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So, in today’s talk, we will conclude the topic of Shannon’s theory. So, in the previous 

.lass, if you remember, that we have concluded with the idea of equivocation of keys. So, 

we have defined briefly, that what, is the idea behind spurious keys. So, today we will try 

to understand, whether we can compute a lower bound of the spurious keys. 
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So, if I just would like to recap, that we essentially proved this particular formula 

yesterday, that is, HK given C is equal to HK plus HP minus HC. So, therefore, the 

ambiguity of a key given the ciphertext is described as follows, that it is addition of the 

ambiguity of the key plus the ambiguity of the plaintext subtracted with the ambiguity of 

the ciphertext. 
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So, we also discussed about what is the meaning of ideal ciphers and told, that in case of 

an ideal cipher, H key K given C is equal to the value of HK. So, that means, that the 

ciphertext does not leak any additional information about the key. 
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So, these are the things that we described yesterday and concluded with it. And so, 

therefore, HK given C gives us the idea of security or insecurity. So, therefore, what we 

discussed is that even for perfect ciphers, the key size is infinite if the message size is 

infinite. So, that was the problem with perfect ciphers, that is, they are not practical. 

So, then we defined another kind of ciphers called the ideal ciphers, where HK given C 

is equal to HK. And, as I, as I described yesterday, that the main objective of our, what 

we study in this course, would be to find ciphers, which are secured against a bounded 

adversary. That means, we are essentially striving to achieve computational security; that 

means, security considering what is today’s computational power. 

So, for example, if you can prove that a given cipher has got a security, which requires 

an adversary to do, say 2 power of 80 computations, then we are fairly happy; we say, 

that the cipher has achieved computational security. 
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So, the question is how to protect? So, therefore, but still, I mean, in today’s class we 

will be, essentially, still considering an unbounded adversary and essentially address this 

question, that is, how do I protect a data against a brute force attacker with an infinite 

computational power? 

So, therefore, there is an attacker who has got infinite computational power and still, can 

I protect the cipher? So, the idea is, that is, Shannon defined a certain parameter, which 

is called unicity distance and we say, that it is the least amount of ciphertext, which I 

would like to make it available to the adversary who is an unbounded adversary, so that 

he does not find out the unique value of the key. 

So, the strategy of the, of the adversary is as follows. What he does is that he takes the 

ciphertext; he assumes a key, decrypts it back and finds out the plaintext. If the plaintext 

is meaningful, then he notes it down. But the point is, that because of the redundancy in 

the English language or rather any other language, any language for that matter, the 

adversary will not actually find out the main, I mean, key uniquely. So, what he will 

essentially have is a set of keys. So, apart from the actual key, the other keys are called 

the spurious keys. 

Sir, how will the attackers enable it, like his iterations, how will he actually decide or 

how will the computer decide, that the text is meaningful. It cannot check based on its 

own keys. 



No, no, the idea is as follows, that is, you take the ciphertext; consider a shift cipher, so 

you have got a unique value of the key. So, you find out the value of the key. So, so what 

you do is, that you decrypt it back and then you check, that whether the plaintext make 

sense or not. So, what you are asking is that you have got a lot of work to do, but what I 

told you at the beginning is, that I am considering what, I am considering an unbounded 

adversary. 

So, the adversary has got infinite computational power; he is, he is supreme. So, the idea 

is, that whether, the question is, that whether even given such a kind of, such a kind of 

adversary, how many minimum number of ciphertext will I make it available to the 

adversary, so that he cannot still guess the actual value of the key? So, therefore, the set 

of the spurious keys should be null. 

Minimum number or maximum number? 

Minimum number, because if I give you more information, then you can do more things, 

so I would like you to give the adversary minimum number of ciphertexts. Is it clear? 
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So, therefore, so therefore, a common misconception is that any cipher can be attacked 

by exhaustively trying all possible keys, this is the very common misconception. So, 

what would you like to say is that for example, even if DES, it has got a 56 bit key, so 

this can also be broken by brute force. But the idea is, that so suppose, let us consider an 



adversary who can do 2 to the power 56 computations, so he should be able to break it. 

So, the idea is that, but if the cipher is used within its unicity distance, then even an all 

power adversary cannot break the cipher because, because of the strategy. The strategy 

is, therefore you take the ciphertext, you decrypt it back, check the plaintext, whether it 

makes sense or not. If it makes sense, you note the key and keep the key, register the key 

as a meaningful key or rather a possible key, but that is only one key, which is the actual 

key, the rest are spurious keys. 

Sir what is the significance of unicity distance 

Yes 

the significance of unicity distance 

The significance of unicity distance is that for example, if I can compute the unicity 

distance of say DES or any other cipher, then I would like to use the same key for so 

many times. After that, I have to change the key if I am considering an unbounded 

adversary. So, for example, if I am considering an unbounded advisory, then I would like 

to use the key only for, say 2 times, after that I would like to change the key if its unicity 

distance is 2. 
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So, therefore, this is what I have just described. So, H K given C is the amount of 

uncertainty that remains of the key after the ciphertext is revealed. So, we know that, we 

know, it is called the key equivocation and have already defined that. 

So, what the attacker does is that he guesses the key from the ciphertext and we shall 

guess the key and decrypt the cipher. So, what he does next is, he checks, whether the 

plaintext obtained is meaningful English or not. If not, he rules out the key, but due to 

the redundancy of language, more than one key will actually pass this test; those keys, 

apart from the correct key are called spurious. 
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So, then, we come to something, which is called, we have already discussed about, what 

is entropy. So, we will be using this or rather we will be using this entropy to find out or 

find out a minimum bound of the spurious keys. So, we will try to find out a minimum 

bound or the lower bound of the number of spurious keys. 

So, so, therefore, so, therefore, consider H L, so therefore H L is used to measure the 

amount of information per letter of meaningful strings of plaintext. So, that is the 

definition of H L. It measures the amount of information per letter of meaningful strings 

of plaintext. So, therefore, consider random string of alphabets. So, there are 26 letters 

and if all of them are equally likely, then what is the entropy, is equal to log 26 base 2 

and so that works to, computes to 4.76. But English language you know, have a 

probability distribution; it is not 1 by 26 for all the letters. 
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So, this was, this is the sort of the graph, which was how the English language characters 

in general vary. 

So, therefore, if you just 1st order entropy, that means, you just take one particular 

alphabet among and consider its probability and then you feed into the formula of P x I, 

log P x I negative and sigma, then your 1st order entropy of the English text works to 

4.19. But you can do better than that. So, you know that in English language, consecutive 

letters essentially are not uncorrelated. For example, if I take q, then next letter is u, so 

they are not uncorrelated. 

So, that means, that if I take 2 grams for example, this entropy or uncertainty should 

reduce. So, therefore, if the 1st order entropy is not enough, so what you do is that I do a 

2nd order approximation. 
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So, in 2nd order, what I do is that I compute all possible diagrams. I find out their 

probabilities and subsequently their entropy and then I divide, that H P square by 2, so it 

works to 3.9. So, you see that the entropy has reduced. Similarly, you can do trigrams 

and again find out the H P 3 and then, again divide that by 3. And similarly, you can do 

higher order approximations of the entropy. 
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So, the idea is that in general, the successive letters have got correlation, which reduces 

the entropy. So, therefore, for example, define that higher order entropy as follows, that 



define H L as the entropy of a natural language, L as H L is equal to limit n tends to 

infinity, H P n divided by n. 

So, you find out the value of H P n, means, you find out all n grams, their probability 

distribution, find, compute the corresponding entropy and then, divide this by n and your 

limit tends, n tends to infinity. That means, this, this is an approximation for very high 

values of n and it has been formed experimentally, that the value of H L, if you consider 

very high values of n, in general ranges between 1 and 1.5. 

So, you will find that the H L falls within, within 1 and 1.5. 
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So, so from there, what do we understand? We understand that there is some amount of 

redundancy in the language. So, in order to understand that better, let us quantize the 

redundancy by using these parameters R L. R L is defined as 1 minus H L divided by log 

cardinality of the plaintext base 2. 

So, you can immediately understand certain terms from this formula, for example, will 

find that R L is equal to 1 minus H L. So, therefore, if you just consider a random 

language, that is, if you just, if English language would have been random, then what 

would have been entropy of H L? It would have been log previous 2. So, in that case, 

what would have been the redundancy? It would have been 0. 



So, therefore, you see, that for any other value of H L, like when I am considering, say 2 

gram, 3 gram, 4 gram, 5 gram and say n grams, then this value of H L was gradually 

reducing. So, that means, the redundancy was increasing. So, therefore, this formula is 

able to capture the redundancy of the language. 
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So, for example, if for typical values, if you say, that H L lies between 1 and 1.5, so you 

take a value of, you take a value of, so for example, let us consider this, that is, 1 minus 

H L divided by log of P base 2. So, in that case, I can rearrange this as follows because I 

will be using this later on, so I can write, for example H L divided by log P base 2 is 

equal to 1 minus r l. So, therefore, H L is equal to 1 minus R L into log of cardinality of 

P base 2. 

So, we will just note this equivalent relation because we will be requiring this result. 

Subsequently, so you note one fact, that if this value of H L, that is, if H L reduces, then 

the corresponding, this implies, that the corresponding value of R L increase. So, 

therefore, if the entropy reduces of the corresponding language, that is equivalent to 

saying, that the redundancy of the language has increased. So, therefore, this formula is 

able to capture this intuitive result. 

So, let us therefore, so let us consider what is the corresponding redundancy of an 

English language? So, you will like to quantize that. So, if you find out, you will find 

out, that H L lies between 1 and 1.5. So, consider, that H L is equal to 1.25 and you 



know, that the number of plaintext characters is 26. So, therefore, if you feed into this 

formula, your R L works to 0.75. 

So, what does it mean? It means that English language is 75 percent redundant, so 

whatever you speak, out of that 75 percent is actually redundant. So, does it mean that 

out of 4 characters you talk, I can throw away 3 characters? No, it is not exactly so. So, 

what it means only is, that if you do for example a Hoffmann coding, then essentially 

you are expected to get such a kind of compression. 

So, so, therefore, that is the idea of redundancy of a language and that is precisely the 

reason why cryptanalysis is favored. If you are the very random kind of language, then 

cryptanalysis would have been harder, but you know, that there is a redundancy in 

English language and that solves as extra information to the attacker. 
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So, let us try to calculate the lower bound of equivocation of the key. So, that is the 

objective of today’s class. The first part of today’s class, so for example, already defined 

n grams, so consider P n and R n and P n and C n to be two random variables defined to 

represent n grams of the plaintext and n grams of the ciphertext. 

So, all of us know already this formula, so it is, what this says, H K given C n is equal to 

H K plus H P n minus H C n. So, this formula we have already proved in the last day’s 

class, yes. 



So, what is H P n equal to? So, H P n we have defined from the definition of H L. If the 

value of n is quite large, you can approximate that by n H L and you know that H L by 

my previous result was equal to 1 minus R L log cardinality of P base 2. 
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So, therefore, if I would like to calculate the value of H, n H L, then I just need to 

multiply this particular thing, by n in n in, by n. So, I get n into 1 minus R L into log of 

cardinality of P base 2. So, that is the value of n H L. 

So, therefore, I can say from here, that H P n, which is approximately equal to n H L, I 

can write that as equivalent, equal to n into 1 minus R L into log of cardinality of P base 

2 and the next thing that we want is H of C n. 

So, I write, that H of C n is equal to or rather is less than equal to n of log of cardinality 

of C base 2, why? Because whatever be the entropy, so I am considering n grams, so this 

is equivalent, is saying, that H of C n by n is less than equal to log of cardinality of C 

base 2. So, all of us know this fact because this essentially capture the entropy of a 

random ciphertext. 

So, whatever be it, the entropy that is divided by n should obviously be less than a 

random key. So, this, this has got the, you know, the maximum entropy most uncertainty. 

So, therefore, this value is obviously is lesser than this, so you will be using these two 

bounds in our calculation. 



So, one bound is given by H of C n is less than equal to n log cardinality of C base 2 and 

the other approximation is H of P n is approximately equal to n into 1 minus R L log 

cardinality of P base 2. So, we will plug this equation, these 2 things into our, into our 

equivocation formula, that we had. 

So, the formula that we had was H of K given C n is equal to H of K plus H of P n minus 

H of C n. So, we have a fair amount of the estimate of the H P n and H C n, so if you 

plug that, we get this value, that is, H of K given C n is greater than equal to H of K 

minus n R L log cardinality of P base 2. So, do you see that? So, you see, that if I 

subtract H P n minus H C n, then these particular terms, that is, n log cardinality of P 

base 2 minus n log cardinality of C base 2 gets cancelled if the cardinality of P and C are 

same. 

So, if I just consider both of them are English letters for example, then the cardinality of 

P and cardinality of C is the same thing. So, they are the same value. So, therefore, they 

cancel each other and we have got a lower bound of H K given C n, which says, that H K 

given C n is definitely greater than H K minus n R L log of cardinality of P base 2. So, 

therefore, let us remember this formula, so that, because we will be needing this later on. 
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It says that H of K, if I write it in other way, minus n of R L log of cardinality of P base 2 

is lesser than equal to H of K given C n. So, now, we will try to prove an upper bound of 

H K given C n, that is, H K given C n should be lesser than equal to some term. So, from 



there we will try to find out the, quantize the values of the spurious keys. So, till this part 

is clear. 

(( )) 

Yeah, we are not assuming anything of the key, so for example we have just assumed 

that the ciphertext cardinality and the plaintext cardinalities are the same, but the key is, 

we have not assumed the size of the key. This calculation has got is independent of that 

information. 
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So, therefore, consider possible keys. So, therefore, K y, just define K y to be the 

possible keys given that y is the ciphertext. So, define this set. So, what does it mean? It 

is, that possible keys given that y is the ciphertext, so I already define. What it means? It 

means, that K y is the set of those keys for which y is the ciphertext for meaningful 

plaintexts. 

So, therefore, as I told you that, that is a cryptanalyst take or an attacker takes the 

ciphertext, assumes the value of the key and finds out those keys or registers those keys 

for which the plaintext is meaningful and that is denoted by the set K y. So, therefore, the 

K y set holds those keys for which the corresponding plaintext is meaningful. So, out of 

these keys, how many is, how many are spurious keys? Cardinality of K y minus 1 

because only one key is the actual key, rest is spurious. 



So, therefore, we know that when y is the ciphertext, number of keys is modulo of K y. 

So, out of them only one is correct, so rest of them are spurious. So, the number of 

spurious keys can be found out by cardinality of K y minus 1. So, what is the expected 

size of cardinality? So, you know that this is actually a distribution. So, therefore, in 

order to calculate the expected value of a random variable, what do we do? We multiply 

the corresponding value with its probability and do a sigma. 
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So, I guess we know this result, that if there is a random variable x, then its expected 

value E x is computed by sigma of its corresponding probability into the x i, where i runs 

over all possibilities. So, that is the way how we calculate the expectation of a random 

variable. 
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So, we apply this and we find out the expected number of spurious keys. So, what is the 

expected number of spurious keys? Here, it is the average number of spurious keys over 

all possible ciphertext and this is denoted by the variable S n. So, S n is nothing but 

sigma of cardinality of K y. We are just multiplying, K, cardinality of K y minus 1 

because this is the number of spurious keys and we are multiplying that by the 

probability of this event. 

So, what is the probability of this event, that the ciphertext y is chosen? So, that is P y 

and that is valid for, done, this calculation is done for all possible ciphertexts. So, you 

know, if I just simplify this formula, then I can actually multiply this sigma, this P y with 

K y and I obtain this, distribute this P y over 1, then I obtain sigma of P y. So, what is 

sigma of P y overall possible ciphertext? It is unity, 1, so I get sigma of P y multiplied 

with the cardinality of K y and that, from there I subtract the value of 1. So, this gives me 

what? This gives me the expected number of spurious keys. 

So, therefore, from here I can write, that S n plus 1, I can, I can just reorganize this 

equation, I can write S n plus 1 is equal to this particular thing. 
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So, therefore, I can write like, S n plus 1 is equal to sigma of P y cardinality of K y, 

where I varies overall possible ciphertext. So, this is actually, also we have this and this 

is also we can put down from the definition of S n. 
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So, so therefore, the, if we need to calculate the upper bound of the equivocation of key, 

we do further calculation from the definition of H K given C n. So, what is the H K given 

C n? So, as I told you, that there are 2 random variables here, K and C n, what we do is, 

that let us vary one random variable and keep the other one constant. 



So, therefore, we vary in this case y and we keep the value of K constant. So, therefore, 

from our definition of condition or entropy, we can write that is equal to sigma of P y 

multiplied by H of K given y. So, this we had actually written in last day’s class, you can 

follow that. Therefore, this is equal to, actually this is this equal to, should be actually an 

equal to, so this is equal to sigma of P y, I just write this as K y. Therefore, what does it 

mean? It means K given y. So, that is exactly the definition of h, that is, that is exactly 

the definition of K y. 

So, I obtain the sigma, I obtain the, multiply P y with H K y and I take the corresponding 

sigma. Now, this is less than equal to P y, multiply with logarithm of cardinality of K y 

base 2 and taken a sigma and this follows from what I already told you, that if this K y 

would have been a, so I mean, if for example this H of K, this K y would have been a 

random distribution. In that case, this would have been an upper bounded, this would 

have been equal to logarithm of cardinality of K y base 2 for any other distribution; this 

uncertainty is lesser than a random distribution. 

So, therefore, I can actually find out an upper bound and this is the upper bound, then I 

apply a sudden result from mathematics called genesis inequality, but it is applicable for 

the logarithm series because it is a monotonically increasing function. But let us just 

believe this fact, that I can actually find out an upper bound of this, which is called, so I 

can upper bound this particular thing by this expression. So, I can take the log out and I 

can take this, this as follows. 

So, what is this particular sigma equal to? This sigma is equal to S n plus 1. From this 

result you see this and sigma of P y cardinality of K y was equal to S n plus 1. So, we use 

this result and plug into that equation, we obtain this. So, you see that this is equal to 

sigma of P y cardinality of K y and instead of this I can write S n plus 1. 

So, what we have proved is that H K given C n is less than equal to logarithm of S n plus 

1 base 2. 
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So, what we are proved is H K given C n is less than equal to logarithm of S n plus 1 

base 2. So, now, we can actually take this result and we can combine this fact and this 

fact and obtain that, rather write that, H K minus n of R L logarithm of P base logarithm 

of cardinality of P base 2 is less than equal to logarithm of S n plus 1 base 2. Is it ok? 
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So, that is precisely written, what here, so I, I write, that H K minus n R L log cardinality 

of P base 2 is less than equal to logarithm of S n plus 1 base 2. So, therefore, I can 



actually really reorganize this and write as, rearrange this and write as logarithm of S n 

plus 1 base 2 is upper bounded by H K minus n R L log cardinality of P base 2. 

So, now, if the keys are chosen equi-probably, that is, if all the keys are equally likely, 

then I can actually write, that this as an equality, I can write, that H K is equal to 

logarithm of K base 2. So, in that case I can plug this into this previous equation and this 

works out to this equation. So, this, this and this inequality, so I can obtain, that S n plus 

1, I mean, rather S n plus 1 greater than equal to cardinality of K divided by cardinality 

of P to the power of n R L. So, this follows from this equation. 

If you plug-in the value of H K and make it equal to logarithm of cardinality of K base 2, 

so you just see, that if I take this and if I plug here, then I, I, I can actually write this as 

logarithm of cardinality of P base 2 to the power of n R L and from there I obtain a log 

here and this is also a log. So, the subtraction of log would be log a by b. So, therefore, I 

can write that as logarithm of cardinality of K divided by cardinality of P to the power n 

R L base 2 and, and on the left-hand side, I have got S n plus 1. 

So, therefore, since I have got two logs on both sides and we have got an increasing 

function, I can actually write the S n plus 1 is greater than equal to, cardinality of P 

divide, cardinality of K divided by the cardinality of P to the power of n R L. 

So, what do you obtain from here? I mean, what is the objective, the objective is, what is, 

you note, what is the value of n, what was n? n was the number of ciphertexts, that I had 

provided. So, therefore, now I would like to make the number of spurious keys equal to 0 

that is the object; that was the objective finally. 
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So, unicity distance says, that the, thus increasing n, we obtain, obtain from here, that if I 

increase the value of n, then that reduces the number of spurious keys. That means what? 

If I provide an attacker more and more information, then the number of spurious keys 

gets reduced. 

So, unicity distance is that particular number of ciphertexts, so I call it n 0 for which the 

number of ciphertexts, rather the number of spurious keys is actually reduced to 0. So, if 

I, if I, for example in the previous equation, if I had made the value of n, so I can actually 

write, that if I just plug-in 0 to that previous value, I would have obtained this bound. 
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You see this, that is, if this was equal to 0, then I would have obtained, would have 

obtained, what would have obtained? That cardinality of K divided by cardinality of P to 

the power of n R L is equal to 1. So, that means, that cardinality of K is equal to 

cardinality of P to the power of n R L. So, therefore, that is exactly this particular 

equation you see, that n is equal to logarithm of K base 2 divided by R L log P base 2. 

So, actually, in my equation I can take log on both sides and I can write log K base 2 is 

equal to n R L log cardinality of P base 2. So, what is the value of n here? It is equal to 

log of cardinality of K base 2 divided by R L logarithm of P base 2. So, this is the value 

of n for which my number of spurious keys just becomes equal to 0. So, for unicity 

distance would be greater than that, so therefore if I had provided you more and more, 

more ciphertexts, then actually, your number of keys would have been 0. 

So, therefore, if I use the cipher within this unicity distance, then the number of spurious 

keys will not be 0. So, that means, the attacker is not able to exactly find out the unique 

value of the key and we have, we have, so throughout our calculation we actually 

consider an unbounded advisory. So, even an unbounded advisory would not actually, 

actually find out the actual value of the key, not the unique value of the key, but you will 

have a set of possible keys. And unicity distance is actually that number of ciphertexts 

for which this number of spurious keys just becomes equal to 0. 



So, therefore, we will obtain this particular lower bound. So, therefore, this is the lower 

bound of the number of spurious keys, number of, for the, for the lower bound, for the 

unicity distance. So, beyond that is actually the attacker is able to find out the unique 

value of the key. So, note, that this calculation may not be accurate for small values of n, 

why and because my original H n definition relied upon the fact, that limit n tends to 

infinity, so that was an assumption that I made. 

So, therefore, this may not be very much true for n equal to 1, 2 or so on. It should be, it 

should be, should be fairly ok for large values of n. 
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So, let us do an example calculation of, with the substitution cipher. So, we had number 

of plaintexts characters equal to 26, so the cardinality of P was 26, cardinality of K was 

26 factorial. So, that was around 4 into 10 to the power of 26, fairly large value of the 

key. So, your R L, if you assume is equal to 0.75 of English language, then if you plug-

in, you will find, that n 0 is approximately equal to 25. 

So, that means, that given a ciphertext string of length 25, an unbounded attacker can 

actually predict the unique value of the key. So, thus, what we observe from here is that a 

key size alone, such a large key size does not guarantee security if brute force is possible 

to an attacker with infinite computational power. 



So, an attacker who has got an, has got an unbound, I mean, has got an infinite 

computational power, for him such a big size of key, actually he requires just 25 

ciphertexts to actually find out the value of the key. All these majors are of course 

probabilistic, but it will match with the actual result quite closely. 
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So, this, with this we essentially conclude this part of unicity distance, but we will 

conclude the remaining part with an idea of product ciphers. So, actually, if, after this we 

will actually go, start talking about real ciphers like block ciphers and string ciphers, but 

before this I would like to mention about the idea of product ciphers. 

So, this was actually also mentioned in Shannon’s paper and that is why it is called the 

seminar paper. It was mentioned as old in 1949 and (( )) the idea of forming products. 

So, the idea is still fundamental because even present, present day ciphers like AES for 

example, still uses the concepts of product ciphers. So, let us try to understand the 

concept of product ciphers and actually you will observe, through that lot of things 

becomes meaningful; lot of things, which we see in our future ciphers will actually 

becomes meaningful. So, let us try to see. 
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So, before that I would just like, in order to simplify our life, let us, I just coin a term 

called endomorphic ciphers. So, what is an endomorphic cipher? Endomorphic ciphers 

are those ciphers for which the plaintext and ciphertext are the same sets. 

So, for a normal substitution cipher, your plaintext and ciphertext were just English 

language, I mean, English characters. 

So, if P and C are the same, then we have what is called an endomorphic cipher. 

Therefore, the shift cipher of an, on English language, on English alphabets was an 

example of an endomorphic cipher. 
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So, consider an endomorphic cipher and let us try to understand certain things from 

history. So, therefore, if we have an endomorphic cipher, so C 1, you note, that I have 

written (P, P) because P and C are the same things, that the plaintext set and the 

ciphertext sets are the same things. 

So, I write (P, P) and then followed, follow that with K 1 because K 1 denotes the key set 

of the encryption function C 1, that is, the cipher C 1 and you have got an encryption 

function e 1 and corresponding decryption function d 1. You also have a cipher, which is 

called C 2 and I denote that with (P, P, K 2, e 2, d 2). 

So, that means what the key two is? The set key, of the keys for the 2nd cipher e 2, the 

corresponding encryption function and d 2 is the corresponding decryption function. So, 

let us try to understand or define what is mean by product cipher C 1 cross C 2. So, what 

does C 1 cross C 2 means? It just means, like as you know, that you apply 2 function 

after, one after the other. So, therefore, if I say C 1 cross C 2, it means, that first I will 

apply C 1 and follow that with the application of C 2. So, I think, you have seen these in 

a case of composition of functions in (( )) structures class. 

So, therefore, this exactly precisely similar kind of thing, so you see C 1 cross C 2, I 

would define as P cross P because extreme endomorphic. You see, why it is 



endomorphic? Yeah, because that repeated application also keeps, still keeps, it is 

endomorphic property. So, it is still endomorphic, but your key set is the condition 

product of K 1 and K 2 because there is K 1 cross K 2 and you have got the 

corresponding encryption function e and decryption function d. 

So, any key I can write in the form of an ordered pair, K 1 cross, K 1 comma K 2 and 

form ordered sets like that. So, the encryption function is defined as e equal to e 2 and, 

but initially you take the plaintext x, you take the key K 1 and you apply the function e 1. 

Subsequently, you choose the key K 2 and you apply the encryption function e 2. So, 

what will the corresponding decryption function look like? 
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The corresponding decryption function will look like this, it will look like d equal to d 2 

d 1 (y, K 1) follow that with K 2 like this. So, do you see, that if I apply d and e 

subsequently, they are actually inverses of each other; that is obvious because of the 

associativity of the product rule. So, actually you can see that because if I apply d and if I 

apply d over an application of the e function, then actually I obtain back where I started 

with. So, you can see this because of this. 

(( )) 

Yeah, it will be first d 1 and follow that with d 2, yeah, so that you can obtain from the 

decryption function because what you do is, that you take the corresponding, see you 



write this e 2 e 1 (x, K 1, K 2). So, that is my y, so I take this as a y and I apply my d 

over that. 

So, therefore, what I do is, that I want to compute this, I want to compute d y, so for that 

I apply d 1 d 2 over e 2 e 1 (x, K 1, K 2) and then, so this is my, so therefore, this is my e 

1. So, therefore, what I do is, that I have actually encrypted. So, this is my scope of the 

function e 2, then I apply d 2. So, in order to decrypt this I need K 2 and follow that with 

K 1. So, what you do is that you see, that in this case your d 2 and e 2 cancels each other. 

So, I can do that because of the associativity of the product function. So, if I do that, I 

obtain d 1 and I obtain then e 1 x of K 1, K 1. So, again, this d 1 and e 1 cancels each 

other and I finally obtain back the value of x. 

So, therefore, you, therefore you see, that d is actually a corresponding decryption 

function. So, this follows because of this fact, that is, the product rule is always 

associative. 
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So, the question is, that if we can compute product of ciphers, thus the cipher becomes 

stronger, that is what is most important. So, I take two small ciphers and I compose them 

I compute the product. Does the key, thus is, does the cipher becomes stronger, that 

means, does the key space becomes really larger? So, in the initial, on the surface we 

have actually (K 1, K 2). 



So, the condition product size should increase, but on a second thought, does it really 

become larger? So, in order to understand that, what is your opinion on that? Will it 

really become larger; will the key size be become larger? So, actually, not always, so let 

us try to consider one example, I guess it will be lot clear through that. So, let us consider 

a simple multiplicative cipher. So, what it does is, that it just takes x and multiplies with 

a, where a is co-prime to 26. So, you know what is co-prime? 

So, a is co-prime means, it is GCD of a and 26 is 1 and next is you consider a shift cipher 

where you take x and you add that with K. So, therefore, this is my m and this is my S, 

so this was an example of what? It was an example of a computation cipher and this was 

an example of a substitution cipher. 
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So, now you consider, that for example, that we have got M and you have got S and what 

you do is that you just compose this M cross S and you obtain this, that is, y is equal to 

ax plus K is, you see, you, first of all, have, so you need to first do the multiplication. So, 

you do a S, I mean, ax and then, you need to do S. So, you add K with ax, so what is the 

key? In this case the key is (( )), (a, K) and you know, that this is an example of what? It 

is an example of affine cipher. So, what was the key size in case of English language? 

What was the size of affine cipher? It was equal to 312. 

So, now you consider S, from S cross M, so x cross M is equal, y is equal to ax plus K, 

so that is, you can also write that as ax plus a K. Now, you know, that GCD of (a, 26) is 



1. So, therefore, this is also an affine cipher and the key would be (a, a K), but since the 

GCD of a and 26 is 1, so an inverse exists. This we discussed and actually there is a one 

to one relation between a K and K. So, therefore, the total size of the key space in S from 

S cross M is still 312. 

So, you see, that here we have got the key a K and here we have the key K, but since 

there is an inverse of a, that is, actually a one to one correspondence between this set and 

this set. So, if there are 26 possibilities of K, then also a K, since you are doing a modulo 

26 also has got 26 possibilities. 

So, that means, this set and this set are essentially the same things. So, that means, in 

both the cases you do M cross S or you do S cross M, your key size is still 312. So, what 

you see is that M cross S and S cross M are same. So, that is what is called commutative. 

So, we have got commutative ciphers. So, it means that M cross S and S cross M, when 

they are same we call them to be commutative and this is an example of a commutative 

cipher. It does not matter whether you do first shift and then multiply or you do first 

multiply and then shift, both are the same things. 
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So, then, let us see what an idempotent cipher is? So, therefore, what is an idempotent 

function? It means, if we apply the same function twice, you obtain back the same 

function. 



So, therefore, M is a permutation cipher, S was a case of a substitution ciphers and both 

of them were actually idempotent ciphers. So, a composed cipher has a larger key, but no 

extra security because M cross M, if it is equal to M, then even composing M S for more 

than the, more than once, essentially leaves you with the same kind of transformation. 

So, essentially, it does not add to your security. So, therefore, for example if you had 

completed M cross M or S cross S, that would not have led to the increase of the key 

space. So, this is because S cross S and is equal to S and M cross M is also equal to M 

and these class of ciphers are called idempotent ciphers. 

So, you could easily observe from this fact, that is, if I had done an M cross M, what 

would have been the, would have, what would have that meant? I would have done a x, 

then a a x, but my key size would not have still increased because doing S square 

essentially does not increase the key space. 

Similarly, consider for shift cipher, you do one shift and you do another shift. So, in both 

the cases you can represent that, you can represent that, that by a 3rd shift, so, do you 

understand what I am saying? 

(Refer Slide Time: 43:32) 

 

So, what I am saying is that if you consider, say S as x plus K 1 for example, so I am just 

considering S cross S and I am just trying to argue, that S cross S is actually equal to S. 

So, what is the idea? So, therefore, imagine that in the 1st phase we have got, we have 

got, we have got the function as you choose the key as K 1 and in the 2nd case, you 



choose the key as K 2. So, on the 1st application of S, I would have computed x plus K 1 

and in the 2nd click application of S, I would have computed as K 2. Therefore, I would 

have obtained x plus K 1 plus K 2 so that, since I am doing mod 26, I can always 

represent that as x plus some K 3 mod 26, where K 3 is nothing but the summation of K 

1 and K 2. 

So, that means, even for S cross S I have got the same size of the key, so it is a same 

cipher. Therefore, I can conclude, that S cross S is equal to Ss. Similarly, for M cross M 

also, you can actually show that M cross M is also equal to M. So, both these cross of 

ciphers are something which we call as idempotent ciphers. 

So, therefore, we have defined what the commutative cipher is and we have defined what 

an idempotent cipher is, and what we will now consider is what happens if you compute 

the product of such kind of ciphers, which are commutative as well as idempotent. 
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So, actually, that you can observe from this fact, so what we are trying to observe is, that 

there is no point of obtaining products of idempotent ciphers. So, if you take M cross M, 

it is a same thing as M. So, that is no point of doing such products. So, rather you would 

get product ciphers form non-idempotent ciphers, that is, by iterating them. 



So, if we have some non-idempotent ciphers, I would have liked to iterate them and 

therefore, that is essentially the concept of round, which exists into all classes of 

symmetric ciphers in today’s world. 

So, the question is how to make non-idempotent ciphers or functions? So, if I, the idea 

would be, that compose 2 small different cryptosystems, which do not commute. 
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So, do you follow this? If you do not follow them, then this will become clear because of 

this calculation. So, what was I said here is, that if there are 2 cryptosystems, which are 

idempotent and also commute, then the product is also idempotent. 

So, if this result is true, what does it mean? It means that if you have got 2 

cryptosystems, which are idempotent and also commute, then the product is also 

idempotent. So, what does it mean? It means, that if we obtain a function of this class, 

then if you take and if you take them and if you still product or rather compute the 

product of those kinds of ciphers, the key size does not increase. 

So, therefore, considering products does not help. Therefore, from this theorem or rather 

this result, we know, that we actually require to, I mean, compute the products of 

ciphers, which even if they are idempotent, they do not commute. 
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So, that explains this point, that is, compose two small different cryptosystems, which do 

not commute. So, those kinds of ciphers, if you iterate them, will actually make sense. 
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So, therefore, let us see this result, it is quite simple, it says, that S 1 and S 2 are two such 

cryptosystems, which are idempotent and at the same time they compute. So, S 1 cross S 

2 cross S 1 cross S 2, I am considering the product of these things, so therefore, so if I 

observe that, if from the associatively I can write, like S 1 cross S 2 cross S 1 cross S 2 

and since this commutes, S 2 cross S 1 becomes equal to S 1 cross S 2. 



So, now you know, that S 1 cross S 1 is equal to S 1 and S 2 cross S 2 is also equal to S 

2, so what you have obtained is, that S 1 cross S 2 and product and multiplying that with 

S 1 cross S 2, essentially leaves you with S 1 cross S 2. 

So, what does it mean? It means that this is an idempotent function. So, in your previous 

case we have proved, that M cross S, M and S were essentially, both of them were 

idempotent. So, therefore, can you, can you, can you show, can you understand why M 

cross S is also idempotent? Why? It because we have proved, that M cross S is equal to S 

cross M. So, that means, M and S were commutative and we have also proved that M 

cross M is equal to M and S cross S is equal to S. So, that is they were idempotent as 

well. So, if you compute their products, then essentially, you are left with the same thing. 

So, therefore, computing their products and composing them does not help. So, therefore, 

you require some other additional quantity, which will help you and that is the idea of 

rounds. 
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So, therefore, the idea is that how can you work? What is that feature? So, till now, 

whatever we have seen, there is a feature missing, which we have not yet seen then. 

Therefore, the concept of round we are still not able to achieve. 

So, what is that concept? That concept is of non-linearity, but I will define that non-

linearity concept further in our subsequent classes, but this is a brief introduction to that. 



So, therefore, consider that instead of, I mean, let us consider these 2 functions, S and P, 

where P is actually equal to x plus K and S is the output of a function f x. Now, I claim, 

that this function is actually a non-linear function with respect to addition operation. So, 

what does it mean? 
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So what does it mean? So it means that if, so therefore, what does a non-linear function 

mean? It means that if you consider f of x 1 plus x 2, so non-linear with respect to plus 

non-linearity is always with respect to an operation. So, f of x 1 plus x 2 is not equal to f 

of x 1 plus f of x 2 and equality would have meant linearity. 
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So, therefore, now consider these function S is equal to f x and P equal to x plus K and 

consider S cross P. So, what is S cross P equal to? It is equal to f x plus K and what is S 

cross P cross S cross P? So, that, that means, that you take f x plus K and then you do a 

further application of f and add that with k. So, for this multiplication to increase, to 

increase the value of the length of the key, so thus what, what is needed? Therefore, it is 

needed, that S cross P should not be idempotent. 

So, if that, so what we require is, that f of f x plus K, which is equal to this particular 

thing. When it is added with K should not be equal to f square x plus K dash because if 

this, if you had a linear function f, then you can actually, if this, while a linear function 

you could have actually distributed this and this would have computed to some x square 

x plus some value of K dash. 

So, that you see is exactly similar with your S cross P function, it, some other of an 

application of f and it is added with the key K. So, therefore, what it, so therefore this 

happens only if f is non-linear with respect to class. So, if this was the linear function f, 

then actually it would have distributed and that result, that we would have obtained, 

would have obtained, would have been similar to that of cross P. 

So, the size of this function, so the size of the key of this function and the size of this 

composed function would have been the same. So, therefore, what we need is something 

a deviation from this fact. So, we need not linearity, but we need non-linearity. So, 



therefore, hence we have to compose linear and non-linear functions to increase the 

security of a cipher. So, in order to increase the security of a cipher, but we have seen till 

now are only linear components, linear transformations. We essentially, found out 

multiplication with the matrix, which is the linear operator addition with the key, that is, 

also, that is also, that is also a linear function. So, therefore, all these are linear 

transformations. Therefore, we need, therefore you see that nicely from Shannon’s 

theory, we can actually arrive at the fact that we require at composition of linear 

functions and as well as non-linear functions. 
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So, with this I conclude my talk, but I would like to give an assignment, which you are 

supposed to again do it and submit it on 20th, before 20th, both, I have given 1 

assignment already. The other assignment is that show the unicity distance of the Hill 

Cipher with an m cross m encryption function is actually less than m divided by R L, 

where R L is the redundancy, as defined in the class.  

So, you can show, that the unicity distance of the Hill cipher with a m, m cross m 

encryption function is actually less than m divided by R L. 
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So, that is an assignment, which is given to you and you can read further things from 

Shannon’s books which is Communication Theory of Secrecy Systems. It is actually a 

paper, it is a classical paper, so it Bell Systems, it appeared in Bell Systems Technical 

Journal, but I am sure, that you will get online. And the other text book that I have 

followed is from Douglas Stinson Cryptography Theory and Practice, a 2nd edition book 

you can follow. So, I have followed that book, although the 3rd edition exists. 
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And next day’s topic would be symmetric key cipher, so we will you these concepts to 

go and build ciphers now. 

So, therefore, a symmetric cipher is our next day’s topic and we will start with block 

ciphers and follow that at with stream ciphers. 

 


