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Welcome to today’s class on probability and information theory. This is an extremely 

important field of study and a huge field. So, today we shall be trying to concentrate on 

some of the basic principles, which are necessary to understand the design and analysis 

of ciphers. 
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So, in today’s talk, we shall be talking about the importance of probability in 

cryptography and then discuss about computational security, then follow it up with some 

discussions on binomial distributions and its applications, and very important birthday 

paradox, and then conclude with some concepts of entropy and information theory. 
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Now, as we have been discussing, if you remember in our first class that we are trying to 

answer the questions of this nature, like, how probable is the insecure event?  



So, you remember that in our example on the coin flipping over telephone, the question 

was, what is the probability of Alice to create x which is not equal to y, such that, f x and 

f y are essentially the same? If you remember that the question was like, whether Alice is 

able to choose two different x and y values, such that, the outcome, which is denoted by f 

x and f y are the same? 

The other question that we tried to address was, what is the probability that the Bob can 

guess the parity of x? That was the important information and the question was, whether 

from the value of f x, Bob is able to extract out the information of the parity of x? 

Therefore, these types of questions will again and again appear, in the course of, when 

we are trying to design and also analyse the ciphers; therefore, the theory of probability 

is quite central to the development of this field. 
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So, a good cryptosystem, as we discussed in the last to last classes, was that it should 

produce a cipher text, which has got a random distribution that means - we should look 

as much random as possible, to a distinguisher. 

Therefore, I mean it should not be detectible, it should not be easily distinguished from a 

random distribution; so therefore, which has to random in the entire space of the cipher 

text message and the thing is that if it is perfectly random, let us leave it perfectly 



random; we will try to make this notion more and more concrete as we proceed. There 

should not be any information leakage. 

So, lot of terms have been coined out here, like, information and also the notion of 

perfect randomness; we will try to make these things more concrete and more 

mathematical as we proceed. 

Now, you just try to understand that intuitively; it means that when something is 

perfectly random, then essentially is not giving us any extra information; therefore, the 

idea is that it has got zero information content. 

If you remember, we talked about the magic function f x and therefore, if the function f x 

does not leak any information or any other fact about the parity of x, then we say that it 

does not leak any information. Therefore, this information, or rather, the lack of 

information, is sometimes also referred to as uncertainty of ciphers. So, we will try to 

measure these terms, like, perfect randomness, information and also uncertainty. 
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We rely heavily on the theory of probability and also develop theory of information 

using these probabilistic notions. So, another important concept, although we shall not be 

really going deep into this, is something - the concept of provable security. 

So, something which is called semantic security is very central, and it is defined as 

follows: remember, Alice and Bob, therefore, the idea is that Alice essentially encrypts 



either 0 or 1 with equal probability; therefore, Bob knows either 0 is encrypted or 1 is 

encrypted and the probability of choosing a 0 and 1 is half. 

Now, Alice encrypts these either 0 or 1 and sends the resultant cipher c to Bob as a 

challenge. Now, Bob has to guess from the challenge without the decryption key that 

whether 0 was encrypted or 1 was encrypted. 

So, if Bob is not provided with a cipher text, then what will Bob does? Bob will simply 

guess. Now, when Bob is provided the cipher text, he should not be able to guess any 

better than the random guess; so, that is the idea. If he is not able to guess any better than 

the random guess, then we say that the encryption algorithm which Alice is using is 

semantically secured. 
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If we just consider a simple kind of stream cipher, for example, if there is a kind of 

message m, what Alice does is that it chooses randomly a key value and it creates a 

cipher text; therefore, this message can either be 0 or 1. So, the key will also be either 0 

or 1 and it is randomly chosen. 

 

 

 



Now, this particular cipher text has been provided to Bob and Bob from this cipher text 

value has to guess, whether 0 was encrypted or whether 1 was encrypted. This is an 

encryption algorithm, which Alice uses. Bob is either receiving m or it is receiving m 

bar, because the key can either take 0 value or 1 value; we are just considering a very 

simple case. 

So, Bob has to guess whether 0 has been encrypted or whether 1 has been encrypted and 

if Bob does not have any information of the cipher text, then Bob would have simply 

guessed. So, in this case also, when Bob is even provided with the cipher text, the 

probability of Bob being able to guess whether the message is 0 or 1 should even, then 

be close to half; so, that is the idea of semantic security. 
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So, Bob or any eves-dropper does not have any advantage over the random guess; so 

semantic security tries to encapsulate or capture this particular notion. 
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We have been discussing about something called message indistinguishability, that is, 

semantic security and message indistinguishability are the same notions; these notions 

say that the attacker is not able to distinguish between the encryptions of either a 0 or a 1.  

Often we talk about something which is called computational security. We will see that 

there are two ways, you can model the attacker, you can either assume that the attacker is 

an unbounded adversary, that is, he is all powerful; it has got large access to large 

amount of resource and it can do large computations; so, that is the notion of an 

unbounded attacker. 

So, you can make your security algorithms, which are protected against an unbounded 

attacker, you can try to do that. The other thing which you can do is that you can assume 

that in today’s computational power or today’s world, the maximum competitions which 

an adversary can do – like, what is believed in today’s thumb rule is that, if there is any 

algorithm which requires more than 2 power of 80 computations, then it is termed as 

infeasible. 

So, if they can limit or bound the attacker of today’s world by, say, 2 power of 80 

computations, and if we can prove that the particular attack for an encryption algorithm 

requires more than 2 power of 80 computations, then we are happy as a designer. 



So, that is the idea of our computational security analysis, that is, I am not trying to 

really give you guarantees of security against an unbounded attacker, but we are trying to 

give you security against a bounded adversary - an adversary, which is bounded by 

computational power. 

The other advantage that you arrive apart from the simplicity is, often you will find that 

when we are trying to give security guarantees against an unbounded adversary, you may 

end up in an encryption algorithm or a technique which is not practical. 

But as we discussed, we also need practical security, that is, the cipher should be 

practical; so, in order to make it practical, it is often advantageous to assume that the 

adversary is actually not unbounded by this kind of bounded. 
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So, that is the notion and importance of computational security analysis; we try to make 

this idea more clear as we proceed. Therefore, we define a crypto-system to be 

computationally secure if the best algorithm for breaking it requires at least N operations, 

where N is a very large number. 

Another approach is to reduce the problem; therefore, this is another approach which is 

often taken to reduce the problem of breaking a cryptosystem to a known problem, like, 

“factoring a large number to its prime factors”.  



It is often assumed that factoring a large number to its prime factor is a difficult problem; 

this is a quite hard problem. Although, we do not have real proofs for proving this fact, 

but the idea is that this particular problem has withstood large number of analysis and 

withstood a long period of time and it is believed that it is fairly hard. 

So, the approach which is taken is that when a crypto-system is given, for example, if I 

just take the example of an asymmetric crypto-system called RSA, and somebody asks 

me to prove the security of this system, the approach which is adopted is, to reduce this 

problem of proving, or reduce this problem of breaking this RSA crypto-system to this 

known problem; that is, we do a reduction proof and show that if this problem, the idea is 

that if this problem - is a difficult problem, so is the problem of breaking this RSA 

crypto-system. 
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Thus these kinds of proofs are relative and they are not absolute and they are sometimes 

called, proof by reduction; so we will also see some examples of such kind of security 

proofs in our class also. Probability is a good tool and it is a tool which helps us to 

analyse the ciphers. So, let us try to make the concepts little bit more well-defined. So, 

there are some important definitions, one of them is probability space. The probability 

space is a fixed set of points which is arbitrary, that its kind is denoted by s often. 
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So, let us consider an example – suppose, there is an unbiased coin; so the unbiased coin 

can take two possible values. Therefore, we define its sample space to be the values like, 

head and tail; so, it can take either head value or it can take either tail value. Then, we 

define an experiment; so, the experiment is defined as follows - experiment e1 is nothing 

but the outcome of a toss. So, if we assume that this is an unbiased coin, then this 

experiment, what it does is that it chooses or samples out a point from the sample space. 

Therefore, this result can either be a head or it can be a tail; so, it just chooses a point 

from this head and tail. Similarly, you can actually make this example a little bit more 

complicated and even for this simple example, I think we can actually understand the 

concepts quite well. 

So, if I just make it little general, then it will look like that the probability space are 

arbitrary, but fixed set of points. For example, the head and tail, it could be more than 

that also and we denote that by S. 

What the experiment does is that, it is an action of taking a point from S; so, it just 

chooses a random point from the sample space, this sample point, which is commonly 

called outcome of an experiment. 
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So, you toss a coin, it is either head or a tail; so, either head or the tail is the sample point 

of the experiment. Let us try to make little bit more complicated, so you have got two 

possibilities, head or tail, but what you do is that you toss the coin for ten number of 

times. 
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If you toss the coin for ten number of times, then there are several possible outcomes. So, 

if you toss the coin for ten number of times, then it could be like, it is a sequence of 

heads and tails - it can be head tail, tail, tail, and so on, tail head or something like that. 



You denote the head by 0 or the tail by 1, you know that there are actually how many 

possible enumerations or possible outcomes? There are 2 power of 10 possible outcomes. 

Now, if I denote the particular kind of event as, saying that the end is five times head and 

five times tail, then it means, that from all the sample points, I am interested in the 

probability of one particular event. 

So, this particular event, like this head and tail can occur actually in certain possible 

ways. So, we can actually compute the number of times, exactly five times head falls by 

simply computing 10 choose 5. Therefore, probability of this event, that is, the 

probability of the event that there are 5 heads will be nothing but 10 choose 5 divided by 

2 power of 10; so, this way of computing the probability is something that we have quite 

seen. 
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Therefore if I make it, or rather, define it, this is the classical definition of probability, 

that is, if there is an experiment, which yields one out of n possible equally probable 

points and that every experiment must yield a point of course, and let m be the number of 

points which form event E, then the probability of an event E is defined as the ratio of m 

and n. 
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There is a statistical definition also. Now, why do we require this statistical definition, if 

something we can easily understand? For example, if I tell you that there is an unbiased 

coin and if I tell you that the probability of a head is half, then that does not mean that if 

I toss the coin for 2 number of times, then one of them will be a head, it does not mean 

that. What it means is that if you keep on tossing the coin for a large number of times, 

then the half of the number of times you toss will be, at least, approximately half will be 

head. 

So, the notion of probability actually holds in reality, when you repeat the experiment for 

a large number of times; so, there is a notion of statistics involved in the way we are 

defining probability. 

Suppose, there are n experiments and these are carried out under the same conditions in 

which the event E has occurred mu times. So, for a large value of n, that means, this is 

important, that if I repeat the experiment for a large number of times, then the event E is 

said to have the probability which is denoted by probability of E, approximately equal to 

mu by n. 

So, what I do is that instead of computing the probability by finding out the outcomes 

and the number of possible ways these outcomes can come, what we can do is that we 

can keep on repeating the experiment. 



We find that, if we actually repeat the experiment for a large number of times and out of 

the mu number of times the particular event has occurred, then we can fairly approximate 

its probability by the ratio of mu by n; so, this is the statistical definition and often useful 

for analysis. 
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Some of the very elementary probability rules are as follows, now, we know this, but this 

is a kind of recapitulation; that is, probability of A union B is equal to probability of A 

plus probability of B minus probability of A intersection B; if they are mutually 

exclusive, that we know, that probability of A intersection B works out to zero and 

therefore probability of A union B is equal to probability of A plus probability of B. 

Now, this particular rule often handy in giving us upper bounds of the probability of A 

union B, because we can say that probability of A union B will be lesser than equal to 

probability of A plus probability of B, because this probability is definitely greater than 

or equal to 0. So, we know the definition of conditional probability that probability of A, 

given B, so this probability means that we know the event B has occurred, what is the 

probability of A? 

The way it is being computed is, probability of A intersection B divided by probability of 

B. Now, if A and B are independent, then what is the probability of A, given B? That is, 

it is same as probability of A because A does not really depend upon the outcome of B. 



So, the probability of A given B becomes equal to probability of A when they are 

independent and therefore probability of A intersection B becomes equal to probability 

of A multiplied by probability of B. So, that is, if A and B are independent, then 

probability of A intersection B is nothing else, probability of A multiplied by probability 

of B. 
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Then there is a very important law, which is known as the law of total probability. If 

there are n events like E 1, E 2, and so on till E n and the union of them is a sample space 

S. If I know that they are mutually non-intersecting, that is, E i and E j cannot take place 

together; therefore, the intersection of E i and E j is equal to the null set. Then, for any 

event A, we can say probability of A is equal to, So what we do is, we multiply 

probability of E i, that is, the probabilities that the ith event has occurred with probability 

of A, given E i; that is, the probability of A. Given that the event E i has occurred, and 

then take a sum over all possible i values; so, i runs from 1 to n. So, this is also a very 

handy rule for doing our computations. 
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When we are talking about cryptography, we are not talking about a continuous 

probability space; we are actually talking about discrete space. Therefore, in this case, 

the total possible sample points can actually take some discrete possible outcomes; so it 

can run from x 1 to say, till x hash s; hash s is nothing but the number of elements in the 

sample point. 

What we do is, that for each of these sample points, we actually define a probability. So, 

first of all we define something which is called a random variable and then we say that 

this particular random variable can take such and such possible values; then, we try to 

assign a probability for this random variable. So, if there is a discrete space S, which has 

got a countable number of points like x 1, x 2 so on till x hash S, then a discrete variable 

is nothing but a numerical result of an experiment. 

So, it is a function which is defined on a discrete sample space. For example, if I say that 

example of a discrete variable could be like, if there are some points like x 1, x 2 and x 

hash S, suppose, we define a function, like suppose the value of x, and imagine that all of 

them are binary values. Suppose, there are four bit binary value, so there could be sixteen 

possible such numbers like, 000 00 00 to all 1s to all four 1s. We say that we are 

interested in finding out the probability, that is, the numbers are, for example, even; so, 

we know that what we will do is, from all these possible values we will try to find out 



those binary values which end with zero. So, we define an experiment and therefore, this 

is a function which is defined on a discrete sample space. 
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So, what we do is that now, let S be a discrete probability space and X be a random 

variable; so, X is the random variable, and we actually start assigning probability values 

for these random variables. 

So, what are the possible values this random variable X can take? It can either take x 1 

value, x 2 value, until x of x hash S, and what we do is that for each of these possible 

values of the random variable, we assign a probability. 

So, we say the random variable X can take the value of x 1 with a probability of say, p 1, 

the random variable X can take the value of x 2 with a probability of p 2. The random 

variable X can so on take the value of say x hash S with a probability of p hash S; so, we 

can define the probabilities like this. 

So, these probabilities will be discrete probabilities and it needs to satisfy two important 

properties - one of them is that each of this probability value should be greater than or 

equal to 0, that is, they should not be negative, and other thing is that the summation of 

all these probabilities should be equal to 1. 

Therefore, these probability should satisfy these two properties and we can actually say 

that these probabilities are essentially a map from the sample space S to the set of real 



numbers, because the probability values are nothing but the real numbers which lies 

between 0 and 1, both sides included; so, these are actually the individual probabilities 

and this should satisfy these two important properties. 
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One of the very frequently used distribution is something which is called uniform 

distribution and we know that in this case, all the values like x 1till x hash S are equally 

probable. 

So, the random variable X can take x 1 or x 2 or x 3or x hash S with the same probability 

and the probability is nothing but 1 divided by hash s. Then X is said to follow a uniform 

distribution and it is often denoted like this, that is, suppose, say that p choosing 

uniformly from s; therefore, it means that choose p uniformly from S. So, this is a very 

common notation which is useful. 



(Refer Slide Time: 22:18) 

 

Then we actually define a very important distribution which is called a binomial 

distribution. It says that, suppose, there is an experiment and it has got two possible 

values or possible outcomes, like, it could be either a success or it could be either a 

failure or a HEAD or a TAIL, then we repeat the experiments independently. Such 

experiments and these are called Bernoulli Trials, and if I denote the probability of a 

HEAD to be p and the probability of a TAIL to be 1 minus p of course, because the 

HEAD and the TAIL together, if I add these two probabilities, should be equal to 1, what 

is the probability that there are k successes in n trials? 

So, I repeat the experiments and the question is, what is the probability that among the n 

trials, there are actually k number of successes? We know, this actually works out to this, 

that is, n choose k which means that we choose the k success points and then for k 

success points, the probability will be actually p to raise to the power of k. Since, the 

other points are failure points, so they should be also multiplied by one minus p whole to 

the power of n minus k, because there are n minus k failure points; so, this gives us the 

number of ways of the probability that there are k success in n trials. 
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Now, if a random variable Y takes values like 0 1 to n, so 0 1 to n means - if I say that 

this success, that is, the number of successes in n trials and I denote that by a random 

variable, then this random variable can take values from 0, that is, it can be that there are 

no success to n, that is, all of them are success. Therefore, the random variable Y can 

take values from 0 to n and for values, which lie between 0 to 1, that is, for p, the 

probability that Y, and we say that, the probability that Y is equal to k which means that 

there are k success is given by, n choose k p to the power of k multiplied by 1 minus p 

whole to the power of n minus k. 

If this random variable satisfies this probability distribution, then we say that Y follows 

binomial distribution and this is the very common and useful distribution. 
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Then we talk about something called law of large numbers very useful. So, it says that - 

if we repeat a trial for a large number of times, where n is suppose infinity and n tends to 

infinity and we note the number of successes, after a point the number of success will 

actually remain a constant and will be computed by something, which is called the 

expectation. The expectation is nothing but the number of times you are repeating the 

experiment multiplied by the probability of success. 

The p is the probability of success; so this is often referred to the expectation of the 

random variable. As we stated, we have a limit n tends to infinity, the probability that 

epsilon n by n minus p is lesser than a very small number – small, but fixed number - and 

this probability is equal to one. Therefore, this is something which is called the law of 

large numbers, which says that if you repeat the experiment for a large number of times, 

then essentially you will find that the number of times you get the number of success will 

actually be found out by computing the expectation of the random variable. 

So, the expectation of the random variable gives us an estimate about the number of 

times of success of an experiment will occur, if I repeat the experiment for a large 

number of times. Now, this particular law and the concept of binomial distribution have 

got a very important application in the field of cryptographic analysis. 
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So, for that, let us consider the particular result. It says that let epsilon be an event in a 

probability space X with probability of epsilon being equal to p and p is greater than 0, 

and what we do is that repeatedly, we perform the random experiment X independently. 
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So, what we are saying here is, there is an event epsilon; so, epsilon is an event and there 

is the probability space X. So, what we know that the probability that epsilon occurs, that 

is, this particular event occurs, is actually given by p, where p is some non-zero value, it 

is greater than zero. So, what we then do is that we repeat this experiment again and 

again. 



So, we repeat the experiment X once, we do the experiment X twice, and what we need 

is that we need to find out the expected number of experiments of x until epsilon occurs 

the first time. So, what we need is that we need the expected number of the experiments 

of x until epsilon occurs the first time. So, we are interested in a particular event; we 

know the probability of this event and we need to find out the number of times we would 

like to repeat this experiment, until we first get the success. The success is defined as the 

fact that this event, epsilon occurs.  

So, how do I compute that? What we say, if this G is a random variable, it says that this 

is the expected number of experiments of x until epsilon occurs the first time, and what 

we will do is that we will try to give you a proof or develop a proof that this expectation 

E G is actually given by the reciprocal of p. Now, what is the impact of this result? 

Suppose, there is an attack, suppose, you develop an attack and you say that the 

probability that this attack works has a complexity of say, 2 to the power of minus n. 

So, that means the fact, that you can actually find out that particular key is 2 to power of 

minus n, then these particular results gives us a kind of indication that, if I repeat the 

experiment, if I repeat the attack for 1 by 2 to the power of minus n number of times, that 

is, 2 to the power of n number of times, then I should get the attack working at least 

once.  

That is, after 2 to the power of n operations, I should get the attack to work. So, 

therefore, if I say that for example, in US if I say, that they have got 128 bit security and 

if I tell you that the probability that you can actually make the attack work is 2 power of 

minus 128, then immediately you know that if I repeat the experiment for 2 to the power 

of 128 number of times, for which is very huge, you will get 1 success. 

Therefore, this actually gives us a nice indication to find out, if there is a property which 

you can exploit for an attack, it gives you an estimate about the number of times you 

need to repeat the experiment to get a success once. 

The proof of this is actually quite simple and follows from the binomial distribution 

notions and the idea is as follows: what you do is, you find out probability of G equal to 

the value at G is equal to t. You know that G equal to t means the success occurs at the th 

number of times, that is, it occurs at tth instance, which means that the previous 

experiments till t minus 1 has been failures. Therefore, this probability can be computed 



by 1 minus p raised to power of t minus 1 because they were all failures multiplied by p; 

therefore, the expectation of g, by using the law of large numbers, will be equal to this 

probability multiplied by the number of times you are repeating the experiment. 

So, what you are doing is that you are repeating this for t number of times and therefore, 

you multiply this by 1 minus p to the power of t minus 1 and multiply that by p. Now, 

you note that this particular t can be anything, it can go from t equal to 1, when the first 

time we are actually not going to prove this, even further, this is actually equal to minus 

p differential with respect to p of sigma 1 minus p whole to the power of t. 

So, this will work out like this where t runs from 1 to infinity; you can check this that it 

actually gives you the same value; so, then that refers from simple differential calculus, 

if you differentiate this, you will get this. 

So, this means that if I take this sigma, then this is nothing but minus p d d p and I would 

like to add this sigma. So, this 1 minus p to the power of 1 plus 1 minus p to the power of 

2 plus 1 minus p to the power of 3, so until 1 minus p to the power of infinity. 

So, you note that since this value is less than 1, this sigma actually converges and this 

summation actually converges and what we get is d d p of 1 by p minus 1, and this 

actually works out to 1 by p. So, therefore, from here we actually get an estimate about 

the number of times we have to repeat the experiment, so that we actually get this 

experiment to work. 

Therefore, it is important to know this result, because this actually gives us an idea about 

if there is an experiments’ success probability defined, then from there to get an estimate 

about the number of times we need to repeat the experiment to get that success or to get 

that event. 



(Refer Slide Time: 32:55) 

 

Then we come to the next important concept in today’s class, which is called the 

birthday paradox. Birthday paradox is actually quite central to the idea of analysis of 

ciphers. So, consider a function f, which is a mapping from X to Y, where Y is a set of n 

elements. Consider this class of students form X, let Y denote the birthday, say, fifteenth 

September is a birthday of a person X. 
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So, I mean, there are two things - one of them is X and the other one is Y. So, we are 

considering a mapping from X to Y. So, let us consider this class of students from X. Let 



us consider that in this class there are X students, that is, there are X students and let us 

consider that their possible number of birthdays can be 365. So, there are 365 possible 

days of birthday. So, choose a person, say A and we know that A will be mapped to one 

of these days from this 365; if there is another person, then he will also or she will be 

mapped to another particular day among this 365. So, the question is, if you consider, for 

example, what we are essentially considering is that we are considering the fact, that 

there can be two persons or say, another person who are born on the same day; so, there 

is the collision of these two birthdays. 
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So, we can say that the problem is like this, that is, we can abstract out this problem as 

this, that is, choose k pair-wise distinct points from X uniformly and define collision to 

be the event for i not equal to j, where f x i is equal to f x j. We check from the 

corresponding f x i’s, when a collision occurs and clearly, the probability of a collision 

increases if k is increased. That is, if I choose large number of points, that is, if I choose 

large number of students from the class, then the probability of that they are born on the 

same day also increases. 

The question now, is what is the least value of k? We are actually interested in the least 

value of k, so that the probability of a collision is more than epsilon; so we would like to 

give a lower bound of the probability. So, first of all you understand that there are two 



important things - one of them is this least value, and then we are actually giving the 

lower bound of the probability. 

So, why are we choosing the least value of k? Because if I start increasing this k and if 

this k is quite large, then this probability will obviously increase and the probability of 

collision will obviously increase, but what we are interested is in finding out, what is the 

least value of this k so that this collision occurs? 
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Then we are actually trying to give a lower bound of this probability, that is, the 

probability should be at least this much, so we would like to give an answer to this 

question. So, in talking about in the birthdays’ term, like we are actually interested in 

finding out, what is the number of students, which should be in that class, that is, what is 

the least number of students which should be in the class, so that the probability that two 

of them are born on the same day is say more than half. 

So, I am interested in finding out, what is the least size of the class. So that there are two 

students, at least, who are born on the same day and a probability of this fact is more 

than or greater than or equal to half. So, we can actually compute this quite easily and we 

can do this as follows: like, the probability of no collisions, let us find that first in among 

this k persons. 
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So, we know that if there are k persons, that is, if there are k persons in the class and let 

us consider that this person is mapped to a particular date, that is, he is basically born on 

the same day. So, if we are considering the probability of no collisions, then it means that 

the second person should not be born on this date that means, from 365 days, he can be 

born on 364 days; so this is 364 divided by 365 or that is 1 minus 1 by 365. What about 

the third person? The third person cannot be born on this date or this date, therefore, his 

probability will be 1 minus 2 divided by 365. 

Similarly, if I consider the last person, that is, like this person, then his probability will 

be 1 minus k minus 1 divided by 365 because there are k persons in this set. I am 

considering this least size of the set. 

Therefore, this probability and all of them are independent events. So, the probability of 

no collision among these k persons can be found out by this, that is, I multiply 1 minus 1 

by 365 with 1 minus 2 by 365 with 1 minus k minus 1 by 365 and so on; therefore, this is 

nothing but the product of these probabilities. 

Now, for a large n and a small x, we have got this approximation, that is, one plus x by n 

is nothing but e to the power of x by n; so for the large n and a small x, this holds. So, if I 

use this approximation, then this product of 1 minus i by 365, as each of this terms is 

substituted by e to the power of minus i divided by 365, then we try to find out the 

product of these terms. This actually works out to e to the power of minus k into k minus 



1 divided by 730, because when we are doing a product of these terms, in the powers we 

are doing actually a sigma; so, if I do this sigma, then this sigma of minus i by 365 will 

work out as this. 
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See, what we are doing is this, that is, i equal to 1 to k minus 1 and we are multiplying 1 

minus i by 365. So, by using the approximation is, i equal to 1 to k minus 1 into e to the 

power of minus i by 365. 

Now, when we are doing this product, then this means that what we are doing is e to the 

power of minus i by 365 and then we are doing a summation here, so that means that it is 

e to the power of 1 by 365, if you take common, it is 1 plus 2 plus, so on till k minus 1. 

So, this is e to the power of 1 by 365 into k into k minus 1 by 2; there is a minus out. So, 

this minus will come out; so, minus 1 by 365 into k into k minus 1 by 2, so that is e to the 

power of minus k into k minus 1 divided by 730. 

Suppose, we say this is the probability where there is no collision, so what is the 

probability that there is at least one collision? That is simple, that is 1 minus e to the 

power of minus k into k minus 1 divided by 730, and if I say this probability should be at 

least equal to 0.5, then we can actually get an estimate of this k by computing, or rather, 

equating this to 0.5. That means, you are trying to say, this probability should be greater 

than equal to 0.5, but in order to compute the value of k, let us equate this to be 0.5 and 

find out an estimate of k. 



We can actually see this and I am not really going into this, that is, you can find by 

calculations like this, that is, 1 minus e to the power of minus k into k minus 1 divided by 

730 is equal to 0.5 and therefore, k into k minus 1 divided by 730 will be equal to l n 2; 

so, you can actually do this type. Therefore, what you can do is that you can bring this e 

to the power of minus k into k minus 1 by 730 will be equal to 0.5 and then if you take a 

log on both sides, then it works out to k into k minus 1 by 730 is nothing but l n of 2. 

Therefore, you can get k square minus k will be equal to 730 into l n 2. Therefore, here if 

you neglect k with k square, then k will be roughly equal to square root of 730 l n 2 and 

that will be approximately 23; so, which means that if there is a random room of 23 

people, then the probability that there are 2 persons with the same birthday is 0.5. 
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This actually seems to be a paradox, why? Because what if I asked you, what is the 

probability that there are two people who are born on the same date is actually very 

small; it is actually 1 by 365, so that is a very small number. 

But we see that in a random room of 23 people, the probability that there are two persons 

which are born in the same birthday is actually quite high; it is actually 0.5 and we will 

see that if I increase this 23 people to larger and actually this probability shoots up quite 

fast. 

Now, we have a very specific example, but you can work out the more general case, that 

is, instead of 365 we can have nearly 2 to the power of n possible outcomes and then try 



to find out the estimate of k, but what we will find is that this k will roughly be 

proportional to the square root of total number of possible ways. So, which means that if 

you need to do a brute force search of 2 to the power of n possible values, then if you 

apply the birthday paradox, then this gives you an estimate that after 2 to the power of n 

by 2 random searches, there is a high probability that two of them will actually result in a 

collision. 
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So, this particular paradox or this particular analysis is used again and again to do the 

analysis of ciphers and develop with security proofs and other stuff. So, there are lot of 

applications deciding the bit length of the hash function, digital signature schemes are 

have to be kept more than 128 bits; it is used for doing cryptanalysis like index 

computation which are algorithms to solve something, which is called, the discrete 

logarithmic problems. 
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We actually try to find out a very interesting application of the birthday paradox; so it is 

something which is called cycle finding algorithms. Suppose, there is a linked list which 

is very large and I am interested in finding out a cycle in the linked list; so, this is one 

question that may appear. One way of doing that is, go through the entire linked list and 

this store a huge amount of data and once you see a repetition, you report a cycle, but can 

we do better than that? 

Because what the birthday paradox says is that if you choose the elements in these lists at 

random and if there are 2 to the power of n possible elements, then after 2 to the power 

of n by 2 possible searches or possible points, there is a high probability that two of them 

will actually lead to a collision. 

Suppose, you actually keep on this arbitrarily choosing the points, then we will find that 

after some point it may happen that if you keep on computing, you will find there will be 

a resulting collision the moment you get a collision, you know that there is a cycle. 

Consider a function F from S to itself, what you do is, you start from X, then what you 

that is you start from X 0, So, X 0 could be here and then you generate a sequence by 

recursively as follows: X i plus 1 is equal to F of X i and you just keep on computing this 

value. 
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The goal is to find a collision, such that X i and X j are same, that is, X i and X j are 

resulting in the same value. So, we can actually have a birthday approach, that is, note if 

f is random then the birthday paradox comes into play and we expect a collision after 2 

to the power of n by 2 points, if S has got 2 to the power n points. 

So, assume that the cycle structure is like this, that there is a tail from X 0 to X s minus 1 

and there is a loop from X s to X s plus l, that is, from X 0 to X s minus 1, you come here 

- this is the tail, and then from the next one, that is, the X s to X s plus l, there is a kind of 

cycle; so, that means this cycle has got a length of l. 
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Now, the question is how to detect this cycle? One way of doing this could be a tree 

based approach. So, what you do is that you start storing the sequence elements in a 

binary search tree as long as there is no duplicate; so, you keep on adding them to the 

tree and as long as there is no duplicate. Now, the first duplicate occurs when X s plus l 

is to be inserted because there is already X s which is inserted into the tree and the 

moment you get to insert X s plus l, you know that there is a kind of duplication and 

therefore you report a collision. 

Now, what is the time complexity here? We know that if we are using a binary search 

tree, then the complexity will be around O s plus l log of s plus l, but what about the 

space complexity? The space complexity is still O s plus l, so that means that although 

the runtime is optimal because actually you cannot do better than this in terms of time, 

but the space requirement is quite high, that is, this could be an exponentially large; this 

could be quite a large value, so the question is, can I make the space requirement less. 
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A very interesting technique is being adopted for finding out the cycles. A very simple 

algorithm I will discuss here, is called Floyd’s cycle finding algorithm and it works out 

as follows; we will see an application of this in context to factorization, when we discuss 

about factorization. So, you see that what we do is that we set that Y 0 is equal to X 0 

and we compute another sequence Y i plus 1 as F of F of Y i, so instead of applying once 

F, I am applying twice F. 

So, the input initial sequence is X 0 and we said the maximum interactions is M; so, what 

we do is that we start x is equal to X 0 and y is equal to X 0. So, we start at the same 

point and then for all these possible iterations that we have set as the maximum value, we 

compute x is equal to F x and we compute twice for y; so, we apply F twice and we 

obtain the points. If we get a collision at some point, like if x and y is same, then we say 

that there is the collision between i and 2 i, because if you say that this x sequence that at 

point i and y sequence at point 2 i and if you get, so then you say that there is a collision, 

otherwise you say that there is a failure. If you see that actually you have got quite good 

chance of getting a collision because of the simple fact that this particular length, that is, 

the length of the cycle will divide 2 i minus i; it will actually divide this 2 i minus i. 
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So, this is actually a very useful algorithm. It is often useful for doing analysis and one of 

the reasons is that for example, if you consider the cycle it is like this, it looks like a rho. 

If you start from X 0 and you come to this, suppose this point is X s minus 1 and this is 

X s and we keep on obtaining and then this is again X s plus l; therefore the length of the 

cycle is l. There are some l successive points here and therefore, you know immediately 

that there must be from the l successive points, there must be one point here, call it i 

dash, which is divisible by l; so, there are l successive terms, so there must be one term i 

dash which l divides. Therefore, if l divides i dash, then that means that l divides 2 i dash 

minus i dash, so that is i dash itself; that means, if you compute the series of X like this, 

that is, compute X i dash and if you compute X 2 i dash, then that means you will find 

out if you are basically computing these values, then you may not be able to find out the 

first time this particular collision occurs, but you will find out a successive point when 

the collision occurs.  

Therefore that will give you this collision which will lead to the detection of the cycle, so 

we will see this in one of our future classes when we discuss about factorization. 
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So, we conclude our talk with some notions of information measurement. Let us consider 

a language of n different symbols - a 1 to a n, and let us assign independent probabilities 

like - probability of a 1, probability of a 2, and so on, till probability of a n. 
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These probabilities must satisfy that sigma of these probabilities will be equal to 1; so, 

what is the entropy of the source S? The entropy of source S is defined as H S is equal to 

sigma probability of a i multiplied by logarithm of 1 by probability of a i base 2.  
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So, this actually gives us the number of bits which are required per source output; 

therefore, this notion of entropy is often useful for computing the information content. 

Let us consider some examples, if S outputs a 1 with probability of 1, then H S will be 

equal to 0 because your probability is equal to one; therefore, if i plug in probability 1 

here, then this logarithm computes to 0 and therefore, this H S is 0. But if S outputs n 

symbols with equal probability, that is, the probability is 1 by n, that is, S is the source of 

uniform distribution, then this H S will compute to 1 by n sigma of logarithm n base 2 

and that is nothing but logarithm n base 2. 

Therefore, H S can be thought of as the amount of uncertainty or information in each 

output from S; so consider, if you have got a binary sequence of values, like if there is a 

n bit length then, there are 2 to the power of n possible values here and all these 2 to the 

power of n possible values can be chosen. Therefore, the probability of a particular 

sequence is nothing but 1 by 2 to the power of n. 
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So, in that case the number of number of bits which are there, are in order to find out the 

value of X and are actually n; therefore, you need to ascertain these n bits in order to find 

out the value. 

So, that is essentially the amount of uncertainty or the amount of information you need to 

find out the value. If we think of the previous example, that is, if S outputs a particular A 

1 with the probability of 1 that means, you know that there is no information, that is, no 

uncertainty; therefore, the uncertainty is 0. In this case, the uncertainty was 0, but here 

the uncertainty is logarithm n base 2, that means, if I say, if S outputs n symbols and if n 

is equal to 2 to the power of capital N, which I denoted by n bits, then this logarithm will 

work out to be n. So, that means that there is an uncertainty of n bits, which is there in H 

S. So, there is an uncertainty of capital N bits in the source S; therefore this notion of 

entropy gives us an idea about uncertainty or information.S 



(Refer Slide Time: 52:52) 

 

Now, I will leave you with a question that is - suppose that there is a four digit PINs and 

which are randomly distributed. How many people must be in a room such that the 

probability that two of them have got the same pin is at least half? 
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So, you can immediately understand that you should be applying birthday paradox to 

solve this problem. The references that are used are: Wenbo Mao’s Modern 

Cryptography Theory and Practice and some of the things are taken from Algorithmic 

Cryptanalysis by Antoine Joux and by Buchmann, Introduction to Cryptography - it is a 

Springer book. 

(Refer Slide Time: 53:29) 

 

So, in next day’s topic we will take up the topic of classical cryptosystems and discuss 

about some classical methods of doing cryptography. 


