a loop. That means, this part can be considered as a loop like this c b a, this will 



form a loop and of course, you will have the these three instructions will be there they 

are to be executed. 

And you have to execute the remaining instructions, which are left out, so it will have 

kind of prologue and epilogue, but this part can be executed in the form of a loop and by 

doing this. You find that there will be these three instructions are independent, there will 

be no stall in pipelines, so that is what is being done in loop unrolling; that means, we are 

taking instructions from different loops, as it is done in case of hardware pipeline. 

We have seen in a hardware pipeline, what was done say instruction fetch, instruction 

decode, instruction execute, then memory, operation, then right back. So, what was done 

this instructions were executed or these instructions, instructions fetch they were 

executed in a pipeline. Similarly, here also you are doing the same thing, but here it was 

done for a single instruction, now we have taken instructions from three different 

iterations. 

(Refer Slide Time: 08:55) 

 

So, that is I mean from this simple feature, that means exactly just as it happens in a 

hardware pipeline. We are doing it in the same manner; that means, in each iterations of 

software pipeline code some instructions of some iteration of the original loop is 

executed. So, this what I have explain is shown in this, so we form a kernel c b a, which 

can be executed in the form of a loop, and this is essentially software pipelining. 



(Refer Slide Time: 09:23) 

 

Let me, illustrate this with the help of an example, so this is the same I explained same 

thing explained central ideal reorganize loops, each iteration is made from instructions 

chosen from different iterations of the original loop. That means, here for example, we 

had iteration i 0, i 1, i 2, i 3, i 4 and i 5, but some instruction from iteration i 0, some 

from i 1, some from i 2, some from I 3 and some from i 4, are taken to form a loop. And 

then similarly, in the next iteration the instructions from i 1, i 2, i 3, i 4 and i 5 is taken 

that forms another loop, so this is the software pipeline iteration and 2 iterations are 

shown here. 

(Refer Slide Time: 10:10) 

 



Let me illustrate this with the help of an example, but before that it is explained how is 

this done, how these software pipelining is implemented or done, so number 1 step is 

unroll loop body with an unroll factor n. So, here also just like the loop unrolling is done 

to improve the instruction level parallelism, which I have explained in the last lecture. 

Here, also you will be doing loop unrolling, but for a different objective, here the 

objective is different the way the instructions are executed different from the previous 

case. 

So, unrolling is done then select order of instruction from different iterations to pipeline, 

so here you have to select instructions from different iterations to form a pipeline. And 

then paste instructions from different iterations into the new pipelined loop body, so it 

will form a pipeline loop body, and talking instructions other pasting instructions from 

different iterations. 

(Refer Slide Time: 11:26) 

 

Let me comeback to our original example, this was the static loop unrolling example that 

we with the help of this we explained the loop unrolling, and subsequently. How loop 

unroll loop unrolling was done to improve the instruction level parallelism, that I 

explained in the last lecture. Now, in this case you have got three instructions in the main 

body of the iteration, and these 2, the third and I mean fourth and fifth instructions they 

are essentially loop manipulation instructions, which are used for housekeeping. 



(Refer Slide Time: 12:08) 

 

Now, here as I mentioned the loop body is unrolled 3 times, so you have got 3 

instructions, first 3 instructions belong to iteration 1, second 3 instructions belong to 

iteration i plus 1, then the last 3 instructions belong to iteration i plus 2. And of course, 

whenever loop unrolling is done, the loop overhead instructions are not needed, they 

have been removed. And so 2 instructions which are present here have removed, 2 

instructions which are present have been removed, and in a single loop body of 

restructured loop would contain instructions from different iterations of the original loop 

body. 

(Refer Slide Time: 12:58) 

 



Let us, see how this is being done, now what you are doing, we are taking three 

instructions, first instruction from iteration 1, second instructions from iteration i plus 1, 

and third instructions from iteration i plus 2. So, whenever you take instructions from 

different iterations, you have to select it in such a way that each instructions must be 

selected at least once, to make sure that we do not leave out any instruction of the 

original loop in the pipelined body loop. 

That means, here ultimately you have to execute your program, and it has to be a correct 

result and it will give correct result only when all the instructions are executed. And that 

2 do that you have to be careful; that means, in this particular case for example, you are 

taking third instruction from iteration 1, second instruction from iteration i plus 1, first 

instructions from iteration i plus 2. So, you are taking all the 3 instructions, maybe from 

three different iterations in your loop body of the software pipeline. 

And; that means, in one iteration these three will be executed, in the second iteration the 

other 2 instructions other; that means, another instruction from iteration 1 will be 

executed another instructions for iteration i plus 1 will be executed. And another 

instruction for i plus 2 is executed, so this is how it will be done, so this is a very simple 

program having only 3 instructions in the loop body. If you have more number of 

instructions in the loop body, you have to be very careful to pick up instructions and put 

them in your software pipeline. 

(Refer Slide Time: 15:01) 

 



So, with these 3 instructions, now we have formed a loop, so here you have formed a 

loop as you can see taking instruction 3 from iteration 1, instructions 2 of iteration 2 

iteration i plus 1 and instruction one of iteration 3. So, these three is forming the loop of 

the software pipeline, so they belong to 3 different iterations, then of course, since we are 

interested in forming a loop here. We have to put those loop manipulation instructions, 

this one will reduce the value pointer to point to the next element of the area, and this 

will decide how many times they looping will be done; that means, you have to carry out 

the execution of these loop. 

That was for 1000 times our original program, it is not shown here, but in our original 

program it will loop for 1000 times, so to facilitate that that register r 2 was to stored 

with the value I mean it was 0. So, initially R 1 is initialized with 1000, and then it is 

deplemented and until the then you keep on comparing, and then you whenever this two 

are equal, then you stop it from out of this loop, this is how it is being done. 

(Refer Slide Time: 16:32) 

 

So, we find that the software pipeline will have now, this is the forth step where you will 

be having the pipeline loop body, and pipeline loop body you can see you have to adjust 

the the various values. I mean they, so the effective at this points to be right element of 

the (Refer Time: 16:58), and that is why here it is 16 R 1, then you are loading the value 

of that era element register F 4. And you are adding it with the constant that is being 

stored in 0, this is the stored data, add data and load data, you have taken from 3 different 



instructions, so you cannot really explain the operation from this thing, but you have to 

go back to original program to do that. 

So, these are this is forming the basic loop and here this instruction has been taken from 

m i, m i minus 1, m i minus 2, so and you have the pre header, where you have to fill the 

add the instructions, which are to be executed. Before, you execute this loop, similarly 

after these loop execution is complete you will require several instructions present here, 

let us see what are the instructions they are present in the pre header and post header. 

(Refer Slide Time: 18:24) 

 

So, if we consider this your loop body is loop stored double, F 4 sixteen R 1, then add 

double F 4 F 0 F 2, then load double F 0 0 R 1. and this is decrementing the pointer 

DADDUI and R 1 comma R 1 comma minus 8. So, you are decrementing it and BNE R 

1 r 2 loop, now this is your main loop body, what will be in your pre header you will 

must have pre header and post header. So, here we are left with 3 instructions that load F 

0 comma R 0 R 1 at the F 4 F 0 comma F 2, so you have to execute these three 

instructions; that means, load double F 0 comma 0 R 1, and add double F 4 comma F 0 

comma F 2. 

Now, if these two instructions are executed one after the other, we know that this will 

lead to a stall here, what can be done another load that, second load that is present here 

this load can be filled up in between these two instructions. So, if you do that then load 



double, you have to fill this one, with we cannot fill it this way I think we have to then 

you have to use different register value. 

So, you have to load double F 0 0 R 1, so to here you have to actually increase the value 

by 8, because it points to the next element, so that you have to do. So, first instructions is 

done this way, and then second instruction is done this way, this is how you have to 

execute, I mean the pre header will form from these instructions. Maybe, you have to 

insert stall here, and your post header will require 3 instructions that a stored data F 4 0 R 

1, add double F 4 comma F 0 comma F 2, and then stored double F 4 comma 0 R 1. 

Now, you will see your R 1 was you have to adjust the value here, besides that these two 

are stored in two different places, so here actually this will be minus eight and this will 

point to be proper elements; that means, storing has to be done in a different way. So, 

these three instructions, and these three instructions are to be executed. before and after 

this loop body, so that will form the pre header and post header. 

So, you have to fill those instructions, and these part that pre header and post header part 

may have few stalls, but main body of the loop will not have any stall, because they have 

been taken from different iterations and they are independent. So, this is the basic ideas, 

now let us consider the important issues related to software pipelining, so register 

management can be tricky in more complex example, we may need to increase the 

iterations between when data is read, and when the results are used. 

Actually, if we do back to our original this problem, we find that in the pre header part, 

then the post header part the register management has to be done properly, such that 

ultimately the program to correct result. So, the way I have written it may not give you 

the correct result, because the register management part has not been taken to 

consideration properly, and that you have to take into consideration. 



(Refer Slide Time: 23:51) 

 

Then optimal software pipelining has been shown to be an NP complete problem, so I 

have illustrated these with the help of very simple example, and it appeared to be very 

simple. But, whenever you consider real life problems, which are where the number of 

instructions in the loop body is more and later on, we shall discuss when it is being done 

in the context of your superscalar architecture. Then it then it becomes a very non-trivial 

problem, it has been found that it is NP complete problem and whenever the problem is 

NP complete, and you have to solve it. 

There is no deterministic algorithm, which will give you an optimal result, so what you 

have to do you have to use a heuristic based approach, so that is being tried present 

solution are based on heuristics. So, heuristic based approach is used for software 

pipelining, and some lot of research has been carried out to achieve proper software 

pipelining, to improve the performance of the program execution. 



(Refer Slide Time: 25:22) 

 

And another very important aspect is you can see, if we compare loop unrolling and 

software pipelining, we find that software pipelining takes less code space. We have seen 

that the one very important limitation of loop unrolling was that it increases the size of 

the code. So, since the size of the code is big, and you have to load it in the cache 

memory before we execute it will lead to cache misses, but when the size of the code is 

small that problem does not arrive. 

So, this software pipelining facilitates that it has got less code space and Software 

pipelining and loop unrolling reduce different types of inefficiencies. So, the inefficiency 

in terms of instruction level parallelism that is present in the program, and it the two 

approaches reduce the inefficiencies in two different ways or other that different types of 

inefficiencies are reduced. 

So, loop unrolling reduces loop management overheads, as you have seen it the 

additional loop management overheads, which are present if you we unroll each time you 

unroll, you reduce the number of those overhead. So, those overheads are reduced, and 

software pipelining allows a pipeline to run at full efficiency by eliminating loop 

independent dependencies. So, in case of software pipelining it allows the you know it 

improves efficiency by eliminating loop independent dependencies. That means, by 

taking instructions from different loops, which are independent, you are forming a loop 

body, and that is how you are increasing the efficiency of the program. 



(Refer Slide Time: 27:26) 

 

So, you can visualize the two approaches software pipelining and loop unrolling, the top 

diagram corresponds to software pipelining. So, as I mentioned there will be a start-up 

code and wind down code, you have got the software pipelining and no of overlapped 

operations such as one here. Here the number of overlapped operation is maximum, but 

this part and in this part the number of instructions, which can be executed in overlapped 

manner that will be reduced. 

On the other hand the bottom diagram corresponds to loop unrolling, where only the 

middle part which is proportionate to the number of unrolls, where you have got the 

maximum number of instructions, which can be executed in a overlapped manner, but the 

other parts overlapped between unroll iterations. They are the you know number of 

instructions, which can be overlapped in a executed in overlap manner that is that is 

smaller, so these two diagrams compares or visualizes these two basic approaches. 



(Refer Slide Time: 28:44) 

 

Now, so far what we have tried, we have tried to unroll the loop or we have tried another 

approach that is software pipelining by which we have tried to execute the program. So, 

that the cycles per instruction CPI, the CPI of 1 is achieved; that means, maximum 

throughput bounded by 1 instruction per cycle. That is the maximum that can be 

achieved in both the approaches; that means, what you are doing that per cycle 1 

instruction is executed, when it can happen where there is no stall. 

So, only when there is no stall, we shall be able to achieve a upper limit of CPI is equal 

to 1, and beyond that cannot be done by using these approaches. So, inefficient 

unification of instructions into one pipeline; that means, we are trying to combine 

different types of instructions for example, ALU operations, memory stage operations, 

floating point operations. We are trying to do inefficient unification of instructions into 

one pipeline; that means, you are forming a single pipeline, where these are being 

inefficiently combined and this rig rigid nature of in order pipeline. 

That means, we are trying to execute one instruction followed by another instruction, so 

they will be executed in a in order, but that is very rigid. In the sense that if a particular 

instruction execution is stalled, because of some reason, then the second instruction also 

installed, that is not allowed to progress, and so that is problem arises in a scalar 

pipelines. 



(Refer Slide Time: 31:05) 

 

Now, so higher ILP processor, how can we increase the ILP or we can have, how we can 

have CPI less than 1. 

(Refer Slide Time: 31:33) 

 

So, far we have assumed that our upper limit is CPI is equal to 1, we cannot still reduce 

it, CPI can be more than 1 whenever you have got stall, but now we are trying to achieve 

more than 1, I mean CPI which is less than 1. In other words we are trying to execute 

more than one instruction in a single cycle, and there are two basic approaches, one is 



known as VLIW Very Large Instruction Word, and another approach is known as 

superscalar. 

So, in both the cases the basic approach is to have more than one functional unit, so the 

number of functional unit that is present both in VLIW approach or superscalar approach 

is more than 1. So, far we assume that you have got only one functional unit, and where 

which is pipeline. Now, In VLIW or superscalar we shall be trying to, we shall be having 

more than one functional unit, since we have got more than one functional unit. We shall 

be able to issue more than one instruction at a time, more than one operation at a time; 

that means, this will help in getting the CPI which is less than 1. So, in a superscalar or 

VLIW processors you have got more than one functional unit in a single CPU, so you 

have got only one CPU, but unlike one ALU present in a CPU, you have got more than 

one functional unit. 

(Refer Slide Time: 33:58) 

 

So, that is the basic approach followed, but the way these two are done in two different 

cases are different, in case of VLIW the compiler has complete responsibility of selecting 

a set of instructions to be executed concurrently. 



(Refer Slide Time: 34:19) 

 

That means, that instruction level parallelism ILP that is being exploited in superscalar or 

VLIW, they are done in a different way, in VLIW the responsibility is given to complier. 

That means, compiler identifies, which instructions can be executed in parallel, and those 

instructions for corresponding to those instructions you have got separate functional units 

and they are executed. That means, the complier is given the complete responsibility for 

identifying see the instruction level parallelism, and then the single instruction will be 

having more one operation, which can be fed to different functional units, that is done in 

case of VLIW. 

On the other hand in case of superscalar approach, there complier is ordinary and simple, 

but the hardware identifies, which instructions can be issued simultaneously can be 

executed concurrently, so responsibilities done by concurrently. Then you know the 

several more than one instruction are issued, which are fed to different functional units, 

so these are the functional units here also. 

So, both the cases here, but functional units, but in case of VLIW these instructions are 

formed with the help of complier, then they are executed in order. On the other hand in 

superscalar the hardware finds out which instructions can be executed, so you have got a 

instruction issue hardware, which will generate several operations to be performed by 

different functional units. Now, in case of super superscalar processors, it can be done in 

two ways. 



Number one is statically scheduled superscalar processor, where multiple issue is 

performed, but in order execution take place, on the other hand dynamically scheduled 

superscalar processor, which we will use very specialized feature. Like specialized 

property like speculative execution branch prediction, and where you will allow out of 

order execution, so this will require more hardware functionalities and complexities. So, 

later on, I shall discuss about these two techniques, which we will provide you higher 

ILP and of course, loop unrolling will be necessary software pipelining will be necessary 

to have more number of I mean to increase the ILP. 

(Refer Slide Time: 37:46) 

 

Now, so far what I have discussed is known as static instruction pipelining, which is 

done by compiler, another approach is known as dynamic instruction pipelining (Refer 

Time: 38:05) dynamic instruction pipelining is needed. And the incase of pipelining we 

have seen some hardware technique forwarding developing technique, where the there is 

a stall I mean when there is a hazard stalls are introduced, or software based instructions 

is done. But, this software based instruction is structuring is handicapped due to inability 

to detect many dependences, we have discussed about different types of dependences. 



(Refer Slide Time: 38:46) 

 

Those dependences, which are visible at complied time can be done with the help of 

static instruction scheduling, so it is very conservative is in nature, on the other hand 

particularly there are situations; that means, name dependences involving a memory. If 

name dependences involving the memory is present in your program, this cannot be 

identified by the compiler at compile time, because they will be evident only when the 

program is executed that at one time. So, the dependencies which not revealed at compile 

time will be visible at runtime, and that is what is been done, in case of dynamic 

instruction scheduling with the help of a hardware. 

(Refer Slide Time: 40:03) 

 



So, the hardware determines the order in which instructions execute, so this is in contrast 

to statically scheduled processor, where the complier determines the order of execution. 

And later on I shall discuss a technique by which this hardware scheduling is done, we 

will require a very specialized hardware, which will do this instructions scheduling. And 

the loop unrolling another thing which is been done by the complier, will not be 

necessary whenever you do it with the help of a hardware. And various other things like 

the that registering, and other thing they are also incorporated at the time of dynamic 

instruction scheduling. 

(Refer Slide Time: 40:52) 

 

So, that we have come to the end of a very important topic that is instruction level 

parallelism, where the simple pipelines are used, and that instruction level parallelism is 

incorporate to achieve CPI 1. So, some of the important points, you should remember 

before we leave this topic is given here, first of all what is pipelining that has been that I 

defined in the beginning. 

What is an implementation technique, where multiple tasks are performed in an 

overlapped manner, you may recall that, and when can it be implemented I mentioned 

that it can be implemented when a task can be divided into two or subtasks, which can be 

performed independently. And second point is the earliest use of parallelism in designing 

CPU’s to enhance processing speed was pipelining, so pipelining was is the first 

parallelism, that was incorporated in processors. 



And pipelining does not reduces execution time of a single instruction, it increases the 

throughput, that I have highlighted many times. Whenever, you execute instructions in a 

with the help of a pipeline processor, time needed to execute a single instruction is not 

reduced rather it increases. Because, you are performing different parts of an instruction 

by different stages, in different stages, but in between you have got those pipeline 

registers or latches, which introduces some delay. 

(Refer Slide Time: 42:38) 

 

So, if you consider the time needed to execute a single instruction maybe instead of 10 

nano second, it may take 11 nano second or more, so time need to execute a single 

instruction reduces it is not reduced. So, you have seen it was 40 nano second and nano 

second is non pipeline processor and 44 nano second was required, in a pipeline 

processor. We can see for each latch one additional you all have done, that is why in a 

pipeline processor single instruction was taking 44 nano second; however, if you 

consider the through you will find that on the average far 11 nano second. 

You are getting 1 output, and that is how the throughput is increased, and giving you 

speed up of 40 by 11. So, this is in highlighted in this point and another issue that I 

mention in detail we have discussed about two types of processors CISC and RISC 

having different features. CISC processors are not suitable for pipelining because of 

variable instruction format, variable execution time, and complex addressing mode, on 



the other hand RISC processors are suitable for pipelining, because of fixed instruction 

format, fixed execution time, and limited addressing modes. 

So, we have restricted our discussing to pipelining of this processor; however, later on I 

shall discuss about that INTEL series of processors, which are essentially CISC. But, in 

those processors internally the complex instructions are decomposed into RISC like 

operations, and they are executed in a pipeline manner later on I shall discuss about it. 

(Refer Slide Time: 44:38) 

 

Then I discussed about hazards, there are situations called hazards that prevent the next 

instruction stream from getting executed in it is designated clock cycle, and we have 

discussed about 3 different types of hazards. Structural hazards which arises due to non 

availability of enough hardware resources, and data hazards results up earlier instructions 

not available. That means the incase of data dependency results needed by subsequent 

instruction is not available, because the it has not yet been completed. 

So, that is why data hazards occurs, and we have discussed various techniques over 

occurring data hazards. Later on, we shall discuss about the control hazards techniques of 

overcoming control hazards, so control decisions resulting from earlier instructions not 

yet made; that means, that decision is sometime is required to take a decision, whether a 

branch will be taken or not taken. 



And, because of that delay there will be some stalls to be introduced, and how that can be 

minimize that we shall discuss later, so we have discussed techniques for overcome 

structural hazard and data hazards. And in the next class we shall discuss in more detail 

about the superscalar and VLIW processors. 

 Thank you. 


