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So, in today’s class we shall discuss about implementation of elliptic curve 

cryptography. So, as we have seen in the previous classes is that, elliptic curves and 

elliptic curve cryptography essentially relies upon point operations, like point addition 

and point doubling operations. So, they are all actually, quite competition or intensive 

operations. Therefore, if I want to develop either a software or a hardware, we need to 

take some more, or rather, there are some interesting developments, how you can 

actually implement it in much more efficiently. So, today’s discussion will be based on 

this. 
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So, we shall discuss about scalar multiplications and we shall discuss about, whether 

LSB first or MSB first, is approach, I mean, we will try to compare between these two 

approaches. Then, we will discuss about Montgomery technique of scalar multiplication 

and develop, discuss about fast scalar multiplications without pre-computations; like, 

before this, there were some people, I mean, there were some implementations, which 

were actually based on pre-computed values of… Suppose, I want to compute lambda p. 

So, they were like, some pre-computed values were already stored and then, they were 

combined to compute the value of lambda p. This is one approach, could be like, if I 

want to compute lambda p, then, you take the binary encoding of lambda and you keep 

certain values of say, may be 2 lambda, 3 or 4 lambda, 8 lambda stored and then, you 

combine them in order to obtain the value of lambda p. 

So, they are actually, like scalar multiplications using pre-computed tables, but there may 

be applications, wherein, you may not be interested in spending so much amount of 

memory. And therefore, they were quite nice, I mean the methodized paper by Lopez and 

Dahab, to show how you can actually do fast scalar multiplication without pre-

computation. So, we will study that. And we will study about Lopez and Dahab 

Projective transformation to reduce the number of inversions or finite free inversions, 

which are necessary; discuss about, little bit about mixed coordinates; not go much into 

details and rather, concentrate about some parallelization techniques, which can actually 

accelerate the scalar multiplication operation. 
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So, let us go step by step. Therefore, this is the, how the broad diagram of elliptic curve 

hierarchy looks like. So, you can see that, the basic elliptic curve operation is based upon 

point multiplication. I called it kP, that is, k is a scalar and P is a base point. And, the 

other one is and it is based upon group operations, which are point addition and point 

doubling. And, that is again, underlying, based upon the finite field operations like 

addition, subtraction and inversion and so on. Now, you see that, there are… That means, 

that, there are various levels of how this elliptic curve cryptography operation works. 

So, therefore, if I want to obtain accelerators, then, I will try to parallelize this 

architectures, right. So, I will try to parallelize the point multiplication; I will try to 

parallelize the group operations; I will try to parallelize this underlying arithmetic 

operations. So, therefore, for, what is important is, to understand, where are the scopes of 

these parallelization’s or how we can actually obtain these accelerations? 
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So, first, let us concentrate upon how to do this scalar multiplication operation. So, there 

is a point P and we are interested in computing k multiplied by P. So, k is my scalar, 

which can actually be written as a, can be encoded in a binary format; call it k 0, k 1 and 

till k m minus 1. So, k m is actually, the first time, when 1 is encountered; previous to 

that, everything was 0. Do you understand this? Therefore, if I want to encode 7, it will 

be 1 1 1; you want to encode as, encode 5, that it is, k is 5, then, it is 1 0 1; previous to 

that, it is all 0s. 



So, therefore, very simple way is, what is called as the double and add algorithm. So, 

what we do is, that, we take this P and stored in a temporary register, call it Q and for i 

equal to m minus 2 to m minus 0, that, it is the first one; therefore, we take, start from m 

minus 2 and go till 0, and whenever we see that, we always do a doubling operation and 

whenever there is a 1, then we do a Q equal to Q plus P, that is the point addition 

operation. 

So, this, in this case, you are actually parsing the scalar from MSB to the LSB. This is 

the least significant bit and this is the most significant bit. So, we are going from MSB to 

LSB; therefore, this algorithm is called MSB first. So, in this case, what is the total 

number of computations necessary? You see that, it requires, if there are, I mean, 

roughly if you just see that, it is m; that is, the length is m; it requires roughly m point 

doublings; because, you are always doing a doubling operation. It is actually for m minus 

2 to 0, there it is m minus 1, but approximately I have written it, just throwing away the 

constant term; that is, roughly it requires, proportional to m point doublings. What about 

the number of additions required? 

So, generally, if you assume a random k, that k will have half number of 1s and half 

number of 0s, if k is thought to be a, if I consider the average complexity of these 

algorithm. So, in that case, there will be m minus 1 by 2 point additions, which are 

necessary.  Therefore, I need to do for very number of point additions, that is half 

number of point additions; that is a rough cost of this algorithm. 
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So, therefore, you can consider an example. If I want to compute 7 into P, I will encode 7 

as 1 1 1. So, you note that, this is the first time when you have got a 1. So, when you are 

encoding for MSB, then, this is the first 1 that you are actually considering. If it is a 1, 

then, you have to do not only a 2 into P, but also add that with the corresponding P; that 

is, you have to do a doubling, as well as, you have to do an addition operation. And next 

one is again a 1. So, it means, that means, again you are doing a doubling and adding 

with P, that is 2 into 2P, you see that 2P plus P is 3P into 2 is 6P plus P is 7P. 

So, you see that two iterations are required; the first one is double and then add, that is 

the principle. So, first you are doing a doubling and then, you are doing an addition or 

accumulation operation. So, similarly, if you want to compute 6P, it is 1 into 1 into 0. So, 

in this case you have to do, because of this 1, you have to do into 2 into P plus P, but 

since this is 0, you have to do only a doubling operation; you do not need to do the 

addition operation. So, in this case, you see, it is 3P into 2, which is 6P, right. So, that is 

the LSB first approach of obtaining the scalar multiplication. 
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Similar to this, you can also actually do an LSB first algorithm also; that is, where do 

you go from k 0 and go to the MSB. So, in this case, again, you see that k m is 1 and 

these are the corresponding terms; corresponding binary values. Now, I want to compute 

again, Q equal to k into P. Now, for this, what we do is that, we actually, instead of 

having one register, we actually choose two registers; call it, call one of them as Q and 

the other one as R. So, what we do is that, we initialize Q to 0 and R to the value P. Now, 

for i equal to 0 to m minus 1, if k i is 1, then we add onto this register Q; that is, Q is 

equal to Q plus R and in the other register, we are actually doing a doubling operation. 

So, here, you see that, as opposed to the pervious algorithm, previous algorithm you 

were doing a doubling and then, you were doing an addition operation; that means, there 

are two steps, which you cannot actually parallelize; they are sequential steps. But in this 

case, because you are doing this operations on two different registers, and actually, you 

are actually giving more space, you are actually saving time. So, we can actually, 

parallelize these two operations and you can do the accumulation and the doubling in 

two different registers simultaneously, right. You can do this Q equal to Q plus R and in 

the other transistor, you can do this R equal to 2 into R operation; and this, you can 

repeat for all these values. 

So, therefore, the accumulation and doubling can be stored in separate register. On an 

average there are m by 2 point additions and m by 2 point doublings which are measured. 



Why so? Because, you are doing the addition and doubling in the in two different, two 

separate registers. Therefore, always there is a cost of m by 2. Therefore, you see that, 

you are, whenever there is an addition required, so, if we assume that, half, this k has got 

half one terms, then, half of the times you will have, that is m by 2 times; you need an 

addition operation, that is m by 2 addition. 

And when you do not need a addition, you need a doubling operation, right. Therefore, 

the total time is m by 2 point additions plus m by 2 point doubling operations. Now, why 

it is not m point doubling operations? Because the addition, generally, will take more 

time than a doubling operation. So, if you, even if you parallelize, you can assume that, 

the addition will actually take more time. So, you have to wait, since there are two 

parallel steps, you have to wait for the longest time, right. So, that is m by 2 point 

additions and then, you have to this rest of m by 2 point doubling operations. So, 

therefore, you see that, there is some advantage; because, you can actually parallelize 

these algorithm through this. Therefore, this is the LSB first approach of doing it. 
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So, therefore, now you see that, this is also, can be seen, this the same 7P and 6P 

example. So, here it is 1 1 1; Q is equal to 0 and R is equal to P. Now, you see that in 

three time steps you can actually do this Q plus R and in parallel, you can do this R equal 

to 2 into R operation.  So, because this is a 1, now, you are doing LSB first. So, you are 

first starting with this one; this is a 1. So, you are doing an addition, you are doing a 



doubling. Next time, you are again getting a 1. So, you are again doing an addition, again 

doing a doubling operation.  Next time, you are again seeing a 1; you are doing an 

addition, you are doing an doubling operation. So, that is the result, the register is in, the 

result is in Q. 

Similarly, when you are doing a 1 1 0, the first thing, is 0. Therefore, 0 means, you are 

not doing the addition operation. So, Q is unaltered, unaffected; R is doubled. So, R 

becomes 2 into R. Next, you get a 1. Therefore, you add 0 with 2P, that is, you add that 

current value of P and the current value of R, and it becomes 2P. You double R, it 

becomes 4 P. Next time, you add 2P with 4 P, because it is a 1 and you double that; this 

is in consequential because of final result is stored here, 6P. So, therefore, you see that, 

you can still do the computations 7P and 6P. But in this case, you are actually parsing 

from the right and going to the left, right. So, you see that, there are small implications, 

where you are doing a, from the left to the right or from the right to the left, which you 

can use to your advantage, depending upon the platform you are implementing, your 

constants. 
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So, therefore, one example here shows that, if I want to compute 31 P and this is an MSB 

first approach, and this is the LSB first approach. You see that, there is a significant 

reduction in terms of the time steps that are required to do this operation. But the cost 

that you pay is, two registers. That is the cost which you are paying. Therefore, it in, we 



can say that, that has more scope of parallelizing, when you are doing, taking an LSB 

first approach. 
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So, now, let us actually study that, I mean, a small point about the scalar multiplication. 

Now, let us go into the implementations of the elliptic curve point addition and the point 

doubling operations. So, this is the recapitulation of the equations that we got in the first 

class. So, this is the addition of P and Q, when P and Q are not the same. So, this is the 

equation of adding x 1, y 1 and x 2, y 2 and if the points P and Q are same, then, this is 

the corresponding doubling point. Similarly, the corresponding y coordinates are shown 

here. Now, the question is, how do we do this operation? So, where do you see that point 

addition? And another point which is to be noted here, that is, if P is equal to x 1 comma 

y 1, then, minus P is shown as x 1 comma x 1 plus y 1. 

So, how do you get this minus P? If you take this curve, you take any point x 1 comma y 

1 and draw a vertical line through this x 1 comma y 1. So, wherever it intersects the 

elliptic curve, that is the negative form. So, you can take this and you can solve this, I 

mean, take a vertical point and say, call it y, I mean, it is a vertical point, I mean, vertical 

line, and that we have to basically, simultaneously solve with these equations and then 

you can easily show that, the corresponding minus point is minus P is equal to x 1 

comma x 1 plus y 1. So, I am not going to the derivation, which you can do yourself; you 

can take it as an exercise. 



So, now, I want to add these two points are, I mean P and Q and store the result in the 

register R. So, you note that, point addition and doubling, each requires one inversion 

and two multiplication operation. So, if you observe your addition and doubling here, 

you see that, you need do this 1 by x 1 plus x 2. So, that, that means, that is one inversion 

operation and that you need to multiply with y 1 plus y 2; in this case, if I just consider 

the addition operation; in this case, we need to multiply with, also with x 1 plus x 3; that 

is one more multiplication. So, note that multiplications with constants and 

multiplication and squarings are neglected; because, that I believe that, you can, that we 

believe that, you, we can also do it without multipliers. 

So, the other thing is, if you see that corresponding doubling equation, there also you 

need to do apply this 1 by x 1; that is, one inversion is necessary. Similarly, is the same 1 

by x 1 can be used here also; the other thing is, multiplication with this x 3. So, that is, 

the corresponding three, that is you required; you also required to multiply this with this 

y 1. So, that is another multiplication. So, which means, you need two multiplications 

and one inversion, for both point addition and for both point doubling operations. So, we 

neglect the costs of squaring and addition, and we also neglect the cost of multiplying 

with constants; like, here you have multiplied with b, that is neglected. So, if b is already 

a pre known value, or fixed value for that curve, then, you can actually develop an 

architecture which is devoid of multiplication. 

Now, the first thing, which was interesting behind what Montgomery noticed is that, the 

x coordinate of 2P does not depend on the y coordinate of P. So, if you note that, this P 

equal to Q point, when, I mean, when you are doing a doubling operation, then the x 

coordinate of these output, actually does not depend upon the y coordinate. So, this was 

the important observation; that is, you see that, the x coordinate of 2P, you see that, does 

not depend upon the corresponding y coordinate; that is it does not depend upon y 1; it is 

only a function of x 1. 
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So, based upon this, Montgomery developed, and this was a very important observation, 

developed a faster method to perform the scalar multiplication. So, this is actually based 

upon an invariant property, where you say that, there are two points P 2 and P 1 and I 

want to compute k into P. So, I choose, I rather, I generate P 2 and P 1, at each step or at 

each iteration, such that, the difference of P 2 and P 1 is always maintained to be P. So, I 

want to compute this kP. So, I, first of all, encode this in this fashion and I set P 1 as big 

P and this P and I set P 2 as 2P and so, you see that, P 2 minus P 1 is what? is P. And 

therefore, what we do is, when we vary from i from l minus 2 to 0. So, what is this? This 

is the MSB first approach.  

Then, if k i is equal to 1, then, what you are doing is that, you are, in P 1, you are adding; 

that is, you are doing P 1 plus P 2; and in P 2, you are doubling; that is, you are doing 2 

into P 2.  But if this k i is 0, then, you are actually adding in the P 2 register, but while 

you are doubling in the P 1 register. So, you see that, whether k i is 1 or whether k i is 0, 

P 2 minus P 1 is always invariant. So, you see that, P 2 minus P 1 here is 2P 2 minus P 1 

plus P 2, which is what? Which is P 2 minus P 1. Similarly, here P 2 minus P 1 is also P 

2 plus P 1 minus 2P 1, which is again P 2 minus 1. Therefore, P 2 minus P 1 is actually 

an invariant for this algorithm. You see that? 

So, now, we are actually doing this addition and doubling in this fashion and therefore, 

the idea is that, P 1 actually finally, stores the value of k into P. So, what are the 



implications of this algorithm? That the, how essentially or what is the relation, I mean, 

what is the efficiency factor, I mean, how to implement these operations efficiently?  
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So, first of all, let us see that, indeed it computes what we want; that is, the correctness of 

the algorithm. So, I want to compute 7P. Therefore, first of all, I choose P 1 as P and P 2 

as 2P, as we have seen previously. And the steps are, because first we start with this one. 

Therefore, you see that, this is 1. So, in P 1, what are you doing, you are adding; you are 

adding P with 2P; you are getting 3P. What about this P 2? P 2, we are doubling. Next 

time, you are again getting a 1. So, again in P 1, you are adding 3P plus 4 P is 7P and P 

2, you are doubling; that is inconsequential in this case. In this case, it is 1 1 0. 

Therefore, in 1, again you are doing 3P and 4 P like previously, but next time, it is 0. So, 

you are actually adding in P 2. Therefore, P 2 is 3P plus 4 P which is 7P, where as P 1, 

while P 1 is double of P 1, that is 6P. 

So, again you are returning P 1 as the result. So, you see that, the correctness of the 

algorithm is still maintained, right. Therefore, indeed P 1 stores the value of k multiplied 

by P. Now, what is the, I mean, rather, why essentially is this efficient? That is the 

important question, right. So, rather, why essentially do we do in this fashion? 
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So, therefore, that brings us to this point topic of fast multiplication on elliptic curves 

without pre-computation; that is, I am not having any pre-computed values; then, still I 

am accelerating the computation of lambda P or k into P. 
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So, for that, there are certain results which are important, which I will try to discuss here. 

That is, suppose… So, for that, first of all, let us observe the corresponding sums here. 
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So, the sums of, you know that, x three is equal to…So, I am just writing down the 

results. So, I am adding x 1 comma y 1 and if I add x 2 comma y 2, the corresponding 

sum is stored as y 1 plus y 2 divided by x 1 plus x 2 whole squared plus y 1 plus y 2 

divided by x 1 plus x 2, plus x 1 plus x 2 plus a, right; that is, the sums, I mean, that is 

the corresponding sum, x axis; x coordinate; and the corresponding y coordinate is as 

shown here as y 1 plus y 2 divided by x 1 plus x 2 into x 1 plus x three plus x 3Plus y 1. 

So, at this point, let us just concentrate on this term; that is, the x coordinates of the 

result. So, I want to add this point x 1 and this point x 2, y 2. So, note, at this point, let us 

make a kind of restriction also is that; let us only be concerned about elliptic curves, 

which are all points in characteristic 2; that is the elements are chosen from g f 2 to the 

power of m, for any m, for some m. 

So, now, if I want to obtain the corresponding sum of this x 1 and y 1 or rather x 1 y 1 

and x 2 y 2, then, I can actually simplify this and I can write it as, x 1 plus x 2 whole 

squared and the numerator will be as, y 1 squared plus y 2 squared, why, because 2 y 1 y 

2 is, in 0, right here. So, then you have got here, x 1 plus x 2 into y 1 plus y 2. So, that 

becomes here x 1 y 1 plus x 1 y 2 plus x 2 y 1 plus y 1 y 2 right, plus x 1 plus x 2 whole 

squared right, rather x 1 plus x 2 whole cubed. So, it is x 1 cubed plus x 2 cubed plus x 1 

squared x 2 plus x 2 squared x 1, right, x 2 squared x 1, this is correct. 



So, x 1 cubed plus, we are multiplying this with this, right. So, x 1 cubed plus x 2 cubed 

plus x 1 squared x 2 plus x 2 squared x 1 plus a multiplied with x 1 squared plus a 

multiplied with x 2 squared, right. And you note that, x 1 y 1 is a point on the elliptic 

curve. So, you choose, you know that, if this is your equation, then, you know that, since 

x 1 comma y 1 and x 2 comma y 2 are points on the elliptic curve, you know that, y 1 

squared plus x 1 y 1 is equal to x 1 cubed plus a x 1 squared plus b. 

Similarly, your y 2 squared plus x 2 y 2 is equal to x 2 cubed plus ax 2 squared plus b, 

right. So, that means, if you observe now, these term, then, your numerator becomes, we 

can actually combine, and you will see that, you have got like x 1 y 2 plus x 2 y 1, that is 

this term and this term, plus you can actually write, y 1 squared plus x 1 y 1 plus x 1 

cubed plus ax 1 squared plus b plus, I am adding a b there, and y 2 cubed y 2 squared 

plus x 2 y 2 plus x 2 cubed plus ax 2 squared plus b. So, if you do this, then, you note 

that, there are some more terms. So, there, this is that, x 1 squared x 2 plus x 2 squared x 

1. So, this full thing is there in the numerator, right. 
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Is it so? That means, this term and this term will go to 0, because they are points on the 

curve and being in characteristic two field, these two terms go to 0. So, you have got x 1 

plus x 2 whole squared in the denominator and in the numerator you have got x 1 y 2 

plus x 2 y 1 plus x 1 squared x 2 plus x 2 squared x 1, is it correct. So, that is your 

corresponding sum of x 1 y 1 and x 2 comma y 2, right. So, that is the first result here, 



which says that, here, if you take x 1 comma y 1 and if you take x 2 comma y 2, and 

these are points on elliptic curve, then x coordinate of P 1 plus P 2, x 3 can be computed 

as x 1 y 2 plus x 2 y 1 plus x 1 squared x 2 plus x 2 squared x 1 divided by x 1 plus x 2 

whole squared. 
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So, therefore, you remember that the field has got a characteristic two and that P 1 and P 

2 are points on the curve. So, these are the two things that we have used in this result. 
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So, therefore, that from this, that if I, if in this Montgomery’s algorithm, that we know 

that P was maintained to be equal to P 2 minus P 1; that was an invariant for the 

Montgomery’s algorithm, right. Therefore, P 2 was essentially a point like x 2 and y 2 

and what was P 1? P 1 was equal to x 1 comma x 1 plus y 1, I mean, minus of P 1 is 

equal to x 1 comma x 1 plus y 1. So, therefore, the sum of this these two, that are of x 2 y 

2 and x 1 comma x 1 plus y 1 is nothing,, but x comma y. So, this is the sum of these two 

points, right. So, therefore, we know that from here, your x, if you say that, this x is 

equal to, I mean, you know that, this x, you can actually write this x as x 1 plus x 2 

whole squared into x 1 y 2 plus x 2. So, you have, you can actually use this y co-ordinate 

as x 1 plus y 1 plus x 1 x 2 squared plus x 2 x 1 squared, right. Basically, I am adding up 

these two things and using the previous result.  

So, similarly, you can add up these terms. So, and if you want the sum of P 1 and P 2… 

So, you call it P 1 plus P 2 and call it as x 3 comma y 3, then your x 3 plus what we have 

previously got… So, I am again writing that, x 1 plus x 2 whole squared is x 1 y 2 plus x 

2 y 1 plus x 1 squared x 2 plus x 2 squared x 1; this was what, x 3. So, you can add these 

two equations, where you will get like, x plus x 3 is equal to x 1 plus x 2 whole squared 

and in the numerator, you will see that, x 1 y 2 x 2 y 1 x 1 squared x 2 and x 2 squared x 

1 all of them will cancel. So, what you will be remaining with, is only x 1 x 2.  

So, therefore, you can actually write x 3, as you can rearrange these terms and you can 

express x 3 as x plus x 1 plus x 2 whole squared into x 1 x 2. Now, you see that, if you 

want to do this operation, then, how many you need to multiply this, right. Therefore, the 

other way of writing this, in an equivalent fashion like, x plus x 1 plus x 2 whole squared 

x 1 squared plus x 2 divided by x 1 plus x 2. 

So, this is simple. You see that, if I can take x 1 plus x 2 whole squared, then x 1 squared 

will stay, x 2 will be multiplied with x 1 plus x 2, so, x 2 squared will be there and the 

other term will be x 1 into x 2, right. So, you see this, sorry, this is 1, this is x 1, right. 

So, if in this case, this x 1 squared and this x 1 squared will be get cancelled, right. Now, 

what is the advantage of doing this in this fashion? So, how many inversions do you need 

to do? You need to do one inversion, because you need compute 1 by x 1 plus x 2. And, 

how many multiplications you need to do? You need to multiply with only x 1. You need 



to, I want to compute the x 1, sorry… I, basically, do a 1 by x 1 plus x 2; that is 1 

inversion; I multiply it with x 1. That is how many multiplications? One multiplication.  

And then, I need to do a squaring. So, how many multiplications I did? One 

multiplication. But here, I have to multiply with x 2, I have to multiply with x 1. So, I 

needed two multiplication operation. So, you see that, it is quite interesting; the same 

thing, but if you just rewrite and expand little bit, you see that, you are basically saving 

the number of multiplication operations that you need to do. 
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And therefore, that is your result 2; that is, if your P is equal to P 2 minus P 1, then the x 

co-ordinate of P 1 plus P 2, x 3 can be computed in terms of the x co-ordinate as this. So, 

when you see that, here, whenever you are computing this x 3, that is, whenever you are 

computing P 1 plus P 2, you are not actually bothered about the y co-ordinate; you see 

that, right; that means, you can do the operation entirely devoid of y co-ordinate. 

So, previously, we had already noticed, Montgomery noticed, that the doubling was 

actually devoid of the y co-ordinate; but then, you, it was also a used, I mean, the thing 

which is used here is that, if you maintain this invariant, that is, if P is equal to P 2 minus 

P 1, then the sum of P 1 plus P 2 is also made devoid of the y co-ordinate; that means, 

you are not actually operating on 2 y 2 co-ordinates; we are actually operating on only 



the x co-ordinate. So, that means, you need not care about the y co-ordinate, if you are 

maintaining this. And that, actually gives you an amount of efficiency. 
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Then, you also need to obtain a y co-ordinate finally, right. So, for that, this result is 

used, that is, if P is equal to x comma y, and your P 1 is x 1 comma y 1 and P 2 is x 2 

comma y 2, the elliptic points and assume that, P 2 minus P 1 is again equal to P, and x is 

not 0, then the y co-ordinate of P 1 can be expressed in terms of P and the x co-ordinates 

of P 1 and P 2 as follows.  
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So, here, you are actually writing this in a different way; that is, you are writing this as, 

you know that, your invariant is P equal to P 2 minus P 1. So, that is your invariant here. 

Therefore, this you can actually rewrite as, P 1 being equal to P plus P 2, right. You can 

always write them in this fashion; that means, P points where x comma y and P 2 was x 2 

comma y 2 and your P 1 is x 1 comma y 1. So, therefore, your x… Therefore, you can 

actually add this. So, I think I wrote something wrong here. P plus P 1 right. P plus P 1 is 

P 2, that is, P 2 is x 2 comma y 2 and P 1 is x 1 comma y 1. 

So, that means, you can use the previous result here to write or express x 2. So, here, x 2 

is actually equal to x 1 plus x whole squared and you have got x 1 y plus x y 1 plus x 1 x 

squared plus x x 1 squared in the numerator. So, that means, this you can write as… So, 

this is that x 2. Therefore, if I want to obtain the value of x y 1, if I target this x y 1, then 

I can express x y 1 as x 2 into x 1 plus x 2 or rather x 1 plus x whole squared plus x 1 y 

plus x 1 x squared plus x x 1 squared. That is equal to x 2 multiplied by x 1 squared plus 

x squared plus x 1 y plus x 1 x squared plus x x 1 squared. So, now, you can actually 

take out from here, you can take a common of x 1, and you can write it as x 1 x 2 plus x 

1 x plus x squared plus y plus x into x into x 2. 

So, that is nothing, but your…Here x squared into x 2, as we have written in this fashion. 

So, x squared into x 2, is this term and in the other part, that is x 1. Therefore, you see 

that, here you have an x 1. So, it is x 1 squared into x 2, which has been written in this 

fashion. Then, we have got an x 1 multiplied with y, which has been written in this and 

then, you have got an x 1 squared x. So, that is your this term x 1 squared x and then, you 

have got an x squared x 1. So, that is, x squared x 1 is this term. 

So, these are actually written in two factors, like this. The reason is, like, if you write x 1 

and then, now, if I add say, x 1 x 2 plus x 1 x plus x squared and add x 2 plus x squared 

plus y. So, basically, I am adding here an x x 2 plus x squared here, and then in the other 

term, I am also writing x x 2 plus x 2 x 1 plus x x 1 plus… So, that is another term which 

we are adding here. So, do you see this? That, this is what, this is at root term. So, it is x 

x 1 x 2. So, x x 1 x 2 gets cancelled over here. What is the other term that is adding? The 

x squared x 1, that is x squared x 1 and so, you see, and this is the extra term that is being 

added, over here, is it ok.  



So, that you can write as, if you take x 1 plus x common… So, you see that, here x 

squared and x squared will get canceled out; and, there is a plus y term here. So, there is 

a additional plus y term here. So, if you see that, this one is x 1 into x 2 plus x 1 into x 

plus x x 2 plus y. What is this term here? x x 2 plus x 2 x 1 plus x x 1 plus y. That is the 

same term, basically. So, therefore, you can take this as common and you can write this 

as, x 1 plus x into x 2 plus x plus x squared plus y plus x into y. 
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So, therefore, now you can actually obtain y 1 from here. You can just take and divide 

this by x, you should get y 1. That is, what is, you remember here, that is, y 1 is equal to 

x 1 plus x multiplied with x 1 plus x into x 2 plus x plus x squared plus y divided by x 

plus x y by x. So, that is y. So, that means, that you are always doing, wherever in this 

Montgomery’s algorithm you are only bothered about the x co-ordinates and you are 

doing it; finally, at the end when you need the y co-ordinate of the output also, you can 

apply this equation to get the y co-ordinate. 



(Refer Slide Time: 38:34) 

 

So, therefore, if you write all these things in the form of an algorithm, then, this is the 

way, how you can do so. So, you see that, here we start with x 1 equal to x, that is the x 

co-ordinate of the point. And what does this indicate, x 2 equal to x squared plus b by x 

squared? What does this indicate? This indicates it is 2P. And I am only bothered about 

the x co-ordinate. I am not bothered about the y co-ordinate. So, x 2 is equal to x squared 

plus b by x squared is only the x co-ordinate of twice P. You remember, the algorithm, 

this is the Montgomery algorithm. 
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So, therefore, we had P 1 storing P, and P 2 storing twice P, right. And in this operation, 

I am only bothered about the x co-ordinates. Therefore, here we only store the, we store 

the corresponding x co-ordinates; it is x and this is x squared plus b by x squared. Now, 

what we are doing is that, we are calculating the value of t equal to x 1 by x 1 plus x 2. 

And then, if this value is 1, then we are doing an addition operation here. The addition is 

defined only by doing x plus t squared plus t. So, that is only the x co-ordinate of the 

corresponding sum of P 1 and P 2 of P 1 and P 2 or rather an x 1 and x 2. And here, you 

are storing the doubling thing and when this value is 0, here, you are doing the doubling 

in x 1 and you are doing the addition operation in x 2. And, do you understand why it is 

x plus t squared plus t? 
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That is, from the result 2, right, that is from the result 2, where you are doing this 

operation. So, this is your t. So, this is t squared plus t. 
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So, you are doing that t squared plus t only to do the addition operation. So, finally, you 

need to obtain the y co-ordinate.  Therefore, you can obtain the y co-ordinate by doing 

this operation. So, what is the advantage here, you can see, I mean, what is the number of 

inversions, multiplications, additions and squaring required here, is shown here, which 

you can work out. Therefore, it is like, if you want to do the inversion, you see that, you 



are always doing an inversion operation. So, it is 1 by x 1 plus x 2 means, that is, cost of 

one inversion always. And whatever you do, you are always doing inversion either here 

or you are doing a inversion here. So, that means, it is a two inversions which are 

necessary. 

So, there is one here and there is either this one or this one. So, that is two inversions, 

multiplied by the number of times you are doing this, running this loop, plus 1 because 

you are doing an another additional inversion operation here. Similarly, you can also 

count the number of multiplication operations here, additions and squarings. So, you see 

that, here, still you have got a large number of times you have to do this inversion 

operation. So, that means, that an, that inversion is actually a very costly step in finite 

field operations. 
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So, therefore, there was, in order to reduce this number of inversions, these are fine co-

ordinate systems were actually converted into something which is called as projective 

co-ordinates. So, that is basically, a 3 dimensional space which is being borrowed to 

reduce the number of inversions which are necessary. So, for example, where n is greater 

than equal to 128, each inversion is actually like equivalent to 7 multipliers in hardware 

design; that means, it is a, there is a lot of cost and therefore, if there is an importance of 

reducing the number of inversions. Therefore, there was one projective co-ordinates 

which is called as the Lopez Dahab projective co-ordinates, where x, y and z are the 



three projective systems and x, the affine system small x is actually equal to x by z and a 

small y is written as y by z squared. So, that is being written as these x comma y comma 

z equivalence class. 

So, the motivation is to, now replace this inversions by the multiplication operations and 

then, perform one inversion at the end to obtain back the affine coordinates. So, what is 

done in projective coordinates is that, all the operations, the addition and doubling are 

done devoid of any inversions. They are done at the cost of increased number of addition 

operations. And increased number of multiplication operations and finally, there is a 

necessity of converting the output from the projective coordinates back to the affine 

coordinates. There we will need to do one more inversion state. 
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So, for example, here, if you remember that, in doubling, this was the corresponding 

equations in Montgomery system. That, these are the values which are being shown here. 

That, this you need to do 2 inverses, 1 general field multiplication, 4 addition and 

squaring. If you convert this into the projective coordinates by the previous 

transformations that we have seen, then, you will see that, you actually need to do 0 

inverses. There are no inverses necessary, but you need to do increased number of 

multiplication and addition and squaring operations. So, therefore, depending upon your 

n is to i ratio, that is the number of multipliers in your inverses, this may become handy 

and may help to make your implementations more efficient. 
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So, therefore, if you convert this entire system into projective coordinates, this is how the 

Montgomery’s algorithm looks like. So, here you see that, here, you have set here x as a, 

I mean x, I mean X 1 as small x, Z 1 as 1 and X 2 is x to the power of 4 plus b and Z 2 is 

x squared. So, x to the power of 4 plus b is… So, you see that, X 2 and Z 2 are storing 

what? Are storing the double point and here it is storing the single point. Now, you are 

doing, if k i is equal to 1, you are doing in projective coordinates, the addition operations 

in X 1 Y 1 and you are a doing doubling in X 2 Z 2. 

So, you see that, you are not actually working on the y 2 point. Why? Because, your 

Montgomery’s algorithm, Montgomery’s technique does not need me to work on the y 

coordinate; it just needs only the x coordinate. And when your k i is 0, then, also you 

need to do the addition here and the doubling in the X 1 Z 1 register. And finally, when 

you have got the result, then you need to convert this back into the affine coordinates. 
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So, for that, actually I mean, I am not going to this, but you need to do one, one inversion 

at that point, is necessary. So, this is actually straight forward, because this is exactly like 

the previous algorithm. You had basically this step. 
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So, see for example, you had y 1 as x 1 plus x into… So, basically, what you do did there 

was, if you see the y 1 equation, was x 1 plus x into x 1 plus x, into x 2 plus x plus x 

squared plus y, this was divided by x plus y; that was your y coordinates. So, now, your 

transformation in your projective coordinate system is x is equal to x by z; your y is y by 



z squared. So, if you do this, then, what you will write here is, you will take this point; 

therefore, you see that, if you want to do this conversion, you will write here this x as x, 

this x 1 point, you will right as x 1 by z 1. And your x 1 plus x, again you will write as x 

1 by z 1 plus x. x 2 you will write as, x 2 by z 2 plus x, right. plus x squared plus y, right. 

And that is divided by x and again point y is added, I mean y is added. 

So, therefore, this you can actually simplify and you can write as x plus x 1 by z 1 and 

this, as x 1 plus x into z 1 x 2 plus x into z 2. So, you see that, there is a z 1 by z 2 at the 

bottom. Then, you have got x squared plus y and you can actually write all these z 1 z 2 z 

1 z 2 and minus, inverse right, therefore, x into z 1 z 2 plus this term y. So, therefore, you 

see that, all these terms x 1 and your x 2 and your x 1 and your x 2 and your z 1, z 2 are 

there in the projective coordinates. You are using this projective coordinates and you are 

basically applying only one inversion operation to finally, convert your projective result 

back into the affine coordinates. And, the corresponding x thing is very simple, because 

you just need to divide this by the corresponding z to obtain the x coordinate. 
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So, therefore, the if you want to obtain x 3, that is a result of P 1 and P 1 plus P 2, the x 

coordinate, you just need to divide x 1, projective coordinate x 1 by z 1, and for the y 

coordinate, you need to do more operations. Actually, you need to do 10 multiplications 

and 1 inversion operation to do the final transformation. 
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So, if you do a neck to neck comparison of affine coordinates and projective coordinates, 

this is how its looks like. There is more, the inversions have been reduced, but there are 

multiplications and the additions and the squarings have of course, increased. Therefore, 

whether you will go for your affine coordinates or whether you will go for your 

projective coordinates depends upon your i is to m ratio; that is, in your inverse how 

many multiplications are multipliers are there. So, that actually dictates, whether this one 

is more efficient or whether this one is more efficient. 
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So, there are, I mean, I will not go in to this, that is, there are some approaches which 

says that, you actually keep one of the points in projective coordinates and keep the other 

point in affine coordinates; that is called as mixed coordinate systems. So, there are, 

these are some equations we have derived, which you can check also offline, that is, but 

in this case, the main thing we pointed out here is that, the number of multiplications are 

further reduced, squaring is increased a bit, but they are cheap in GF 2 power of n. There 

is 10 percent improvement if a is not equal to 0 and if, so, a is 0, then, there is a 12 

percent improvement. So, mixed coordinate systems are at times more efficient than 

even the projective coordinates systems. 
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So, the, I will just finally, conclude with some parallelizing, comments on parallelizing 

strategies on the point doubling and the point addition operation. So, you see that, in 

your point doubling… So, I am considering the projective coordinates here. So, in, these 

are the operations that you did. Therefore, you just think of x 1 comma y 1, what you 

have done here, is this. That is, you have taken this x 1, squared it, see z 1 squared z 2 is t 

into z 1 squared and finally, you are adding this t squared plus m squared and this is your 

doubled point. This you can check, that is, this is exactly the same as what we did 

previously. 

So, how many multiplications are necessary here? There is one multiplication operation 

necessary. Multiplication is constant, I am not again considering as multiplication. So, if 



I got one multiplier, then, that is sufficient to do this operation, but what about doubling? 

You see that, there are more number of steps. So, here for example, there is one 

multiplication, here is another multiplication. So, if I want to do a parallelization, then I 

have two, and there is again a multiplication here, again a multiplication here. So, if I got 

2 multipliers, then, I can actually parallelize this step and I can parallelize these two steps 

also, right. Therefore, depending upon my resource constant, I can actually parallelize 

this point addition also. 
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And what will be the final, I mean, if you just see of this Montgomery’s algorithm 

structure, if I want to parallelize this, I can parallelize this probably at various levels. 

Like I can either parallelize this, at this level of kP or I can the parallelize the inherent 

internal doubling and addition operations; that is, I can either parallelize level 1 or I can 

parallelize level 2. 
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So, here are some comments. Like, suppose, if we allocate 1 multiplier to each of m add 

and m double, one multiplier to each of m add and m double, then, we can parallelize 

steps 5 a and 5 b. So, we have got two multipliers; we are allocating one to the addition 

and one to the doubling. 
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So, you see that, here, you are actually doing a addition and then, you are a doubling in 

parallel. Because you have two multipliers, we have actually given one multiplier to this 

and one multiplier to this and you can actually doing both of them in concurrence, right. 

So, what will be the cycle length required, will be that, equal to that, that required for the 

addition because addition is more. 
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And you know that, from these steps, if you have got one multiplier instead of two 

multipliers, then, for this you need two times test; because, first you have to do this; then 



you have to do this or do this, and then, you have to do this; you cannot do this two 

things in parallel. Similarly, here, you can do either this or you can do this; you cannot 

do them in parallel. So, how many clock cycles you need to do is 1, 2, 3 and 4. So, you 

need to do 4 clock cycles for doing this. 
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And therefore, for every time step, you need to do 4 ls; therefore, if l is the number of 

times you are iterating this loop, you require 4 l number of clock cycles, nearly 4 l. 
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But suppose that, if you can, if you have got, like, if you can parallelize the underlying m 

add and m double, then you cannot parallelize the level 1; because you have got again a 

constant of two multipliers. Therefore, if you can parallelize the underlying m add and m 

double; that means, we are actually given two multipliers to this, right, because that is 

the way, how you can parallelize this. Then, you cannot do the addition and doubling 

simultaneously. 

Because you have got a constant of two multipliers, right; because you do not have three 

multipliers, right. If you have three multipliers, you could have done, parallelize this as 

well as perform the doubling and addition in parallel, right. Now, since you have, if you 

have parallelized this, you have to do this and this in sequence. Which means, for this, 

you need two clock cycles, because, you have parallelized this and you have parallelized 

this. So, you basically, you can do this addition in two clock cycles, but the doubling 

also, we need one clock cycle. 
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And, since this doubling and addition has to be done in sequence, you need three clock 

cycles for doing this. And this, we will iterate, and you will require 3 l number of times 

for doing the entire operation. 
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Suppose, you have got three multiplier, that is, you have got more resource, sorry, you 

can actually do this operation in lesser time. You can do that in 2 l clock cycles, sorry 

right; that means, you see that, Montgomery’s algorithm is highly parallelizable, 

depending upon your constants and your requirements of power and throughput you can 



actually, there is a spelling mistake here, it is throughput, therefore, you can actually 

make high performance designs for doing this scalar multiplications. 
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So, there are lot things to concentrate and think of about here. So, one of the things is, 

like there is something is called Kobiltz curves, standardized by NIST are of the form as 

y squared plus xy equal to x cubed plus a x squared plus 1 over a binary field. You can 

take this exercise to compute the number of additions and doubling equations for points 

on these curves and again compute the number of multiplications and inversions to be 

performed in affine projective and mixed coordinates, what we have seen. So, you can 

rework this on specifically these kind of cons, where this constant a is equal to 1. 
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So, here is some of the references, some of the classic papers that I have followed are 

this, this Lopez and Dahab, which is published in CHES 1999 and also some of the other 

important references I mentioned here. 
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And the books are standard this. So, next time, we will take up the topic of secret sharing 

schemes. 

 


