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In the last class, we have studied about elliptic curves and their definitions. So, in today’s 

class, we shall concentrate on how to apply elliptic curves to cryptographic operations. In 

today’s class, we shall essentially cover these areas like, what is the relation between 

elliptic curve and cryptography, discus about an El Gamal type of encryption algorithm 

in context to elliptic curves. The other important thing that is needed is how essentially 

do we take a message and encode that into the elliptic curve. So, we will see a very 

simple algorithm to do so, and also the corresponding decoding, that means, given the 

corresponding point how we get back the message. 

Then we shall discuss about the Diffie-Hellman key exchange in context to elliptic 

curves, and then, we shall address that why do we use elliptic curves, because we have 



studied RSA and public key ciphers which are based on discrete logarithm problems. So 

what is the purpose of elliptic curves and what is the underlying heart problem behind 

elliptic curves, we shall just discuss certain issues in this context. 
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So, first of all to start with public-key ciphers we have seen there are two important 

requirements, one is secrecy, and other one is authentication of information. As we know 

that in any public-key cryptosystem these are provided by a pair of keys, so if you know 

that if you want to apply your public-key cipher for giving you secrecy, then also you use 

a pair of public key and private keys. Similarly, if you want to use it for authentication 

you use another pair of public key and private keys here. 

The only difference when you are using it in context to security, and when you are using 

it in context to authentication is that, how do you use I mean, which key do you use for 

what reasons. For example, when you are interested in or motivated in the security of or 

the secrecy of the information then you use the public key. For encrypting, the sender 

uses the public key, but the receiver decrypts it using the private key. Similarly, when 

you are using it for authentication you can use the same public key, but you have to use it 

in the other way that is, if you want authentication then you have to use the private key 

for sending the data and use the public key for verifying. So similar to that we can also 

use, as shown in (refer slide time: 01: 26) that there is a source A, a destination B, and 

the message source wants to send X which is a message, and it wants to send it to the 



destination ensuring that both secrecy of the information and the authentication of the 

information is maintained. So, for source A chooses a pair of messages I mean pair of 

keys, and for encryption algorithm there are two stages of the algorithm, one is the public 

key encryption used for secrecy, and other one is used for authentication. 

When we are using for encryption then you are using the public key because you have to 

encrypt the data. So, you essentially choose the public key and you encrypt the data and 

send it to the receiver, but for authentication you do just the opposite that is you 

essentially choose the private key for sending, and similarly if you want to verify you use 

the corresponding private key. Therefore, if you want to send it for authentication then 

you see that you have essentially chosen the public key, for performing your 

authentication so that the private key for performing or signing the data, and for 

verifying you use the corresponding public key. But if you want to use it for secrecy of 

the information then you use just the keys but in the same keys or similar pair of keys. 

But in the other way that is what you do is that, you choose the public key for performing 

your encryption operation, and you decrypt the corresponding cipher-text by using the 

corresponding private key right, because anybody should not be able to decrypt. 

So therefore, the secrecy of the data is ensured because you know that the secret key is 

only that is the assumption there is the secret key only B has the corresponding secret 

key therefore or the private key and therefore it can only decrypt. And similarly, the 

authentication is ensured, because if the verification is successful it shows that based on 

the assumption that only A has the corresponding private key, so he knows that this 

particular message digest can be only generated by the source A. that is since the I mean 

apart from source A nobody has the corresponding private key, hence only A can sign 

this message. Therefore the authentication is also ensured in this fashion. 
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So this is the very customary operation of how you basically there are two important 

parts; one is the encryption, and the other one is the authentication. So, what we 

understand from here is that, what we have studied previously is that you can use any 

encryption or any public key encryption algorithm, and we can actually achieve this goal 

of encryption as well as authentication. 
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So, for encryption there is a public key that is a public key ring, so if you want to 

communicate with anybody for example, if you want to communicate with Alice then 



from the public key ring you choose the corresponding public key for Alice and you 

generate the ciphertext, and the receiver since it has the corresponding private key 

decrypts the message and obtains the corresponding plain text. When you are doing the 

authentication, then basically you are generating the signature, so you take an input and 

you sign it by your own private key and you send it, and if the receiver is expecting the 

message from Bob then it chooses the corresponding public key from the public key ring 

and decrypts it and obtains a plain text message. 
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So you see that both these essentially uses the same public key cryptography ring, but the 

point to be noted here is that when you are using it for encryption, and when you are 

using it for authentication the public key ring is, in the first case it is present in the 

sender’s part and in the second case it is present in the receiver’s part. So that is the small 

thing which is to be kept in mind. Now there are various arguments about whether you 

should do the encryption first or whether you should do the authentication first, so that 

essentially is a matter of we can argue on that. But this is the basic way how we can 

actually choose the public key, and you can actually perform either if you want to use it 

for the secrecy or you want to use it for the authentication of the information. 
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Therefore what is elliptic curves, we have studied that elliptic curves is essentially I 

mean, elliptic curve is basically a certain set of curves that is essentially what we have 

studied in the last class. Now the question is what elliptic curve cryptography is, so 

elliptic curve cryptography is nothing but a public key cryptosystem just like we have 

studied RSA and El Gamal. So it also has a public and a private key, and the public key 

is used either for encryption or the signature verification, and the private key is used for 

decryption or for signature generation. So elliptic curves are used as an extension to 

other current cryptosystems therefore, you can also have elliptic curve Diffie-Hellman 

key exchange, you can have elliptic curve digital signature algorithms. Wherever you 

have seen the previous applications of public key ciphers, you can have similar 



applications here also, but these are actually based on certain curves which are known as 

the elliptic curves which are having cubic curves, which we have studied in the last class. 
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Now, we shall study that how do we apply this elliptic curves to generate a public-key 

cipher. So the central part of any cryptosystem which involves elliptic curves is the 

elliptic group. We have studied that, if you want to generate elliptic groups then for that 

in order to do that we actually define certain operations, the operations means we take 

two points on the elliptic curve and we define what is mean by addition on these two 

points. So we define what is meant by point addition and what is meant by point 

doubling. 

So, all public key cryptosystem have some underlying mathematical operations like, if 

you want to for example, chose RSA then you have exponentiation, you are basically 

doing a modular exponentiation, and all public-key ciphers essentially relies upon certain 

things which are assumed to be one way function that is, some multiplication easily 

compute what which are difficult to invert. So, in context to RSA we have seen that the 

heart problem or the one way problem was essentially the factorization problem that is, if 

I can take two if there is a large product or if there is a large composite number which 

can be factored into two large prime numbers, then it was believed that it is difficult to 

factorize these module. That was the assumption on which the RSA security was derived. 

So when we studied about the El Gamal cryptosystems which are based upon the finite 



field for example, F p or any other finite field for that matter, then it is based on 

something which is called as a discrete log problem. So it was known we leave it is easy 

to compute given a public module g, and given a secret module x, it is easy to compute g 

power of x modulo P. But from g power of x modulo p, it is actually believed to be 

difficult to compute the value of the exponent x, so that was the assumption on which the 

El Gamal cryptosystem was based on. So similarly, here in elliptic curve cryptography 

we also have something which is then similar or analogous to the discrete log problem, 

and which is called as the elliptic curve discrete log problem. So this essentially relies on 

how do we do the point addition, and how do we do the point doubling. So the 

underlying mathematical operation on which this public cryptosystems based on elliptic 

curves are actually something which is called as point multiplication, so we take an 

elliptic curve for example, consider any elliptic curve for that matter. 

(Refer Slide Time: 10:52) 

 

Suppose, this is one elliptic curve, we take a point p on this curve, and we take another 

point Q on this point and we do a point addition, so that is what we have studied in the 

last class. Therefore, these essentially intersect the curve at the third point and the 

corresponding reflection of that point is the sum O plus Q, so this is known as the sum P 

plus Q. Similarly, if this P and Q points converge and there is only one single point, we 

draw a tangent at that point and we reflect that point, so that was called the doubling 

operation. Therefore if this P and Q converge at a point call it say W, then this is nothing 

but twice of w because that is W plus W, so this is basically the operation of point 



addition and point doubling. Now, in elliptic curve cryptography what we essentially do 

is that we choose a scalar quantity say call it lambda, and there is a base point which we 

call as a point P. So the whole point is how do we compute lambda into P, so that is the 

basic operation on which elliptic curve cryptography relies that is how do we compute 

these value of lambda multiplied by P. So, one obvious way of computing lambda into P 

is by taking P and by adding it lambda times, so we take P and we keep on adding them 

lambda number of times. So we can take a point P and P plus P Means, it is a doubling 

operation on P then whatever output we get again we add that with P and we keep on 

doing that lambda number of times. So that is essentially something which is called as 

the scalar multiplication, which is central to what is known as elliptic curve 

cryptography. So whether we want to use it for encryption, whether we want to use it for 

key exchange, this is the most important and center operation on which elliptic curve 

cryptography is based on. 
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So, the generic procedure of doing elliptic curve cryptography is that both parties agree 

to some public known items. For example, the elliptic curve equation as we have studied, 

are a form of y square equal to x cube plus a x plus p. Similarly, we have got generalized 

Weierstrass equation, so if I give you the value that is the values of the constants, then 

you essentially know the corresponding curve equation. So it is believed that everybody 

is a sender and the receiver, and even the adversary knows the curve equation. Now, you 

have to basically define elliptic group, so elliptic group is computed from the elliptic 



curve equation and a base point B which is from the elliptic group, and similar to 

something which is called as what we have seen as generator used in the context of the 

previous public key ciphers. So similar to that, we have got a base point B which is again 

a public domain information. These are the public domain information, the values of a 

and b. So what is a and what is b, this you will remember from the Weierstrass equation 

y square equal to x cube plus a x plus b, therefore those two a and b will be important in 

understanding what is the corresponding curve. So based upon that we have got various 

varieties of curves, we have got random curves, and there are other forms of curves. 

Similarly the prime p, the corresponding elements of the elliptic curve is based on some 

field therefore, that field could be a prime field. So, in this case we are assuming that it is 

a prime field, it could be a characteristic to field also like g f 2 power of n, and it could 

be essentially some complex sets also. But if I assume that for all purpose, let us assume 

that the underlying elements on that elliptic curve are chosen from F p that is it is chosen 

from the field which is generated out of numbers from 0 to P Minus 1, where p is a prime 

number. So the elements on the curves are actually chosen from 0  to P Minus 1, and 

already I did not say explicitly all the number of points which are actually there on the 

elliptic curves, they are actually finite so that is basically a finite set of points which are 

there on the elliptic curve. Therefore, you have got your F p which is your set of numbers 

from 0 to P minus 1, where p is a prime number, and then you have got some points 

which were actually choosing on the elliptic curve. So those are actually ordered pairs, 

like addition points x comma y, where X Also belongs to F p, Y Also belongs to F p. 

So, basically it is a subset of the numbers from z p cross z p, it is a finite set, so it is a 

finite set of numbers and finite set of points which actually are there on the actual elliptic 

curve. And by our previous construction of the addition, and the definition of the 

addition operation on the points, those elements x comma Y actually form a 

mathematical group along with the point on infinity. Therefore, if I take all these points x 

comma y which actually satisfies this Weierstrass equation, those points along with the 

point on infinity form what we call the mathematical poof under the definition of the 

addition and the doubling operation. 

So therefore, in this case the public known data items are the values of a and b, and the 

corresponding prime p, these are public numbers. And similarly, there is a base point 

which is also a public domain value. Now, each user generates their public or private key 



pair, so what is a private key pair here, it could be an integer x which is selected from the 

interval from 1 to P minus 1. So from 1 to P minus 1 the private key is any integer x 

which is selected at random, and the public key is actually the product of X and P B. 
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Therefore, if you want to use it you first of all choose a corresponding curve equation. So 

y equal to x cube plus a x plus b, and whenever you are doing it there is a modulo P, 

because this elements x and y are essentially chosen from Z p cross Z p, and the 

corresponding private key which we are choosing is another number. So, although it is x 

it is a different x, actually it is the secret x which is chosen from the set closed interval 

from 1 to P minus 1. And your public key is actually x multiply by the base, so B again 

another public parameter which is the base point of the curve which is generally 

provided by a central body. So for example, we have got mixed curves, therefore they 

essentially gives you this values of a and b, I think it is better to make this a and b as 

small a and small b is generally provided by a central body, it is a chosen curves. So this 

is the way how you choose or calculate this private key and the public key. 

So, immediately you know that from our previous discussions if this x number is chosen 

from 1 into P minus 1, and this public key value is public therefore, everybody knows 

this x into B. So, whenever you are using it for cryptography, it is obvious that one 

should not be able to know this private key. Therefore, it becomes immediate that from 

this x B it should be difficult to get the knowledge of x, which is the basic assumption. 



So, how do you get x into B that is by adding B x times, repeated additions will give you 

x into B, and this problem of getting x from x B is the basic assumption. again the central 

believe to be mathematically difficult problem on which elliptic curve cryptography 

relies upon. 
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So, anyway I will come to that in more details, so at least first of all see that how do we 

do the basic encryption operation. Suppose Alice wants to send to Bob an encrypted 

message, so both agree on a base point B, and creates a public private key. So what Alice 

does is that, it chooses a private key a and the corresponding public key is P A, which is 

a B that is being added a number of times. Similarly, Bob’s private key is again small b 

and the corresponding public key is b multiplied by B. Now, this public keys are actually 

available to everybody, it is shared in the public key ring, so if Alice wants to essentially 

encrypt a message M, then it has to somehow convert this message or encode this 

message into a point onto the curve so you call it P M. 
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Therefore, the first thing is that let us say, we can actually assume that it is taking this M, 

somebody can encode that into the point on the curve. Therefore, obviously one may ask 

that how do we essentially take this message M and encode them into the point P M, so 

there are various ways but one very simple technique is shown here. You consider this 

curve y square equal to x cube plus a x plus b, so one way could be like this that is the 

plain text say numbers and English or roman characters, whatever you say from zero to 

nine, and from ten to thirty five. suppose therefore if I want to send this character B, then 

this B will be encoded as the number n equal to eleven. 
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So, these are very simple way of doing, you see that you choose a public key variable say 

k equal to twenty, and it start computing x which is equal to n into k plus i and it vary i 

from one to k minus one. Therefore, what I am doing is that, you know that this value 

that is k is a public known value, and you want to send the value m equal to eleven, that 

is what my related the character b indicates or is encoded. So I will start computing X As 

m multiplied by a publicly known value say call it twenty, and I start adding some value 

i to it, and I will vary this i from one to k minus one, k being equal to twenty is nineteen 

and I keep on varying this i at one step. So for example, in this case it is eleven into 

twenty plus one. To begin with when i is equal to one, so first of all in the first iteration i 

is one  you get a corresponding value of x, you remember that you are always doing a 

modulo p. So there is some p on which you are doing a modulo p operation, let it be 

some value essentially. 

So now, if you get this value of x there is a corresponding curve equation, so y square 

equal to x cube plus a x plus b. You take this x and you substitute that into y, and this is 

again a modulo p. Therefore, this number which we get should be a quadratic residue, 

because if it is so then there is an integral solution for y. So that you can check by there 

are techniques that we have seen previously, and you know how to check whether a 

given value is a quadratic residue modulo p or not. Therefore, you can check whether it 

is a quadrate residue modulo p, if it is so then x comma y is corresponding encoding, 

otherwise you again start incrementing this i to the next value two. Now it is quite easy, 

you can check that if I start varying from one to nineteen at least one of them we ensure 

that y is a quadratic residue. so if I keep on increasing this like this there at least one of 

them will be ensure that it is a quadratic residue so that we can just think upon why it is  
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Therefore, m is encoded as x comma Y, and the decoding is very simple, you take this x 

you subtract one from it, divide it by k, and take the floor of this value so that is your m 

so x minus 1 divided by k and you take a floor of this this will give you m. Therefore, 

this is the way how you can get this value of m from this pair of x comma y. So, I will 

give you an example on this, that is suppose p is seven hundred and fifty one, a is minus 

one, b is one hundred and eighty eight, and k is twenty. Let this be some arbitrarily 



chosen values, and here m is again eleven, and I choose this X as x equal to m into k plus 

one. 
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So here if I take this value m being eleven and k being twenty, if you multiply eleven 

into twenty and add one you get two hundred and twenty two is it correct, I think is a 

mistake, it is twenty into eleven plus one that is two hundred and twenty one. Therefore, 

please correct it this is two hundred and twenty one, so but correspondingly we can see 

there is no solution for y.  If you take this value of X and plug in to the curve equation, 



then you will not get an integral value of y. So that you can check again, but this we can 

this you can check offline. Similarly, we continue like this and you keep on incrementing 

the value of this one, two, three and so on and you will find in this case that when this i is 

equal to four your x b equal to two hundred and twenty four, and then you will get there 

is a corresponding value y equal to two hundred and forty eight, which is an integral 

solution. So that means that this m equal to eleven can be encoded as 224 comma 248. 

So, now I want to obtain back the value of m, from this I take this two hundred and 

twenty four subtract out of 1 and divide it by twenty, and then take the seal of this when 

that is equal to eleven. So that is essentially how you get back m from the pair x comma 

y. Now, I think this should be (( ))  to us that is y there will be at least one value for 

which this y is I mean for which this pair is a value pair so I am leaving that you to think. 

But these are very simple encoding technique, there could be other principles or other 

methods which you can do the encoding also. What is the probability that you will get at 

least one such thing, I mean if you try keep on try it will be so on you want to try k 

number of times. there at least one of them will be possible encoding that means the 

probability is one by k, therefore we repeat this k number of times. You should get one 

solution and the decoding is simple, decoding exactly gives you back the starting 

message m. 
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Therefore, we have solved this, that is we have done and obtain this value of P M. So, 

this P M is the encoded thing, that is we have taken the message M, encoded it on to the 

elliptic curve it becomes P M. So P M is again a point, that is it is a pair of x comma y 

may that it is a is that x comma y it is Cartesian point. So, now I want to apply and 

generate the cipher text, so in order to generate the cipher text I have to use the public 

key. So what I do or what Alice does is that, you choose a random integer k from the 

integer one to P Minus one therefore it choose the random integer from 1 to P Minus 1 

call it k and multiplies it by Bob’s public key.  So, it takes Bob’s public key as P B and 

multiplies it with k, it multiplies k with P B and adds it with P M, note all these additions 

are defined on the curve, therefore you chose this, and the other pair is k into B. You 

already had the base point B, you multiply it scalarly by the corresponding k which you 

have chosen, and you are passing this pair as a cipher text. 

So this reminds us of the El Gamal encryption, I mean what we have seen previously this 

is exactly similar to that. Therefore, it is called an elliptic curve cryptosystem which is 

analogous to the El Gamal cryptosystem. So, you choose P M and you add it to k into P 

B, P B was your public key of Bob, here multiplied with k and passed it. 
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So, now you can note that in this particular exponent, if you want to obtain P M from this 

P M plus K into P B, then what do you need to obtain.  So the cipher text has got P M 

plus K into P B, and what is this, this equal to P M plus K into the secret b and multiplied 



by the base point B. What was the other corresponding component there, the other 

component was K B, so then Bob receives the cipher text and Bob has b, because b is the 

corresponding private key. So what Bob does is that, Bob takes the first component K B 

and multiplies K B with the corresponding value of b that is, if you multiply this K B 

with b then what you obtain is nothing but K into b into B, and that is nothing but K into 

P B. Therefore, Bob by using its own private key can actually obtain the value of K into 

P B and after that it is simple, because you have to just subtract out this value so that you 

get value of P M. That is what is shown in (refer slide time: 30:37). 
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That is, if you want to do the decryption then you take this b and you apply it over k B 

and then you just do this subtraction operation, it will eliminate these two terms to obtain 

back the value of P M. So, P M is the encoded message on the elliptic curve, then again 

by using the previous decryption or the decoding algorithm, rather you can actually 

obtain back the corresponding value of m, the message.  This is quite analogous to what 

we have seen. So, Bob then decodes P M to get the message m, therefore you have to do 

the final decoding to get back the original message. This is how you are actually doing 

the operation of encryption and decryption. 
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So, we are obviously extend it for signatures, the authentication that we are not actually 

going to and that is quite straight forward, rather the other interesting application of 

elliptic curves is in the Diffie-Hellman key exchange. If we, just to recap that is what we 

have seen in context to the finite field p, there is a there is value of alpha, you choose 

alpha power of X A modulo q and obtain back Y A, and send this Y A to the 

corresponding user B. So what the user B does is that, the user computes Y B by again 

choosing alpha and raising it to some secret value call it X B, and sending it back to the 

user A. So what both user A and user B does subsequently is that, they uses its own 

secret value and raises Y B to that power. What B does is that, it takes Y A which is 

obtained from user A and raises to X B, and what we know is that this value and the 

output value is same. Therefore, that is a final shared or exchanged key which is used for 

subsequent encryptions. 
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So, we see that the same thing can be done in elliptic curves and base points, therefore 

these are actually the points on the curve. So you want to generate a x y and b x y, and 

then you want to do some operation on this, and the expectation is that the output should 

be the same and that follows from the elliptic curve definition. So you take b x comma y 

which Alice has received, but Alice uses its own private key a or randomly chosen value 

a and computes a b x y, and similarly Bob computes b a x y. Since a b and b a are same 

that is their commutative operations, you actually get again another shared key. 
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So details is like this, that is you choose a private key a for example, Alice has a private 

key a and a public key as P A, and similarly Bob has a private key b and a public key as 

P B. So what Alice does is that, Alice obtains these corresponding value of b into B and 

multiplies it with its own private key a. So that is a into b into B, and that is same as what 

Bob computes, because Bob obtains a into b from Alice and that it raises it or multiplies 

it with b, and since a into b is same as b into a both these two values are same. So, this is 

the final shared key of a into b into B so that is basically that you can also apply elliptic 

curves to perform the original Diffie-Hellman exchange as well this symbol right so this 

is same I mean what we have seen previously. 
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So now, why do we use ECCs? To understand that, how do we analyze cryptosystems. 

So if I want to say that whether RSA is greater than ECC, then we have to compare the 

difficulties of their underlying problems. For example, RSA is based upon the integer 

factorization, your Diffie-Helman is based on some problems which is discrete; I mean is 

actually based on Diffie-Helman assumption, and similarly if you want to see the El 

Gamal cryptosystem that is based on your discrete logarithm problem, and elliptic curve 

cryptography is again based on elliptic curve discrete logarithm problem. Therefore, how 

do we measure the difficulty, we examine the algorithms which are used to solve these 

problems. 
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For example, here are some values which shows that elliptic curve cryptosystem results 

in shorter key sizes. Therefore, if you compare for example like 163 bits, you will see 

that a 1024 bit RSA key size is equivalent to that of a 163 bit elliptic curve key size. So, 

here you see that there is a significant shortening of the key size, the key size is 

significantly short it is almost one is to six ratio, and as we are going down the ratio is 

actually increasing. So which means that if you want to apply or rather develop public 

key cryptosystems on resource constant environments, then elliptic curve is actually a 

more promising public key cipher. 
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Therefore, you will find that if the devices are small they have limited storage, and they 

have computational power restrictions where actually elliptic curve cryptography is 

ideal. It is actually trying [v] program is being adopted worldwide, therefore if you want 

to apply for wireless communications, for smartcards, develop online transactions web 

servers that is any application where security is needed.  But also the place of platform 

lacks sufficient power storage and computational requirement, therefore this is very 

motivating and very useful for the present day applications. 
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So, the question is why essentially RSA has got such a bigger key size and elliptic curve 

cryptography has a comparatively much smaller key size. In order to answer this, it has 

to what we do with the underlying hardness of the problem. That is, what is the 

corresponding difficulty of solving the inherent internal problem that is how hard is it to 

solve the Diffie-Hellman problem in elliptic curves, and how hard it is to solve the 

Diffie-Hellman problems in F p, so that is the basic question. 

So your elliptic curve security therefore the question is that, the hard problem is 

analogous to discrete logs that is Q is equal to k into P. So the question is that, there is a 

point P, and there is a point Q, and the question is that given k and P it should be easy to 

compute Q, but it is hard to find the value of small k that is the scalar. So this problem is 

known as the elliptic curve discrete logarithm problem. 
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So in this case, we know that k must be large enough that is, if k is small say one or two 

obviously it is not difficult but it becomes difficult when this k is really large. So elliptic 

curve security relies on elliptic curve logarithm problem and it can be compare to other 

problems that we know. So these are the basic definition of elliptic curve discrete 

logarithm problem more formally. 

So let E be an elliptic curve over the finite field F p, and let P and Q be points in this E F 

p. Therefore, there is an elliptic curve and there are two chosen points P and Q, and we 

are actually interested in the elliptic curve discrete logarithm problem. So, the elliptic 

curve discrete logarithmic problem is the problem of finding an integer n such that Q 

equal to n P is satisfied that is, given this value of P and given this value of Q, how hard 

it is to compute this value of integer n. So we denote this integer n as n is equal to log Q 

base P, so that is the elliptic curve discrete logarithm of Q with respect to P. that is the 

elliptic curve I mean these are the elliptic curve discrete logarithm of Q with respect to P. 
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So now, we will see certain interesting properties of this elliptic curve discrete logarithm 

problem. One of the thing is that, this log Q base P may not be defined that is, you may 

choose two points Q and P such that this log Q base P is actually not defined, because it 

is not necessary that always you will find that Q n P maintains the relation that is q is 

equal to n into p. So it may be that, there are two points for which Q is not equal to n into 

P for any integer n. That is actually something which is to be kept in mind, but the thing 

is that we actually are not really faced with any problem because of the nature in which 

we are actually applying our elliptic curve cryptography. Whenever we are applying, 

elliptic curve cryptography is by repeated additions. 

So the corresponding Q and P that we are generating or that we are concerned of actually 

has got this relation, but it is not true for any arbitrarily chosen Q and P values. 

Therefore, since there are fine I mean therefore it is important to be kept in mind that, it 

is not necessary that for any Q and P this elliptic curve or this discrete logarithm has to 

be defined, but none other fashion in which we are applying this elliptic curve we do not 

face any significant problem. 

The other important thing is that, there is not a single value, for which this holds. That is 

it is not true that this Q equal to n into P is true only for one unique value of n, there can 

be multiple solutions to this equation. So let us just try to see this because this is quite 

straightforward, that is suppose you choose any point P there will exist an s such that s 



into P will be equal to O. So that follows from the basic property of the underlying group 

that is, if you keep on adding P then there will exists one such integer s for which s into P 

is equal to the identity of that O, and the least such value for which this holds is actually 

call the order of the point P. 

So, now the other fact that is also important is that, you know that the points on the 

elliptic curves are actually finite set of points, so if you just take any point P and you 

consider P 2P 3P 4P and so on, there must be two such values i and j for which they are 

the same because it is a finite set of points. Therefore, if you choose i there must exist 

some value i, there must exist some value of j where i is greater than j, say without any 

loss of generality for which i into P is equal to j into P. That means if you rearrange, then 

i minus j into P is equal to O. So if you say that s is equal to i minus j and the smallest of 

s is called the order of P, so there we know that there must exist some case for which this 

i into P is equal to j into P. Therefore, if n 0 is an integer such that Q is equal to n 0 P, 

there is one such integer n 0 for which Q equal to n 0 P is satisfied. 
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So you can actually choose any n by adding n 0 with i multiplied by s, then this also will 

satisfy this equation of Q equal to n P, because you know that Q equal to n P is nothing 

but here n 0 plus i integer, the order s that is the order of the point P, and you are 

multiplying with P. Therefore, that is equal to n 0 into P plus i into s P, and what is s P, s 



P is O. So what you get back is as n 0 P, and you know that Q equal to n 0 P is satisfied, 

therefore this actually holds. 

So this logarithm is, actually when you are considering this logarithm of the point Q with 

respect to point P, you are obtaining a corresponding integer value, it is actually a 

mapping. Mapping from what to what, mapping from two points, Q is a point, P is a 

point. So there are two points on the curve, say I call it a point P 1 and point P 2 there are 

two points on the curve to an integer n, and this integer you can actually denote as Z and 

you can actually choose it as s Z, because any such thing will satisfy that is any n 0 plus i 

into s will satisfy. But we are actually interested in the least representative of this class. 

Therefore, what we choose as the least difference of the class is either by this or 

essentially this is my minimum set, therefore I can actually obtain various classes and I 

am interested in this congruence class. Therefore, that is the way how we choose this 

corresponding thing, and we are interested in the least such value .We are interested in 

actually sorry I mean this probably a more customize thing z s z. So do you understand 

this that is, essentially there can be more than one solutions to this discrete log problem, 

but what we are interested is a least such value. Therefore, if we know the order of the 

point P is s, we can actually take any value which satisfies this, and we can actually 

obtain the corresponding modulus with respect to s which should also satisfy this 

equation. So there are large numbers of solutions, you can actually keep on generating 

solutions like this. 
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Now the question is how hard is the elliptic curve discreet log problem? So we have 

studied in context to the previous algorithms like, in context to previous RSA when we 

have studied El Gamal cryptosystem, we actually need not go much into the crypt 

analysis of El Gamal cryptosystems, but they are actually algorithms which are better. 

For example, if you remember in context to factorization, we have discussed about 

algorithm which had a complexity of O n to the power of 1 by 4, because if you want to 

generate, if you remember that algorithms like Pollard's rho algorithm are quite efficient 

algorithms in order to factorize or rather to find the prime factors of a given composite 

number. So if that problem is solved then RSA problem is also solved. 

Now the question is how hard is the elliptic curve discrete logarithm problem? For 

example, just if you remember the birthday paradox, consider an approach which is 

similar to the birthday paradox. So if I generate two lists l 1 and l 2 based upon say r 

random choice the values like j 1 to j r and k 1 to k r, so what I do is that I just generate j 

1 to j r randomly, and all these things are actually from one and P; between one and p 

you choose any arbitrary values. 

i (( )) j 1 p j 2 p and so on till j r P i generated. Similarly, another list which is built upon 

like, k 1 into P plus Q k 2 into P plus Q and then k r into P plus Q. So if you find that, in 

this two list there is a collision, so j u P that is for some u is equal to k v P plus Q. 

Therefore, we can immediately rearrange or one solution is j u minus k v, that means if I 

get this list and there are two such values for which the common term occurs, then you 

can actually solve the elliptic curve discrete log problem. 

Now, how difficult or rather what should be the least value of this value of r for which 

you get a collision. So actually you know that these values being from one to p there are 

P such values, and if you apply the birthday paradox, and if you set your r to be of the 

order of P to the power of half or square root of P you know that we have got a very 

good chance or very high probability of finding a collision. That is the customary 

birthday paradox approach. So, if r is the order of the P power of half, then we can 

actually obtain an elliptic curve discrete log solution. This is probably the kind of fastest 

algorithm that has yet been found to solve a elliptic curve discrete log problem which has 

got a complexity of O P power of half. 



So there are algorithms of the nature of humbling which are called as index calculus 

algorithms which actually have the runtime of the order of P power of half. Whereas, for 

previous things like, for the discrete log problems in F p there are more advanced and 

fastest algorithms. So you may remember that you can quite easily find out whether I 

mean I mean not easily rather but you can find if you want to factorize large composite 

number. And if you apply a polar slope kind of algorithm, then you remember that the 

complexity of that was if the factor of that if n can be factored as P into Q, then the 

complexity of that was O P power of root P, and P is of the order of root n. Therefore, 

the complexity was n to the power of 1 by 4, so that was a faster kind of algorithm. 

So in the context of this elliptic curve discrete log problem, the fastest algorithm which 

has been found to solve this elliptic curve discrete log problem is of the order of P power 

of half, and there are actually developments of course in the context of elliptic curve 

discrete log problem by bringing in a concepts of pairings. So first of all, pairings in 

cryptography, we are first actually used to solve the elliptic curve discrete log problem 

that is they are used in that sense, in a (( )) sense. But after that, it was actually used to a 

positive sense in developing ciphers, but the first use or usage of parings was in the 

cryptanalysis of elliptic curve discrete log problem. So the general comment that we can 

make is that, the elliptic curve discrete log problem is probably harder than the discrete 

log problem in F p star. The discrete log problem in F p has actually got faster algorithms 

that means actually in elliptic curve discrete log problems we can do with a shorter key 

size. That is the reason why we can actually do i which shorter key sizes. 
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So I can give one question here, that is which you can take and think upon is that, 

suppose there is P which is greater than 3, these are odd prime and a and b both belongs 

to Z p. So the equation of this will be x cube plus a x plus b is equal to zero, modulo P 

has got three distinct roots in Z p. So one question is that, prove that a corresponding 

group that is G equal to E plus is actually not a cyclic group. it is not a cyclic group 
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So therefore, you remember the definition of cyclic group that is, in this case you can 

actually take any generator, and you can immediately apply the addition operation on 



that, and you should be able to construct the entire proof. The corresponding curve 

corresponding or rather corresponding group is G equal to E plus, where E is defined as 

y square equal to x cube plus a x plus b, and you are doing a modulo p operation. So the 

question is that, you have to prove that corresponding group here is actually not a cyclic 

group. We have given you some hints here, so first thing is to prove that, if you take a 

point P 1 call it alpha 1 comma 0, this has actually on order of two. Order of two means 

that if I take P 1, and if I add P 1 with P 1 I should get O. So this is the first exercise 

which you can take that is if I take P 1, add P 1 with it then I get back O. 

So for that it is very simple, if I want to obtain the doubling operation here, then I have to 

take a differentiation of this. So that is a small catch here, that is you cannot apply the 

doubling equation straight forward, because in doubling if you remember in, the 

radiation we had assumed is that y was not equal to zero. But here we have y equal to 

zero of this point, so if I take a differentiation here 2 y d y d x it is 3 x square plus a that 

is a point therefore, the d y d x at the point of alpha 1 comma 0 is not defined because 

you actually dividing by 2 y. 

So that is a vertical line ,therefore the vertical line will intersect in elliptic curve and the 

point O. therefore, two into P 1 is actually equal to zero, that is why the order is two. 

Similarly, you can actually derived points like P 2 which is alpha 2 comma 0, and P 3 as 

alpha 3 comma 0, all of them have got order of two. Now, if this alpha 1, alpha 2 and 

alpha 3 are distinct roots of these three equations or rather these equation, then you know 

that alpha 1 plus alpha 2 plus alpha 3 is actually equal to zero because there is no term 

which is an x squared term. 

Therefore, alpha 1 plus alpha 2 plus alpha 3 is equal to zero. So using this you can 

actually show that this P 1, P 2 and P 3 along with the point at infinity O actually forms a 

group, that is it forms a sub group. And the other point to be noted here is that, this 

subgroup that is consisting of P 1, P 2, P 3 and O, so sub group means first of all we have 

to define that it is an closed set. 
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The other thing is that, this sub group is actually not a cyclic subgroup. Here there is no 

generator which will generate all of them, and that is quite simple to check. And if the 

sub group is not cyclic, then the group is also not cyclic. So this is actually a problem 

form Stinson, therefore this is the sketch of the solution which you can complete. 

So these are some of the references along with I am also using the standard Douglas 

Stinson’s book as reference. So next day’s topic will be implementation of elliptic curve 

cryptography. 


