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So, welcome to this lecture on classical cryptosystems. Today, we shall be essentially 

talking about some important definitions, which exist in very old literature of ciphers, 

and we will be seeing that many of the concepts essentially as we proceed in a course are 

also applicable to the modern ciphers that we have in the present day. 

So, today’s objectives will be essentially to talk about some of the important definitions 

behind cipher designs; and then, we will be talking about very important principle which 

is known as Kerckhoffs principle; and then, discuss about some important class of old 

ciphers, which are called as monoalphabetic ciphers and an example of that is the shift 

ciphers; and then, polyalphabetic ciphers, which are called Vigenere cipher; and then, we 

discussed about affine ciphers and used our previous days concepts of Euler totient 

function to find out the size of the key in a fine ciphers; and then, conclude our 

discussion with a note on permutation cipher.  
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So, to start with essentially, today, we will be discussing about cryptosystems. So, as we 

have, I mean, made amount of idea that when we are discussing about cryptosystems, the 

cryptosystems are essentially used to encrypt the given plaintext. So, we have been 

provided by the plaintext and we are supposed to kind of transform these texts and 

modify them and produce a text which is known as which is different from the plaintext. 

And this modified plaintext is something which is known as ciphertext. Now, the 

objective is that the ciphertext should not the leak any information about the original 

content of the plaintext to the person or a third person who does not have a possession of 

a secret material which is known as the key. 

So, the key is essentially is used to configure a cryptosystem, that means, that it 

essentially defines the mapping of a plaintext to the given to a particular ciphertext. 

So, there are essentially two very broad categories of ciphers, one of them is called 

symmetric key cryptosystems, where essentially the encrypted and the decrypted that is, 

the sender and the receiver use the same piece of key; the key is the same. 

That means, if you need to kind of communicate using symmetric key cryptosystem, then 

it is if that both the sender and the receiver essentially shares the keying material 

beforehand. 



So, basically there should be some other secured channel through which the sender and 

the receiver have shared this piece of information. So, an opposed so that so that adds the 

cost of the symmetric key cryptosystem, that is, it had there is an inherent assumption 

that initially there is a secure that is a secure channel through which the encrypter and the 

decrypter have shared these piece of information. 

Now, a very, I mean, a very innovative second, I mean, the other type of ciphers which 

essentially relies upon mathematical assumption is something which is called a public 

key cryptosystem. 

In a public key cryptosystem, there are two concepts of keys. So, as you saw that in a 

symmetric key cryptosystem in the sender and the receiver has got the same piece of key 

and the need to kind of exchange the key beforehand, this problem is some sort of 

aggravated in context of public key cryptosystem, because there are two concept of keys, 

one of them is called a public key and the other one is the private key. 

Now, when we are using for encryption, then the public key is used for encrypting, that 

means, this piece of key, which is known to everybody can be used for the encryption. 

So, ideally anybody can encrypt, but when you are decrypting, then you need some need 

some key, which is known as the private key and essentially which is not known to 

everybody apart from the only person which is who is supposed to decrypt the 

information. 

So, that means, that your public key cryptosystem anybody can encrypt, but only a 

particular intended person can decrypt the information. So, that means, that if Alice 

would like to communicate with Bob, then what Alice does is that, Alice uses a piece of 

key which is known as… So, if Alice wants to send a piece of information to Bob, then 

Alice uses the public key of Bob, because Alice use the public key of Bob and when Bob 

receives this information, then Bob decrypts it using its own secret key or private key. 
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So, that means, that, it is some sort like this, that is cryptographically if Alice and Bob 

are two persons who are communicating between each other, and Alice send Alice sends 

the public key say call it.. I will define this, as we precede more in the class, but this is 

just to have a flavor of the topics that we will be discussing. So, there is a public key 

called Pk and Bob also has a secret key called Sk. So, when Alice wants to send a piece 

of message to Bob, then what Alice does is that, Alice encrypts this m using the public 

key of Bob. So, P Pk is Bob’s public key so Pk is Bob’s public key and Sk is Bob’s 

secret key. 

So, what Alice does is that, Alice encrypts m using Pk and sends it to Bob; now when 

Bob needs to decrypt this, then Bob decrypt this using the decryption function called d, 

but the internal key is essentially Sk. So, that means, Bob uses its own secret key to 

decrypt this information and this should be back to M; so, that means, that completes the 

decryption procedure. 

Now, there are some interesting points here, like about the key. So, it should be that Pk is 

known to everybody and Pk also should, I mean, doing the encryption also should be 

easy, but when you are kind of decrypting, I mean, then you need this piece of 

information called Sk which is the secret key. 

And another important, I mean, been mathematical, I mean, the base on which the public 

key cryptosystems rely upon is that, from Pk which is the public key information 



extracting the Sk that is the secret information should be a computationally difficult task; 

so this should not be easy. 

And this gives us kind of, I mean, we do not really have exact definitions in computer 

science which actually proves that, there are some problems which are actually hard; but 

we also but on the other hand, we have got some common number theoretic problems, 

which have actually for times for many times actually, I mean, it has they have been 

evaluated and they have been found to be difficult, so they are kind of assumed to be 

difficult. But we really do not have any rigorous mathematical proof to justify that they 

are indeed difficult problems. 

So, there are essentially some grey areas some place, where we kind of need to assume 

and based upon this assumptions, which are actually which took for lot of analysis, lot of 

attack methods, we actually develop this science of public key cryptosystems. We will 

see more concrete examples as we proceed in the class. 
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So, let me come to the definitions. So, again back to the definitions that is, so we have 

symmetric key cryptosystems and public key cryptosystems, which are essentially two 

broad categories of ciphers. Then I would like to kind of comment upon a very important 

principle which is there, is that, they are the basic assumption is that the entire system is 

completely known to the attacker. So, if we build a cipher, then you have to publish the 

cipher so that everybody knows that cipher but, what is not known to the attacker is only 



the secret piece of information which is called the key. So, this principle is known as 

Kerckhoffs principle, which says that the crypto algorithms are never secret. 

So, the idea is that, our experience shows that secret algorithms are weak when exposed, 

that is, if you kind of have an indoor algorithm and relies upon indoor algorithm, which 

has not been scrutinized properly, then experience shows the secret algorithms are indeed 

weak and there are saved examples of such type. I mean, if you do not properly i mean 

criticize your algorithms properly, analyze your algorithms, then there are lot of 

possibilities that they may be weak inherently. Therefore, the idea is that, make a new 

cipher and publish it and so that people analyses them and then only you will be kind of 

sure that your algorithm is or rather you can me more confident that your algorithm is 

secure.  

And secret algorithm and it has been found the secret algorithms are never actually never 

remains secret that finally, somehow they are weak; so it is better to find weaknesses 

beforehand. Therefore, the idea is that, whenever you make a cipher, assume that the 

ciphering algorithms is known to the attacker, but the attacker does not know the piece of 

information which is secret which is called the key. 

Even then it should be difficult for him or her to obtain the plaintext from the ciphertext 

and also it should be difficult, I mean, from the attackers point of view to obtain the 

piece of information, which is known as the key from the ciphertext. And there are some 

more evolved models of attacks which says, it should be also difficult to obtain the key 

even if you know the ciphertext and the plaintext. 
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So, the idea is that, we have to do more and more kind of scripted analysis of your 

cryptoalgorithms to gain more confidence that your algorithm is indeed secure. So, this is 

the broad picture of how you are communicating a plaintext; there is a encryption 

algorithms; there is a key; you generate the ciphertext, then you receive have been this 

piece of information; you decrypt that using the key and you obtain back the plaintext. 

So, these algorithms, that is, encryption algorithms and decryption algorithms and by the 

symmetric key, if they are symmetric key, then this key and this key are the same, that is, 

the encryption key and decryption key are the same; but if there is a public key 

cryptosystems, then this is essentially the public key, but this piece of information is the 

private key. 

So, there can be other uses of this public key, private key which in context to signatures, 

where essentially we use the private key to do the encryption operation, because we are 

signing using the private key, but you verify using the public key. So, anybody can 

verify, but only the person who is supposed to sign can sign. So, that is another 

application of very important application of public key cryptosystems. 
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So, little bit more formally, your cryptosystem is essentially a five-tuple, where there are 

five tuple members are there in the plaintext; we denoted by P which is finite set of 

possible plaintexts, then embed the C which is a finite set of possible ciphertexts. So, this 

could be alphabet, this could be number, this could be bit streams, but they are 

essentially drived from a finite set of possible values, then K is the keyspace, which is a 

finite set of possible keys, then idea is that for all k, which belong to these for all key 

which belong to these key set, there should exist the encryption algorithms. I mean, there 

should be exist a encryption rule and there should exist a decryption rule such that for 

each, if you have got P and C, that is, P to C mapping, there should be a corresponding C 

to P mapping. 

So, that means, what I want to say is that, if you take x which belongs to P and encrypt it 

using this piece of information which is called k, and then, decrypt it back using the 

decryption algorithm and decrypt it using the decryption key, (Refer time: 12:00) then 

you should actually get back the original plain-text, that is, you should recover the 

original message. 

. 
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So, that means, the essentially encryption function should be injective, that means, it 

denotes, I mean, suppose y is equal to e k x is the encryption transformation and imagine 

that, if there are two different x 1 and x 2, which are kind of distinct, they are not equal; 

and if you encrypt it encrypt them using the k the key k and you obtain y in both the 

cases; so this is a example of function which is not injective. 

Then Bob will be confused; when Bob receives y and he knows that he has to decrypt it 

using the corresponding key, then Bob will not be able to kind of get, I mean, be 

convinced whether the plaintext is x1 or x2. So, that should not happen; Bob should kind 

of uniquely identify that, whether x1 is the plaintext or x2 is the plaintext. Therefore, 

these kinds of functions are not and not used; therefore, we need functions which are 

kind of which are injective.  

So, therefore, if the plaintext set and ciphertext set are same, then essentially, I mean, for 

example, if you take alphabets in a plaintext set and also ciphertext set is alphabets, then 

the encryption function is just a permutation. So, if a for example, the plaintext set could 

be a 0 one string and the ciphertext set is also a 0 one string, then the ciphertext set is 

nothing but rearrangement of the 0 one string. 

So, therefore, this a example, where, I mean, i mean you need kind of i mean if you are 

plaintext set and the ciphertext set are the same, then essentially there is a permutation 

and the permutation is defined by the key, because the encryption function and the 



decryption function are known to everybody, but what is not known is the key. So, the 

key is the kind of material, which the cipher designer has to protect and which the crypt 

analyst who is trying to attack will try to recover using some way, I mean, using 

algebraic techniques, using statistical techniques and various other methods. 
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So, in classical cryptography, we will essentially see two important classes of ciphers, 

one of them is called the monoalphabetic ciphers and these are actually some of the 

primitive ciphers that we will be that we have come across, which means that once the 

key is chosen, the each alphabetic character of a plaintext… So, in this case, let us 

consider the plaintext to be made of an alphabetic characters, so I will be considering 

English alphabet, which is essentially as 26 letters. So, there are alphabetic character of a 

plaintext is mapped onto a unique alphabetic character of a ciphertext.  

So, therefore, if I take a and if it maps to c, then it will map to c, that means, that it will 

always map to c; so it is a kind of unique and unique and fixed transformation. 
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Some other example of classic, I mean, ciphers are the caesar cipher or something which 

is more generalized as shift cipher, then we have the substitution cipher and the affine 

cipher. So, let us see, I mean, some of them like and the other types of them 

polyalphabetic ciphers, where each alphabetic character of a plaintext can be mapped 

onto m alphabetic characters of a ciphertext. So, therefore, each alphabetic character of a 

plaintext can be mapped onto m alphabetic character of a ciphertext. 

Usually m is related to the encryption key, so which mean that, if a in case of 

monoalphabetic ciphers, a will suppose to get mapped to c, so that is fixed. But in case of 

polyalphabetic ciphers, a can be mapped to, say m possibilities, it could be map to c; it 

could be map to e; it could be map to f and so there can be m possibilities. And usually 

this m is related to a size of the encryption key, an example of such kind of ciphers are 

the Vigenere cipher, the hill cipher and the permutation cipher. So, we will also see some 

of them. 
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Like So, let us start with the most kind of one of the most primitive ciphers which is 

known as the shift ciphers. In case of a shift ciphers, let us consider Z26; so you know 

what is it 26 phi now? Z26 means a set, Z26 is essentially the set 0, 1 to 25; these 

numbers, that is, these 26 numbers can be used to encode the letters from A to Z. So, I 

am considering that the plaintext is made of the letters from A to Z. 

So, now, if you take, I mean, a key also belongs to this set, that is, from 0 to 25 some of 

the these values, then you can define the encryption function like this, that is, you can 



take x and when we apply this encryption function, then you simply add x with K and 

then you take a module operation with 26. 

So, we have seen what is a module operation in the last day class. So, suppose in that 

case, the letter x assume that the letter x is A, and suppose the letter K is B therefore, a 

will essentially be denoted by 0, and K which is B, will be k is b so B will be denoted by 

1; c will be denoted by 2 and so on. right So, therefore what we do is, suppose A, I mean, 

you take if you take for example, that A is denoted by 0 and suppose the key is 2, then 

what you do is, simply you add 0 with 2, and then, you take a mod 26, there is no 

problem. So, therefore, since this number is lesser than 26, so the result is 2. 

So, therefore, that means, that A will get mapped to C. So, similarly, if you want to kind 

of recover A from C, then you just need to subtract this piece of information, and this 

piece of information is nothing but the key and which is known to the kind of the sender, 

it is known to the receiver as well. So, there is simple kind of function, so it says that e k 

x equal to x plus k mod 26 and d k x which is that, actually it should be d k y is equal to 

y minus k mod 26. So that it is very easy to see that, if you kind of apply d k over e k, 

that is, if you apply d k over e k x, then you get back x; therefore, this function is indeed 

an injective function. 
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So, a simple example could be like this; so suppose the plaintext is this, that is, four 

score and seven years ago, so this is some kind of alphabetic characters. You take that 



this could be anything this; does not matter this is just an example; you just have got this 

encoding, you take this plaintext and a very simple substitution could be like, instead of 

having A getting mapping to A what you do is, shift this by three steps; therefore, A will 

get mapped to B, C and D; so, I mean, a will get mapped to D. 
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So, that means, that what I am saying is this, that is, if you take the characters like this A, 

B, C, D, E F and so on. So, if you just add A, I mean, whether shifted by three steps that 

actually you come to hit this place. So, therefore, A will get mapped to D; B will get 

mapped to E and so on; so you can actually form a table this way; so these are all three 

steps. you these are three steps So, therefore, in this cipher, if you have got X and there is 

fixed shift of this X; you just add with 3 and take a module of 26 and that is your y. So, 

therefore, in this case, this key is fixed. 

And this cipher essentially was used by Julia Caesar therefore, commonly referred as 

Caesar cipher. So, therefore, the corresponding ciphertext for this particular plaintext 

will be this. So, you can see that F will be get getting mapped into I, that is, g h arise that 

is three steps, and similarly, you can actually obtain the corresponding mapping of each 

of these letters and this particular cipher was known as the Caesar cipher and note that 

the use of the small letter… So, we are actually what we have done is that, we have for 

the plaintext, we have used the small letter and for the capital letters, we have use 



ciphertext; there is nothing to do with the ascii value, but just to improve rigidity of the 

corresponding mappings. 
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So, obviously understand this is not a very kind of secure cipher, but just a kind of for 

the other completeness set. So, if you are got the ciphertext, then you can also easily 

decrypt it, because what you just need to doing is that, you just need to go back by three 

steps. So, you know, if the corresponding cipher text is D, you need to go back three 

steps and obtain back a. 



So similarly, you can actually decrypt this information and you know that the plain for 

this particular ciphertext is easy to obtain the corresponding plaintext; so it is quite easy. 

Now, we will just discuss about something which is a little bit more complicated. So, 

what we do here is that, instead of shifting by three steps, we shift by some value which 

lies between 0 to 25. 
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So, the key could be in that case, for example, the key could be 7 what we do is, we take 

the corresponding in the mapping; the corresponding mapping is denoted here, where a is 

mapped to 7 that is down the line, but this key actually we can would like to change; you 

will not like to keep this as fixed. So, therefore, that is the objective. 

So, some of the properties that, we will see that for… So, we can actually make changes 

this for each of encryption function, but actually it should kind of satisfy some important 

property, that is, in each of the encryption and decryption function should be easily 

computable. We have seen that in case of Caesar cipher, it is called easily computable, 

both the encryption and decryption are easy to compute. 

And the other thing is that, an opponent, on seeing a ciphertext y, should be unable to 

determine the key K, that was used or the plaintext string x. That is for an attacker, 

which absorbs the ciphertext string y, it should not be able to find out what is the value 

of the key, because if he gets the key, then he can easily understand what is the plaintext 



or he should not also get back plaintext string some other way also. So, therefore, it 

should kind of leak no information about the corresponding plaintext of the key. 

So, cryptanalysis as we have already defined previously is the process of attempting to 

know the key from given information; so we will see that. We will see some more 

concrete examples of cryptanalysis in our next class on in context to classical cipher and 

also more techniques as we proceed in the class, but this is the main definition. 
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So, for a Caesar cipher one way of crypt analysis will be like, if i mean let us talk one 

about the Caesar cipher, because there is no key in the Caesar cipher. Let us talk about 

the case of the not so simple substitution, where essentially the key can take all 26 

possible values essential values. 

So, suppose they have been provided in a ciphertext like this, then what you do is that, if 

you know that this particular cipher essentially is nothing but, I mean, in each of the 

letter has been shifted by K steps, where K can vary from 0 to 26. So, what we will do as 

an attacker? If you are interested in obtaining the plaintext, what you will do is that, you 

will try for all the possible 26 keys and then kind of start decrypting this information 

until and unless you get something which is a meaningful piece of information. 

So, if you get a meaning meaningful piece of information, then you can be more or less 

convinced that since it occurs for all Bob’s letters and this fairly, I mean, modern style 



stream, then you can be convinced that the key is indeed corrected retrieved. That is the 

key in this case is 9, it says that, this particularly tells from the fact that, you are actually 

trying all possible key search here, that is, which is called exhaustive or the brute force 

search and we actually get back the key for which you have for which the corresponding 

plaintext make sense. 

This is the way common way of doing i would doing crypt analysis. In this case what we 

see is that, main pitfall is that the key size are the total number of possible search that an 

attacker needs to make is very small, it is only 26. So, we would first of all like to 

improve this particular fact, that is, we would like to make it a little difficult for the 

attacker. 
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So, in this case, one example which is tried here is that, the key is some permutation of 

letters therefore, it need not be a shift, but instead of the shift let us consider which is 

something which is called as substitution cipher. So, this concept of substitution cipher 

says like this, that is, if you take a and if you map to J, I mean, map say a to J, then b you 

will not map to J. Because if you map a to J, and b also to J, then immediately the 

probability of injectiveness is lost. So, that means, if you take J, then you see that J can 

actually come from a both a and b, that is not kind of allowable. 

So, therefore, that will lead to kind of in ambiguity in the decryption process; so it is not 

an injective function. So, therefore, what essentially b will get mapped into is, b will get 



mapped into something else other than a, than what a has got mapped into; so it could be 

I; similarly, c could get mapped into something which is not J or I. 

So, this particular mapping or this particular table can define a particular key; so this 

table is essentially supposed to kept secret. So, this means, that the number of such 

possible mappings that can actually arise is the first letter can be mapped into 26 letters; 

the second one can be mapped into 25; the third letter can be mapped into 24; similarly, 

to this one. So, that means, that there are 26 factorial possible mappings and this number 

is quite huge, it is more than the 2 power 88 possible keys. 

That means, that the total key size there are is quite large. So, which means that, if an 

attacker could try to kind of try all possible try all possible tech all possible keys to 

actually obtain back the plaintext from the ciphertext, then it needs to do a lot of search, 

which means, that particular attack method is not possible, but still this cipher is weak, 

and we will see in our next day’s class why it is weak on or other how to extract the 

information of the plaintext. 

So, therefore, in this case, this is an example of something which is called as substitution 

cipher and what we will see is the concept of substitution cipher still prevails in the 

modern day cipher. I mean, there are lot of examples of modern day ciphers, where still 

these kind of concepts are used again and again. So, therefore, although we know that 

this cipher, I mean, as independently if I call this is as a cipher, this is weak, but these 

component actually can be used in today’s ciphers to make a ciphers which is more 

strong, which is much more strong actually. So, they are very important concepts that we 

need to pick up, but we are never say that the substitution ciphers is secure and this is 

still can be attacked and we will see how it can be attacked. 
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So, then you have something which is called affine cipher. So, what the affine cipher 

does is that, again your plaintext and the ciphertext have both from this 0 to 25, that is, it 

belongs to the 26. i was in 26 And assume that your key is instead of one particular is Z 

26 element, it could be a tuple like, it could be an ordered pair of (a, b), where a is also 

chosen from the Z 26 and b is also chosen from Z 26 such that a satisfy the particular 

property, which means that a is co-prime to 26, that means, gcd are the greatest common 

divisor of a, and 26 is actually 1 y, because it comes from the definition. 

So, what we take as the plaintext like x, which is chosen from P the way, I mean, we 

choose the K, and then, encryption operation is defined as follows: what we do is that, 

we multiply x with a and then add with b, take a modular 26. 

So, from our previous days discussion, we know that, what we can also do is that, we can 

take a and multiply with x, and then, if this number is bigger than 26, then we can take a 

modular of 26, reduce it to less than 26, and then, add b; again if there is an overflow, I 

mean, we will get the result is more than 26, then we again take a modular 26; if it is 

equal to more than 26, then we again take a modular 26. The decryption operation is 

defined as like this. 

So, you see that for this decryption operation to exist rather this function to be injective, 

you need a particular fact that is, you knew that a has to be has to have a multiplicative 

inverse in this modular 26. So, therefore, that means, that if you need a kind of, I mean, 



in the last days class, we saw that if the multiplicative inverse of a the modular 26 has to 

exist, that need to satisfy the particular property which is that, a should be co-prime to 

26. That means, that the gcd of a and 26 should be equal to 1, only then the 

multiplicative inverse of a exists. So, that we have seen in the last days class on number 

theory. 

So, that means, that all a is not reliable, only those a’s are possible or rather are allowed 

which essentially have co-prime to 26. So, how many numbers are there in the 0 to 25, 

which are actually co-primed to 26? So that we need to find out in order to find out the 

number of keys. 
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Therefore, I mean, it is a kind of recapitulation of what we have seen in the last days 

class, that suppose a is an element from Zm, then the multiplicative inverse of an element 

is an element b also in Zm, such that a b is equal to 1. So, therefore, a b is equal to 1 

module m of course. So, then it needs to satisfy a property, which is the gcd of (a, m) is 

equal to 1. 

So, note that, if m is prime number, then p as a then every element has an inverse 

because Z p of the number and p will of course be equal to 1. So, therefore, Z p in that 

case is called a field; it is called a field, because every number is a multiplicative inverse, 

but in this case m is say 26, then every number does not have a multiplicative inverse 

which belongs to 0 to 25 set and not a co-prime to 26. 
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So, we can actually enumerate this and we will find that these are the numbers which are 

co-prime to 26 like, we can see that 1 is co-prime; 3 is co-prime; 5 is co-prime; 7 is co-

prime; 9 is co-prime, so 11, 15, 17, 19, 21, 23 and 25, so how many numbers are there? 

So, there is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12; so there are 12 numbers in this 

particular set. So, that means, that all these numbers are actually co-prime to m. 

So, you can actually verify that, they had they have multiplicative inverse, because 1 

inverse is equal to 1; 3 inverse is equal to 9. So, if you see that, multiply 3 into 9, you get 

27; if you take modular 26, that is, 1; 5 inverse is 21 you can verify this; 7 inverse 15; 11 

inverse is 19; 15 inverse is 7; 17 inverse is 23; 25 inverse is 25, that means, that all these 

number essentially have multiplicative inverse. Thus the inverse of an element belongs to 

the above set. So, therefore, in it belongs to the above set and if you can reflect why. 
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So, therefore, the question is that, is the how many possible keys are allowed in this 

affine ciphers. So, therefore, these the a can essentially a the value of a can essentially 

take any of these 12 values and b can take any of the 26 values; so the total key size is 

essentially 12 into 26, which is equal to 312. 

And the key size of course small, I mean, we can verifying 312 for possible keys is not a 

very big matter. So, that means, that the question is that, can we generalize this affine 

cipher? I would like to kind of increase the 26 values so that this size is essentially 

increased. So, therefore, I would like to do a kind of generalized analysis, if this 26 is 

replaced by some value say m. 
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So, in this case, I mean, I will use the previous days concepts of Euler’s Totient function 

and it is a kind of recapitulation, which says suppose a is greater than 1, and m is greater 

than equal to 2 are integers and if gcd of (a, m) is equal to 1, then we see say that a and m 

are relatively prime. This is the definition of Euler’s Totient function which says that, if a 

is greater than or equal to 1 and m is greater than or equal to 2 are integers, then this is a 

definition a and m are co-prime, then gcd of (a, m) equal to 1, then we say that a and m 

are relatively prime. 

So, that means, if a is equal to 1, this is the kind of case if I just kind of I would like to 

make a note that, if a is equal to 1, then gcd of (a, m) is also equal to 1 and say that 1 is 

also co-prime to m. So, therefore, this there may be a kind of ambiguity about this, let us 

make it clear, so a is greater than equal to 1. 

So, the definition of Euler’s Totient function is as follows: that if the number of integer 

in Zm, where m is greater than 1 that are relatively prime to m and does not exceed m; 

therefore, these numbers are essentially lesser than m. So, it will be kind of lesser than m 

means, it will be kind of from 0 to m minus 1. Because they belong in Zm, and Zm 

actually has 0; also the numbers will vary from 0 to m minus 1 and those numbers of 

values which are co-prime to m, we need to find them and they are kind of denoted by 

some letter, which is called as phi m that is the symbol of the Euler’s Totient function 

and this is also sometimes referred to as a phi function. 
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So, as you as you will remember that, if m is equal to 26, we have seen that, phi of 26 is 

12. If p is a prime number, then phi of p is p minus 1, and if you vary like m from 1 to 24 

these are some of the value of phi n and we can actually see that phi n does not have a 

nice nature; it is not a monotonically increasing value, even a monotonically non-

decreasing value. You see that, if you start increasing n, there example there are cases, 

where actually the values of phi n dimensions like from 12 to 6, there is a reduction. 
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So, we see that the function is very irregular and therefore, we kind of would like to have 

a way of calculating the phi m. So, there is a result which says m and n are relatively 

prime numbers, then phi of m n is equal to phi of m multiplied by phi. So phi of 77 will 

be in this result; if i factorize this 7 into 11 will be equal to phi of 6 multiplied by phi of 

7 using this result, and phi of 6 is essentially is equal to, I mean, phi of 7 multiplied by 

phi of 11, and phi of 7 is 6 why because since 7 is a prime number, then of course from 0 

to p minus 1, there are six numbers which are actually co-prime to 7, because all the 

numbers are co-prime except 0; 0 is not a co-prime by our definition. So, if you take a… 

and the phi of 11 will be essentially equal to 10, that is, minus 1; so 11 minus 1, again 0 

is not there. 

So, that means, that this is equal to 10 therefore, that is 6 to 10 is 60, but what about phi 

of 1896? So, you can again factorize, it will be phi that is equal to 3 into 8 into 79 and all 

of them are prime numbers, so this into prime factorization and therefore, 5 of 3 will be 

equal to 2 phi of 8; phi of 8 is phi of 2 q and this is not a prime number actually, but if 

you if you kind of like that in that in terms of its prime factors, then this will be this is 

equal to 2 q and we can say that, this is equal to 5 of 8 will be actually equal to 4, and we 

can actually see this, that phi of 8 is 4 and then you have got phi of 79 which is 78. 
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So, why is phi of 8 equal to 4? You can easily verify this, because if the numbers if you 

take the numbers from 0, 1, 2, 3, 4, 5, 6 and 7, then these are the number which are 



belonging to Z 8, you immediately cancel out 1; this is co-prime; this is not co-prime; 

this is co-prime; this is not a co-prime; this is co-prime and this is co-prime. So, there are 

4 such values therefore, phi of 8 is equal to 4. 

So, therefore, if I use this fact here, then phi of 3 into 8 into 79 will be equal to 2 into 4 

into 7 8 that is equal to 624. So, this result can be extended to more than two arguments 

comprising of pair-wise co-prime integers. 
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So, we will try to kind of again reflect upon the proof, which we kind of hurried up in the 

last class. So, phi of m n is equal to phi of m multiplied by phi of n. 

So, what we have done here is that, we are kind of laid down the numbers from 1 to m n. 

So, actually we should have done from 0 to m minus 1, but if you see, I mean, with the 

background of the number theory discussion which we have done, you know that is same 

as the enumerating from 1 to m n. Because m n if you take mod m n is nothing but 0 

therefore, you can actually numerate the number from 1 to m n; so this is nothing but m 

n; you see that the m minus 1 n plus n, so that is m n. 

So, these numbers are actually written in a array kind of function; so 1, 2 and so on to n 

and again the next row is n plus 1, n plus 2 so on to n plus k to n plus n and similarly, 

there are m rows and n columns. So, we need to find out 5 m n, which means that, we 

need to find out those numbers which are co-prime to m n and you note that m and n are 



relatively prime. So, that means, that these numbers have to be co-prime to both m and 

both n; so it has to be co-prime to both m and n. 

So, first of all let us see the columns. So, you see, let us try to find out there are columns 

or rather the numbers which are co-prime to n. So, you see how the numbers are noted 

down; so these numbers are, I mean, if you just observe say a particular column, then we 

will see that the numbers are like k, n plus k and m minus 1 till so on like this to m minus 

1 into n plus k. If this numbers have to be co-prime to n, then by our previous days 

discussion we know that, the remainder if i just for example, if you take n and if you 

divide it by n, so this number is n plus k; if you divide it by n, then the remainder is k 

and if this number has to be co-prime to n, then it means that, key has to be, remainder 

has to be co-prime to n. 

So, that means, that the same holds for all of them. You see that this is m minus 1 into n 

plus k, again the remainder is k and if this number has to be co-prime with n, then k has 

to be co-prime with n; the same holds for this one also. That means, that if this number, 

if this entire column, I mean, if k is co-prime to n, then all these numbers are co-prime to 

n therefore, if k is I repeat, if k is co-prime to n, then all these numbers are co-prime to n. 

So, that means, how many if i need kind from these number if I am interested in finding 

out how many numbers are co-prime to n, then obviously I need to find out those 

numbers which I mean from 1 to n, which are all the possible values of k and which are 

co-prime to n. And we know by the previous definition that, there are phi n such values 

which are co-prime to n; from 1 to n, there are phi n such values which are co-prime to n. 

So, that means, that there are phi n columns in which all the elements are co-prime to n. 

Now, let us consider assume that k is co-prime to n and we let us find out how many 

numbers among these n numbers the n numbers are here which are actually co-prime to 

n. 

We know that, in this again, these are number like from k, n plus k and so on to m minus 

to 1 into n plus k. We know that there are phi n elements which are actually co-prime to 

n; we know that there are phi n values which are co-prime to n. 

So, therefore, we if therefore, if I can kind of apply both of them, so there are again so I 

repeat, there are phi n columns which are actually there are phi n columns in which all 

the elements in the columns, all the numbers are co-prime to n and if you just take one of 



those column, where this particular k is actually co-prime to n, then in this column, there 

are phi n elements which are co-prime to n. 

So, therefore, if I need to find out the number of elements which are co-prime to both m 

and both n, then we just need to find out, we just need to multiply phi n with phi m, that 

is, phi n will give us the number of columns, where which are co-prime to n, and if I 

multiply with phi n, I get exactly those numbers which are co-prime to both m and n. It is 

the kind of very interesting proof and very interesting regard very useful regard. 

So, therefore, phi of m n, where m and n are relatively prime is nothing but the product 

of phi m and phi n. 
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So, now, what we do is that, I mean, this is a kind of conclusion of the previous days 

proof and so, we can actually apply this to find out phi of phi p to the power of a; phi of 

p to the power of a is nothing but p to the power of a minus p to the power of a minus 1 

why? Because this evident for a equal to 1, we have seen this already that, phi of p is p 

minus 1; so that is the evident. For a greater than 1, let us try to find out what is phi of p 

to the power of a, for a greater than 1. 

So, the numbers could be like 1, 2 and so on till the p to the power of a; so, there how 

many numbers are there from 1, 2, to p the power of a? There are p to the power of a 

numbers in total; from there let us subtract those numbers which are not co-prime to p to 

the power of a and just a little bit of observation. You can actually understand, whether 

numbers which are not co-prime to p to the power of a or rather which are not co-prime 

to p to the power of a are actually p, p square, p to the power of a minus 1. So, it is just 

steering like that, it is like this till p to the power of a; actually they should be some dots 

here. 

P, p square and so on and till p to the power of a, so p, p square and you just keep on 

kind of adding on to the power. So, therefore, p multiplied with the next power and so 

on. So, how many such powers are how many elements are there? If you just observe this 

various p to the power of a has been written, it is p to the power of a minus 1 into p 

therefore, the power here has actually varied from… So, there are actually how many 



possible values? there Actually you will find that, if you just find out the numbers of 

such terms which are there , is nothing but p to the power of a minus 1. So, therefore, 

there are p to the power of a minus 1 values or one elements which are actually not co-

prime to p to the power of a. 

So, therefore, you need to subtract from p to the power of a, p to the power of a minus 1 

those numbers which are no co-prime to p to the power of a and therefore, you can 

actually represent these are p to the power of a multiplied by 1 minus 1 by p, this is same 

way of writing this. 
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So, therefore, the in then if you need to kind of find out the phi of n, then you know that 

from the fundamental theory of arithmetic, you can actually factorize any n of like this, 

like p 1 to the power a 1 p 2 to the power of a 2 and so on Pk to the power of ak. And 

therefore, phi is nothing but phi of p 1 to the power of a 1 multiplied by phi of p 2 to the 

power of a 2 and so on.  

Because of the simple fact that, p to the power of a 1 and p 2 to the power of a 2 are co-

prime to each other, you can actually write them like this, and then, you can actually 

apply the theorem of, I mean, the formula of phi of m n is equal to phi of m into phi of n. 

When m and n are co-prime successively, you can apply them tentatively over more than 

two values like m and n and therefore, you can actually get this particular equation and 



therefore, by the previous thing that you can remember phi of p 1 to the power of a 1 is 

nothing but p 1 to the power of a 1 into 1 minus 1 by p 1. 
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You know that, phi of p 1 to the power of a 1 is nothing but p 1 to the power of a 1 into 1 

minus 1 by p 1. So, similarly, phi of p 2 to the power of a 2 is nothing but p to the power 

of a 2 into 1 minus 1 by p 2; so similarly, till phi of Pk to the power of ak is equal to Pk 

to the power of ak into 1 minus 1 by p k. 

So, now, if you kind of find out phi of p 1, multiply all these things till phi of Pk to the 

power of ak, then what you get is, p 1 to the power of a 1 multiplied by p 2 to the power 

of a 2 and so on till Pk to the power of ak into, so this will be multiplied by 1 minus 1 by 

p 1 1 minus 1 by p 2 and so on till 1 minus 1 by Pk. 



This essentially can be actually substituted by n itself; so you get n into 1 minus 1 by p 1 

into 1 minus 1 by p 2 and so on till 1 minus 1 by Pk. So, this is the formula to compute 

the value of phi n; phi n is nothing but this. So, phi n is n multiplied by 1 minus 1 by p 1 

1 minus 1 by p 2 and so on till 1 minus 1 by Pk.(Refer Slide Time: 44:50) So, phi of 60, 

you can verify phi of 60 like them as 4 into three into 5, then you know that this is equal 

to 60 into 1 minus 1 by 2, because 2 is the prime factor, and then, 1 minus 1 by 3 and 1 

minus 1 by 5, this actually works out to 16. So, therefore, if instead of 26, if you use 60, 

then the number of affine keys actually increases to 16 multiplied by 60 that is 960, so 

that is increased. 
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So, similarly, you can actually calculate the number of affine keys for larger values of m 

also, but you need the but you need to keep one thing in mind, that is, you need the prime 

factors. And factorization, actually this problem becomes more and more complex as you 

start dealing with larger numbers. 

So, then we will discuss… so we have actually talked about something which is called a 

monoalphabetic character, that is, once a cipher once key is chosen, each alphabetic 

character is mapped into unique alphabetic character in the ciphertext; examples of them 

are shift ciphers substitution ciphers. 
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Now, we will discuss about something which is called poly alphabetic cipher. So, in this 

cipher, a plaintext can be mapped into more than one possible characters in ciphertext. 

So, they are harder to cryptanalyse, examples of them are Vigenere cipher and the Hill 

cipher. So, Vigenere cipher is a kind of polyalphabetic cipher and each key essentially 

consist of m characters, which are called as keywords and encrypts. So, the idea is that, 

you encrypt m characters at a time and this was defined designed by Vigenere in the 16th 

centuries. So, it is we can see that, it is very old cipher also. 
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So, the idea is like this, that is suppose your example is this cryptosystem is not secure 

this is the plaintext and if you take m is equal to 6, which is the size of the key, let the 

key will be instead of one number, be a pair like, I mean, we have tuple be a kind of set 

of numbers like 2, 8, 15, 7, 4 and till 17. So, what you do is that, you convert the 

plaintext into residues module 26 and write them in groups of 6, and then, add the 

keyword; so that is the idea. 

(Refer Slide Time: 46:50) 

 



(Refer Slide Time: 46:52). 

 

So, just see that, if you see that the numbers are… if you take these numbers like this, 

cryptosystem is not secure; convert the plaintext into the set of numbers, and then, you 

start writing this key as like this 2, 8, 15, 7, 4, 17; again repeat 2, 8, 15, 7, 4, 17 again 

keep on repeating as the plaintext goes on. Now, you start adding the modular 26 

therefore, you take 19, you add 2, 21 modular 26, it is 26; so you can get 7, you add 8, 

you get 15, I mean, it is modular 26, it is 15. So, similarly, you start doing this 

transformation, you see that there are two occurrences of 19 here in the plaintext, but 

because of this arrangement of the key in this case, 19 is getting modified by the key 

material 2, but here it is getting modified by the keying material 15; and as a natural 

consequences here you get 21, whereas here you get 8. 

So, which means that, the same plaintext as we saw in the monoalphabetic ciphers, this 

would always have got mapped into a unique later. But, in case of a polyalphabetic 

ciphers, this letter is getting sometime mapped into a one number, but sometime getting 

mapped into a different number. And as you can see that, there are six possible values in 

this particular key; this number 19 can get mapped into six possible ciphertext values. 

So, that is the basic concepts of a polyalphabetic cipher, that is, the mapping is not 

unique, but it can vary depending upon the size of the key. 



So, this part of the ciphertext here is this and you can note that, the character t is mapped 

to v and i therefore, it is called polyalphabetic; there are two possible in this shown here, 

actually there are six possible values, because that depends upon the size of the key. 
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So, we would be interested in finding out what is the key space. Suppose the key word 

length is m and therefore, there are 26 to the power of m possible keys, each of them can 

be 26 values. So, there are 26 to the power of m possible key values. Suppose m equal to 

5, then 26 to the power of 5 is this, which is actually large enough to preclude any 

exhaustive key search. Exhaustive key search is not possible however, we will see that 

there is there can be a systemic method to break Vigenere cipher and that we will be 

discussing in the next day’s class.  

But we see that, one character could be mapped into m different characters when the 

character is in m different positions. So, there are m possible mappings for a particular 

character, where m is the length of the key size of the key. 
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So, we will discuss about the cipher, which is called Hill cipher, which is another 

polyalphabetic cipher and it was defined designed around 1929. 

So, you see that, here, I mean, we are going more into the modern day cipher slowly that, 

is if you see that m be a positive integer, and let p and c both are kind of Z 26 to the 

power of m, so that is kind of the m possible values. First divide the characters, that is, 

which are in the plaintext into blocks of m characters, then you take m linear 

combinations of m characters, thus producing the m characters in ciphertext.  
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So, mathematically it means like this. So, let us take a small example, where m is equal 

to 2, so you’re plain your you can here do like this that is. So, I am considering the m is 

equal to 2 case. 
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So, let us consider a plaintext say x1 and x2; so you see that x1 belongs to z 26 and x2 

also belongs to z 26. So, there are both of them are z 26 elements and you take x1 and 

you take x2, assume that you have got a keying material, which for example, write as, so 

the key here could be like k1 k2, k3 and k4 you arrange them in a matrix format, where 

k1 k2 k3 and k4 all of them are z at present from z 26. 

So, then you define your operation as this, they which is the ciphertext is y1 y2 is equal 

to nothing but the multiplication k1 k2, k3 k4 multiplied with x1 x2. So, if you now if 

you need to find out the x1 x2 from this, then obviously you need the inverse of this 

matrix; so therefore the inverse of this matrix needs to be defined. 

So, you can actually see an example here, that is, it says that (y1, y2) is equal to (x1, x2) 

and therefore, you can actually write the it is written out like this; so it could be a matrix 

either pre multiplied or post multiplied. So, it depends upon the way it has been arranged 

like, it is arranged as a one cross two in this case vector. So, therefore, the multiplication 

you have to appropriately apply, pre-multiply or post multiply depending upon the way 

you are writing this (x1, x2) pair, so this vector. 



So, what so what is essentially done is that, if you see, if you break up, these are nothing 

but linear transformation of this order. So, y1 is instead 11 x1 plus 3 x2 mod 26 and y2 is 

8 x1 plus 7 x2 mod 26 which is been written in this way. So, this 11, 3, 8 and 7 are 

actually the piece of information which is the key. So, you see that, which is like 

extension of the affine cipher and it goes closer to the cipher concept that we have today, 

which is called block cipher. 

So, it is a kind of kind of a breach from this classical notation to a modern notation. So,S 

you see that, here you can actually write that as y is equal to k x k and where y is equal to 

(y1, y2) and x equal to (x1 , x2). So, where all these operations are performed modular k, 

but the important point is that, for the injectivity as we have seen in context of affine 

cipher, we need the inverse of this keying material. 
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So, therefore, you see that, given a plaintext k x, we get ciphertext y, but in order to have 

inverse , we actually need the inverse of this matrix; and if you know that, if the inverse 

of the matrix exist, that is, if you would take k and there is ak inverse; if you multiply 

and you get back the identity cipher, then immediately you know that, if you take y and 

if you multiply with k inverse that is nothing but y can be written as x k from the 

definition, that is, y is equal to x k, then y is equal to x k; and then multiply with k 

inverse. So, you know that k and k inverse if you multiply, you get I m and therefore, x 

of I m is nothing but x; therefore, obtain back the plaintext x. 
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Therefore, the important criteria is that, the inverse of this matrix needs to exist. So, thus 

for Hill cipher to work, the matrix k must be invertible; there should be an inverse which 

is called k inverse. Now, we know that, when, I mean, to give an example, you can work 

out. So, refer the important condition is that k is to have an inverse. So, we say that k has 

an inverse if and only if determinant of k is invertible in z 26. If you know from our 

basic course in matrix algebra is that, k inverse is nothing but 1 by determinant of k and 

this is the kind of you know what this is. So, you can you can write them as a co-factors 

therefore, using the co-factors therefore, the most important thing is that, you can always 



multiply, but the thing is that, this determinant k and inverse of that needs to exist, which 

means the determinant k inverse needs to exist which means that determinant k is inverse 

needs to exist and when will the determinant of k inverse exist in modular 26? It can 

exist if and only if the gcd of the determinant of k and 26 is equal to 1. This is quite easy 

to follow from our previous description that means, that k is an inverse if and only if 

determinant k is invertible in z 26 and that means that if and only if gcd of determinant 

of k and 26 is equal to 1. 
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Therefore, the formal definition is like this; so you take x, you multiply with x k and 

decryption is also defined as this, but only it needs to be an invertible therefore, you can 

actually compute the size of the key using this. 

A slight extension of this is called permutation cipher; all previous cipher include 

substitutions, where which are actually taken a plaintext characters are replaced by the 

different ciphertext characters, which also forms a very important component of modern 

ciphers substitution ciphers, and then, the other component is the permutation ciphers, 

which will keep the plaintext characters unchanged, but will alter their position by 

rearranging them using a permutation. 

Suppose X is a finite set. a permutation over X is a bijective function, you know that 

which is denoted by phi from X to X, this is the mapping. Thus the inverse permutation 

is actually again back from X to X and defined by phi inverse. It is defined by the rule as 

follows, that is, phi of inverse of x is equal to x dash if and only if phi of x dash is equal 

to x therefore, that is the definition of a permutation cipher. 
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So, what you can do is that, you can take from x1 to x m. So, these are suppose the 

numbers like, which form the plaintext from x1 to x m, and then, you start rearranging 

them. So, x1 goes to a different location; x2 goes to a different location and so on, but 

the basic character the set of character remain unaltered. So, therefore, x the index of this 

is denoted by phi 1. So, what essentially get kind of transformed are the index locations 

we will take. So, any permutation, you can actually denote like this; like you take x1, x2 

and so on what you are doing is a rearrangement in a permutation; you are just doing a 

rearrangement. So, this location gets changed to x1; this essentially becomes x1, which 

essentially was x2 in this case. 
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So, we will actually denote them as x of phi 1, x of phi 2 and so on. So, if there are n 

values, then x of phi m, so all of them are nothing indicating that the characters index 

position is changed. So, therefore, you can actually denote them using this, that is, this is 

just a notation of the permutation and this is an example you have like, you take 1, 2, 3 

and till 6 and therefore, what you have done here is that, you just kind of transformed 

them; from 1 goes really to 3; 2 goes to 5; 3 goes to 1; 4 goes to 6 and so on and 

similarly, you can define the inverse permutation also. 
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So, this problem therefore, you can actually there is a small comments made here, the 

permutation cipher is a special case of Hill cipher. So, I leave it to kind of a exercise to 

reflect upon this point, that is, y is it y is it so. And this give you some points to ponder, 

that is, one of them is that you have to comment on whether the Euler Totient function 

for n greater than one is even or odd; you need to kind of give an argument in your favor 

and express permutation cipher as a hill cipher. 
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So, these are some problems given to you. So, the references that I have used is 

cyptography and network security and next day, we will discuss be discussing about the 

cryptanalysis of classical ciphers. 


