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So, in today’s class, we shall discuss about the diffie-hellman problem and security of 

ElGamal systems. So, the objectives of today’s discussion will be the diffie-hellman 

problem. 
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We shall essentially continue with the discrete logarithm problem, which we saw in the 

last class and we shall discuss about the bit security of this discrete logs and conclude 

with some comments on the semantic security of the ElGamal systems. 
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So, just to it is a reminder there will be as we have studied in the last class, that you 

know discrete logarithmic problem, we essentially have a finite group of elements and 

from element alpha, which belongs to g and which as an order of n, we can actually 

define a group by raising alpha to its various powers. So, at where like computing alpha 



power i, where i raises from 0 to n minus 1, we can obtain all the elements of the group. 

Now, we as we as we remember that, the problem of discrete logarithmic was to find out 

the unique integer i, when we have given alpha and beta, where alpha and beta satisfies 

the relation the alpha power of i is equal to beta. 

So, the question is given alpha and beta you have to find the value of i. So, i is often refer 

to as log beta, these alpha, which is often refer to as discrete logs. So, we discussed in the 

last class on source on cryptanalytic methods of how to obtain these value in certain, 

under certain special cases. 
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So, the discrete logarithm problem was essentially is the inverse of the exponentiation 

operation and it is believe to be hard, that is we believe that for proper choices of the 

parameters, computation of the discrete logarithmic problem is a difficult mathematical 

problem. 
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Now, it has got various applications for example, we have studied the application of 

discrete logarithmic problems to the ElGamal cryptosystems, where essentially we have 

got 2 components in the cipher text. Suppose, we want to encrypt a plain text say x or 

and then what we do is that, we essentially choose the constants of the group. For 

example, we choose the prime value, we choose alpha and beta which are essentially 

public values, but a is a secrete, right. 

So, therefore, a is a secrete and a is the logarithmic of beta with respect to alpha, that is a 

discrete logarithm. So, the difficulty is that, if you have given alpha, beta and also the 

choice and also the value of p, it this believed, it is assume that computation of a is a 

difficult problem. Now, based upon this assumption in this encryption scheme, what we 

have seen is that, if you want to encrypt for example, x where x is a plaintext value, 

which belongs to z p star. 

Then what we do is that, we essentially choose a random number r, which belongs to z p 

minus 1 and then what we do is that, we choose this r, which is a random number and 

compute using x and r 2 parts of the cipher text, one part is y 1 the other part is y 2. Now, 

essentially in y 2 what we do is that, we actually blind or mask the value of x by 

multiplying it with beta raise to the power of r. And in the other part of the cipher text, 

we actually compute alpha power of r modulo p right. 



So, therefore, these two things are actually transfer to the receiver, who has the 

knowledge of the value of a. Now, if it has got the knowledge of a, then what it does is 

that, it raises the part of that is y 1 the first part 2 a, which is a secrete and computes the 

value of alpha power of a r or alpha power of a r is nothing but, beta power of r. So, that 

means, the receiver can now compute the inverse of beta power of r and multiply it with 

y and which we back the value of x. Now, it is believe that, the person or the attacker, 

who does not have the knowledge of a, right cannot compute this inverse because that is 

a challenge. 

So, therefore, if from y 1 and y 2 the attacker is able to obtain the value of a; that means, 

it is able to solve the discrete logarithmic problem, then essentially, this cipher can be 

compromised and based upon the assumption that the discrete logarithmic problem is 

hard, we actually have got this cryptosystem which is popularly known as the ElGamal 

cryptosystem. 

Now, in today’s class we shall discuss about two things essentially. We shall discuss 

about that the discrete logarithmic problem is hard, but is it also difficult to obtain the 

bits of a discrete law. That is for example, if is it really difficult to obtain the 0 th bit, is it 

really difficult to obtain the first bit, is it really difficult to obtain i th bit, that is one part 

of the discussion. 

The other part will be to reflect upon the cryptosystem of ElGamal with respect to 

symantec security. So, what is symantec security? So, we have seen that in context to 

some of the cipher’s like adese is that, if we are given 2 plaintexts like x 1 and x 2 and 

we have given a ciphertext, so that means, we know that like either x 1 or x 2 has been 

encrypted, but we do not know which one has been encrypted. 

Now, the problem is that from y that is a ciphertext, if we are able to kind of guess that 

whether x 1 has been encrypted or x two has been encrypted then, we say that it is a 

violation on the symantec security. So, therefore, a good cryptosystem, a cryptosystem 

which is semantically secured should also protect against such kind of information 

leakage. So, we shall study that whether the ElGamal cryptosystem also is belongs to 

such kind of semantically secured cipher. 
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So, we shall continue with this problem and also another we will discuss about another 

application on their of this discrete logged problems, it is to the something which is 

called as a diffie-hellman problem ok. Now, diffie-hellman problem is essentially a very 

interesting way of doing q exchanges often. So, first of all let us study what is the 

problem. So, in the problem generally comes in two flavors, one is the computational 

problem and other is a decisional problem. 

So, therefore, it is important that that it is important therefore that, when you are 

discussing about the computational problem that essential to understand about what the 

problem is. So, the problem is in this case, we have been provided with a group which is 

G and their product here is dot defined as dot and we are provided with an element alpha 

which belongs to G and which has got an order of n and we are provided with two 

elements like beta and gamma which belongs to this group ok. 

So, beta and gamma belongs belonging to this group, we know that beta is nothing alpha 

raise to some value and gamma is also alpha raise to some value right. Now, our question 

is that, the question is therefore, to find another value which is delta, which belongs to 

this group also such that, the logarithmic of delta to the base a is equal to or congruent to 

the logarithm of beta base alpha multiplied with the logarithm of gamma base alpha, we 

are all doing modular n computations. 



So, the question is I mean it can equivalently which stated like this, that is we have been 

provide with suppose two values like alpha power of b and alpha power of c. So, 

therefore, assume that the beta and gamma as I have told you, that can also be written as 

alpha power of some value like b and similarly, gamma can also be written as alpha 

power of c right, it is alpha raise to some value ok. 

Now, the question is given these two values like alpha power of b and alpha power of c 

can be compute alpha power of b c that is the problem. So, with the computational diffie-

hellman problems says us that, given these group description and given these two 

elements like beta and gamma can be compute these value of log, can you find out the 

value of delta such that these equation will satisfied, ok. 

The other one is you can equivalently, you stated like if we are provided with alpha 

power of b and alpha power of c can be compute the value of alpha power of b c. So, that 

is the computational diffie-hellman problem or as is often refers to as the C D H problem 

ok. 

So, in this case we know that, we have we. So, we have. So, if I write it in a way is small 

way that is summarize, what is the computational diffie-hellman problem, it means that 

we are provided with two values like alpha power of b and we are provided with another 

value like alpha power of c can be compute the value of alpha power of b c or ok. 

So, such that here beta essentially means alpha power of b and gamma means alpha 

power of c. So, therefore, here you have basically, you have supposed to compute the 

value of delta such that this equation is satisfied ok. 

So, that means, here we are provided with two values like alpha power of b and alpha 

power of c can we compute the value of alpha power of b c, that is the computational 

diffie-hellman problem. Now, the decisional variant of this problem or as we call the 

decisional diffie-hellman problem or DDH is slightly different, the problem statement 

here is that, we are provided with alpha power of b and alpha power of c and we are also 

provided with another alpha power of d ok. 



Now, the question is that, does d satisfy the value of b c. So, that is the problem that is 

does d satisfy the value of b multiplied by c. So, therefore, this is the question that is 

does d satisfy these particular relation. 
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So, we can understand like I mean an obvious question would be like, so we have 

essentially seen 3 problems, right we have seen the discrete log problem, we have seen 

the computational diffie-hellman problem and we are seen also the decisional diffie-

hellman problem. So, one obvious question is they are directive hardness, are all of them 

equivalent or as or is that one problem is more difficulty and than the other problem, 

right. 
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So, therefore, it can you can just see this statement which says that, the diffie-hellman 

problem. So, DDH, you can actually do polynomial, I mean in polynomial time or rather 

you can do reductions between these problems. 

So, first of all, let us see that for example, if you have a solution to the discrete log 

problem then, the first of all try to deflect that you can actually solve the computational 

diffie-hellman problem, why? Because you see that, if you can solve the discrete log 

problem then, you can easily obtain can I mean for example, assume that if you can solve 

the computational diffie-hellman problem that is if the computational diffie-hellman 

problem is not hard. 

So, then you can actually solve or rather if you assume that the diffie the discrete log 

problem is not hard, I mean I mean you can solve the discrete log problem, then you can 

actually solve the computational diffie-hellman problem. 

Why, now because if we are provided, so what is the computational diffie-hellman 

problem challenge? We have been provided the alpha power of b and alpha power of c 

right. So, if you can solve the, if you have a mechanism to solve the discrete log 

problem, then from alpha power of b, you can compute the value of b. Similarly, from 

alpha power of c, you can compute the value of c. So, you can compute the value of b 

into c and therefore, you can also obtain the value of alpha power of b c right. So, this is 



trivial, you see that trivial if you can solve the discrete log problem, then you can solve 

the computational diffie-hellman problem. 

So, that means, in terms of hardness we will see that the computational diffie-hellman 

problem, if it is hard then, that is if the assumption that the computational diffie-hellman 

problem is hard, then it also implies that the discrete log problem is hard ok. 

So, therefore, we will say, that is one kind of one part of the understanding of the relative 

hardness. Now, you see the other part, that is if the computational diffie-hellman 

problem is not hard; that means if you have a mechanism to solve the computational 

diffie-hellman problem, then you also have a mechanism to solve the decisional diffie-

hellman problem. 

Now, these also very trivial, because you see that if you can... So, the this is your 

decisional diffie-hellman problem right that is you have been provided the alpha power 

of b, alpha power of c and alpha power of d and you have to check whether alpha power 

of d is equal to essential, I mean if d is congruent to b into c right. So, you see that, if you 

can solve the computational diffie-hellman problem, then given alpha power of b and 

alpha power of c, you can compute the value of alpha power of b c right. 

So, now what you can do is that, you can just check that whether alpha power of b c is 

indeed equal to alpha power of d, right. If alpha power of b c is equal to alpha power of d 

then, you can conclude that d is indeed congruent to b into c, hence solve the decisional 

diffie-hellman problem. 

So, therefore, you can also similarly state that, if the assumption that the decisional 

diffie-hellman problem is difficult problem is a hard problem, then it implies that your 

computational diffie-hellman problem is also a difficult problem, right. So, therefore, we 

can actually conclude this line, that the DDH hardness is at least as strong as the 

computational diffie-hellman hardness assumption, which is at least as strong as the 

discrete logarithmic problem hardness assumption, right. 

So, do you understand this? That is, so, therefore, what I am essentially doing is, then I 

am just writing this in kind of combining these two things and we are writing that the 



DDH assumption implies that implies the CDH assumption, which implies the discrete 

log problem assumption ok. 

So, that means, that these problem these assumption that is the DDH hardness is at least 

as strong an assumption as that of the computational diffie-hellman problem assumption, 

which is at least as strong an assumption as the discrete log problem assumption, right 

right ok. 
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So, now let us reflect another kind of interesting such equivalence or reduction, that the 

security of the ElGamal cryptosystems is equivalent to solving the computational diffie-

hellman problem. 

So, let us see so, therefore, if I say it is equivalent then, I have to show that if I can solve 

the ElGamal cryptosystem, then I can obtain a value of I can solve the computational 

diffie-hellman problem also. Similarly, the other way is that, if I can solve the 

computational diffie-hellman problem, I should have a mechanism to solve the ElGamal 

cryptosystem also. 

So, here let us assume that, there is an oracle call CDH, which solves the computational 

dc element problem. So, what does it mean? That means if it is given, so that means, 

with I have an oracle, called oracle CDH, which takes a value of alpha beta and to y 1. 

So, what is y 1? Y 1 was equal to alpha power of r according to our ElGamal 



cryptosystem right. So, if I take a value of this thing, if I am I have been provide with 

this and what was beta equal to, beta was equal to alpha power of a right that is a secrete 

value. 

So, now if I am able to solve the computational diffie-hellman problem, then this means 

they are from these two values, I should be able to compute the value of alpha power of a 

r, I should be able to compute the value of alpha power of a r. So, call this as delta; that 

means, you get a value of alpha power of a r using an oracle, which is able to solve the 

computational diffie-hellman problem. 

So, now, one can actually decrypt and obtain the value of x using this, how? Now, 

because you know that, if you are able to obtain the value of alpha power of a r then, you 

need then alpha power of a r is nothing but, beta power of r right and you know that y 2 

was equal to x multiplied by beta power of r right. 

That is nothing but, x multiplied by delta right. So, therefore, in order to find the value of 

x, I just need to take y 2 and multiplied with the inverse of delta; that means, whatever 

the oracle to solve CDH problem gives me I take or compute the multiplied with the 

inverse and multiplied with y 2, I obtain the value of x, right. 

Now, that explains one direction of the problem, we have other direction to prove right. 

So, in that case what we will do? We will assume that, there is an oracle which solves the 

ElGamal cryptosystem right. So, assume that there is an oracle which solves the ElGamal 

cryptosystem and we take seen again two values like alpha beta and of course, the 

ciphertext y 1 and y 2 and gives back what, it gives back the value of x because that is 

the objective of this oracle, right. 

If basically deciphers the value of the plaintext from y 1 and y 2. So, therefore, it returns 

back to me x. So, now, we know that, this relation is true, right we know that x is equal 

to y 2 into delta inverse. So, therefore, you see that trivially that, you can actually obtain 

the value of delta which is equal to y 2 into x inverse right and what is delta? We have 

discussed right that if you can calculate the value of delta, then you are essentially 

solving the computational diffie-hellman problem ok. 



So, that means, that if you can solve the ElGamal cryptosystem, then you can also solve 

the computational diffie-hellman problem. So, therefore, you know that CDH assumption 

is equal to that ElGamal assumption and similarly, you see that the ElGamal assumption 

is also I mean is I mean implying so, therefore, the CDH assumption is implying the 

ElGamal assumption. 

Similarly, the ElGamal assumption is implying the CDH assumption. So, therefore, we 

will see that the ElGamal assumption is equivalent to the CDH assumption, right it is 

clear. 
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So, now, we shall go into an application of the diffie-hellman problem, it is a very 

interesting application of how to solve the key agreement scheme. 

So, we have discussed like in context to symmetric ciphers, that you for example, if there 

is a network with say n nodes, and then you need to kind of exchange keys between all of 

them, right that is a huge amount of key exchange. So, which means that it is a very 

important problem to solve how to exchange the key is between two parties. So, we will 

we will see that, the discrete I mean the diffie-hellman problem essentially was 

propounded, I mean one of the strongest application of early of diffie-hellman problems 

is to solve the key agreement scheme that is to give a solution for key agreement. 



So, we see that this is the setting like we have a public value of g and p, which are two 

public quantities and there is a secret, that is Alice has got, a secrete component called a 

and bob has a secrete component called b ok. So, therefore, what they do is this, there is 

alice computes g power of a modulo p, that is it takes the public quantities g, raises it to a 

and computes modulo p; the other the other part, the other is that bob also computes the 

value of g power of b modulo p and obtains and then a and obtains g power of b modulo 

p and sends it to alice ok. 

So, now the objective of both alice and bob will be two way to reach a common 

consensus, that is to reach an agreed point. So, what alice does is this, that is alice takes g 

power of b modulo p because that is the part which if receives from bob and raises g 

power of b modulo p to its secrete value a ok. 

So, therefore, if I raise g power of b raise it to a, then I obtain g power of b a, but that is 

equal to g power of a b mode p right. So, what bob does is the other way? That is bob has 

got g power of a modulo p from alice and what it does is that, it raises it to the power of 

b. And therefore, uses of both alice and bob, essentially have computed in the value of g 

power of a b modulo p, right. Now, this is essentially used as a symmetric key for further 

encryption. 

So, therefore, if I want to use and a s b s and other symmetric ciphers, then again use 

these exchanged key as my computed symmetric key right. So, now you see that, you 

can reflect upon the difficulty of that problem, that is why cannot a person who does not 

have a knowledge of this secrete values a and b, he is able to compute the value of g 

power of a b mod p ok. 

So, you see that, that is precisely a diffie-hellman assumption, that is if we are provided 

with g power of a mod p and with g power of b modulo p, then I should not be able to 

complete the value of g power of a b modulo p, right or even I or the d c element the 

decisional d c element problems says as, there are even if I do not provided with a g 

power of b modulo p, I should not be able to say that, this g power b modulo p has that 

this nice property of being equal to g power of a b modulo. I should not be able to even 

decide that, that is a decisional diffie-hellman problem right. 



So, we have a computational as I have flavor and you also have a decisional flavor of the 

same problem right. But, you see that, you can actually deflect that there is a very small I 

mean. So, these are a kind of something which is called as passive (( )), but what if it 

also can do an activate (( )). So, you see that the d c element key exchange actually does 

not give any god guard against that. 
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For example, you assume that there is party call trudy who comes in between and what it 

does is this. That is it takes g power of a modulo p and just change is it to something like 

g power of t modulo p and just change ok. 

So, therefore, this g power of a modulo p is now not I mean I am not following the (( )) 

diffie-hellman problem, but I am just modifying it to something like g power of t modulo 

p. So, this kind of modifications is commonly referred in the cryptographic literature as 

man in the middle attacks. So, this is an active attack no doubt ok. 

So, similarly, now you see (( )) g power of b modulo p, but trudy just modify something 

like g power of t modulo p, right. Now, you see that both of these parties what it will do 

is that, alice will raise this g power of t modulo p to its own secret. Similarly, trudy we 

can actually raise g power a modulo p to its own secret t right and obtain g power a t 

modulo p right. Now, what about trudy and bob, both of them actually computes the 

value of g power of b t modulo p. 



So, now, you see that both alice and trudy can actually continue their communications 

using their secret key g power a t modulo p, what about trudy and bob? They can 

actually compute using I mean, continue communications using g power b t modulo p, 

but you note one thing that alice does not know the trudy exists, bob also does not know 

the trudy exists. 

So, which means that it is a problem, right because you see that alice and bob are 

suppose to communicate between each other, while in the network actually alice is 

computing with a non trusted party or an attacker, without knowing that it is actually 

intruding its information. That is, knowing that the actual information or the actual 

intended receiver of the information is not receiving the information. So, this is a clear 

breach of the security right. 

So, therefore, I see that this is the very something that we need to kind of guard against. 
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So, therefore, the man in the middle attack on the diffie-hellman key agreement scheme 

shows that, although over primitives are strong your protocol can be weak right. So, we 

till now we have been actually trying to kind of design strong primitives right, but we see 

the here that, although your primitives are strong but, your application can be weak ok. 

So, therefore, the next question can come like, how to design strong protocols from 

strong primitives. So, that is a kind of a very kind of a pertinent research problem. So, 



here I mean, so, therefore, you have got the entire domain of cryptographic protocols and 

how to design protocols ok. 
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So, there are some possible preventing techniques like for example, I will encrypt the 

diffie-hellman exchange with symmetric key, I will encrypt the diffie-hellman exchange 

with public key, I will sign the diffie-hellman problems with private keys. So, there are 

can be some after thoughts like how to prevent the man in the middle attack, but the 

point is that, remember that the diffie-hellman key exchange as stated as for the basic 

definition is not secured against man in the middle attack, you have to do something 

extra ok. 
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But anyway, we will not continue with this right now, but we rather continue with the bit 

discrete log problem and reflect upon the mathematical problem of the bit security of 

discrete logs ok. 

So, what we will first discuss is this problem, that is the discrete log i th bit problem. So, 

what is the problem first of all? The problem is that we have been given instance like 

again what we have seen previously prime number p, alpha, beta and the value of i. Here, 

your alpha belongs to z p star and is a primitive element, beta also belongs to z p star and 

i is an integer, which lies between 1 and logarithm of p minus 1 base 2. 

The problem that we are considering right now or that we are referring as the discrete log 

I th bit problem is this, that is to compute l I beta that is given beta and the beta is equal 

to alpha power of a, the problem is that to essentially compute the value of the i th least 

significant bit in a binary representation of log beta base alpha ok. 

So, your logarithm of beta base alpha is denoted as a right. Now, you know that a can be 

represented using a binary values. So, I can start like this x 0, x 1 and so on, right. So, 

my problem when I am considering the l I beta is to compute the value of x I or rather x I 

minus 1 ok. 

So, my problem is to essentially compute the value of the i th p. So, when I am referring 

to l 1 beta, I am compute the value of x 0, when I am referring to l I beta I am computing 



the value of x I minus 1, so that is the problem. So, you can say that, this x 0 I mean that 

depends upon your numbering; you can also number it from x1 to x2 and so on, just to 

avoid confusion. So, you can say that, l 1 beta, actually refers to x1 in that case and x I 

minus 1 refers to x I, that is just to avoid the confusion of this the indices ok. 

So, anyway the problem is to compute the i th least significant bit. 
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So, we can actually see that, solving for i equal to 1 is very easy, that is to compute the 

computing the least significant bit of a, that is where a is equal to log beta base alpha is 

actually very easy, so, why? So, for this we will actually use our previous idea of 

something which is called as quadratic residues. 

So, we have studied quadratic residues in contest 2 RSA right, we discussed about RSA. 

So, what was quadratic residue? Quadratic residue any one was said to be quadratic 

residue, if you can actually represent it by the square of another element right in that 

group. So, then we refer that to as a quadratic residue. So, therefore, if I say that beta 

equal to alpha power of a, then if this is a quadratic residue, then this is actually if and 

only if condition is that, a has to be even ok. 

So, therefore, you need to compute, so, therefore, beta will be a quadratic residue if and 

only if, a is even. And from Euler’s criteria, which we have studied also previously, we 

know that if beta I mean beta is a quadratic residue of modulo p if and only if, the way of 



checking that is by raising beta to the power of p minus 1 by 2 and checking that whether 

it is congruent to one modulo p right. So, what can be the possible values of beta to the 

power p minus 1 by 2, it can be either plus 1 or it can be minus 1, because you see that 

from farmar’s little principle beta power of p minus 1 is equal to 1, right. 

So, it can be either plus 1 or minus 1. So, you see that if it is equal to plus 1 modulo p 

then, beta is actually a quadratic residue; similarly, beta is a quadratic residue implies 

that, this is an if and only if condition necessary and sufficient right. So, you see that 

therefore, if I plot these 2 points, what does it mean? It means that, I have to obtain l 1 

beta right. 

So, we have to computing the least significant bit. Now, if this is an even value, that is if 

a is even then, what is the value of l 1 beta? It is equal to 0, because only then the 

exponent is even right. So, you see that if it is even, right what it says is that, then this is 

an if and only if condition, it is equivalent to saying that beta is a quadratic residue and if 

beta is a quadratic residue, then its equivalent to compute these value. 

So, therefore, what will you do is that you will take beta and raise it to the power of p 

minus 1 by 2 and check whether it is equal to 1 modulo p congruent to 1 modulo p, if 

that is so, then you conclude that a is even and therefore, l 1 beta is 0, right. Otherwise it 

is odd and hence one right you see this is an efficient way of understanding the 0 th p or 

the first p or have been the least significant p. 

So, that means, what? That means, the although a discrete log problem is believed to be a 

difficult problem, but actually the 0 th bit is easy to compute or the least significant bit is 

easy to compute. So, you see that these two problems are difficult, where are that 

different like why that the that computing the value of the discrete log problem is not 

exactly the same as compute of an I th bit of the discrete log right. So, you see (( )) it is 

very easy to compute the least significant. 

Now, the question is it also difficult to compute any bit the first bit, second bit and so on 

because you see that there is a danger right because if I am able to retrieve all the bits 

then essentially I can solve the discrete log problem right. So, therefore, the question is 

whether the next bit is also difficult or the next bit is also difficult ok. 
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So, we will first of all consider a special case, where p is congruent to 3 modulo 4. So, in 

this case why why we are talking about p being congruent to 3 modulo 4, I will talk 

about that later, but first of all let us discuss about this case like p is congruent to 3 

modulo 4. 

So, you note that if you are if p is congruent to 3 modulo 4 then I mean, so, for example, 

if you for example, if you can refer like p right you can always right like p minus 1 for 

example, as p minus 1 is a even value right. 
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So, therefore, you can always write it as some 2 power of s right multiplied with some t 

value where t is not a multiple of 2 that is t is an odd value right . So, therefore, if I take 

the base, I mean the minimum case where s, so s is greater than equal to 1. So, I take the 

s case s equal to 1 if s is equal to 1, then it means that p minus 1 is equal to 2 into t, right. 

So, you see that this p equal to that means, that p is congruent to 3 modulo 4 because if 

you take p and if you subtract like 1. So, it becomes 2, right. So, then it becomes 2 

modulo 4. So, therefore, this is the best I mean the first case, when we consider this case 

like p minus 1 equal to 2 power of s t, then I am considering the case that s is equal to 1 

and hence I am considering a case when p is congruent to 3 modulo 4 ok. 

So, therefore, if p is congruent to 3 modulo 4 then, we will see a very interesting case; 

that is, if we have an oracle to solve the value of l 2 beta, that is compute the value of l 2 

we have seen that l 1 beta is easy right. So, if we actually can we compute l 2 beta then, 

we can use that to obtain the value of the discrete, that is we can solve the discrete log 

problem in the prime field ok. 

So, now in order to understand the algorithm, we have to see some facts we have to 

prove some facts. So, first of all let us try, let us start with this that is, let us start with 

this that is, if the square root of beta exists, that is beta is a value which is given to me 

and believe that, assume that the square root of beta exists. 
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So, if the square root of beta exists, then we know that beta is a quadratic residue right; 

that means beta power of p minus 1 by 2 is congruent to 1 modulo p from the Euler’s 

criteria, right. So, what we do is that, we multiply now both sides by beta, if you multiply 

both sides by beta, then you have got on the left side beta p plus 1 by 2 because you 

multiply by beta. So, if plus 1 gets added and on the right hand side, you have got beta 

modulo p right. 

Now, what is beta modulo p? We know that beta modulo p is nothing but, alpha power of 

a modulo p right and you know that if and only if that I mean beta is a quadratic residue 

if and only if, a is even right. So, which means a by 2 exists and is an integer. So, 

therefore, we can say that, plus minus beta p plus 1 by 4 is congruent to alpha power of a 

by 2 modulo p right; that means, if the square root of beta exists then, the square root can 

be obtained by computing plus minus beta to the power of p plus 1 by 4. 

So, now note that we are talking about the case when p is equal congruent to 3 modulo 4 

right. So, therefore, you see that p plus 1 by 4 is actually an integer, right and that is why 

we actually, if I want to compute the square root of beta, then I can actually compute 

beta to the power of p plus 1 by 4, plus or minus, is it ok. So, you see that if p was not 

equal to 3 modulo 4, then I would not have been share that it is an integer and the hence I 

could not have say that this the square root ok. 

But here, since this value is given to us, we can say that, if I want to compute the square 

root, I can compute beta to the power of p plus 1 by 4 plus or minus or the square roots 

right. And we also wrote one thing, that is if I compute the value of some value like take 

any value like gamma square and p minus gamma square is same, when you are doing a 

modulo p and p is a prime right. So, that means, you have got essentially exactly p minus 

1 by 2 quadratic residues we discussed about this, right and these 2 values are different 

like this gamma and this p minus gamma are different ok. 

So, therefore, if you have got this plus so, therefore, if I am if I want to compute the 

square root, then I know that, it is either plus beta to the power of p plus 1 by 4 or it is 

minus beta to the power of p plus 1 by 4 right. And we also know that, if one of them is 

gamma, then the other one will be p minus gamma because there are only 2 squares, 

right if the square roots exist, then there are 2 squares ok. 



So, therefore, the question is that I know that, alpha power of a by 2 is congruent to plus 

minus beta to the power of p plus 1 by 4 modulo p, but the question is which one is 

correct? That is which is the actual square root, so for that we will use this factor that is 

you see that I know that, l 2 beta is the second bit of beta right. 
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Now, when you are computing alpha power of a by 2 right, then essentially it is a first 

bit. So, can you see that l 1 alpha to the power of a by 2 is actually actually equal to l 2 to 

the power of I mean l 2 beta, right because you know that, when you are taking the 

square root, right then essentially, so first of all you know that, the square root exists. 

That means, if you think in terms of like thinking a bit like x 0, x 1 and so on, and then 

your x 0 is 0 because the square root exists, right. So, for example, if I write this a, a 

could be what? a would be like something like x 0 plus 2 x 1 like so on, right. 

So, therefore, if I know that, since the square root of alpha power of a exists; that means, 

this is equivalent to say in that is the square root of this exists, equivalent to saying that a 

is even, so that means, is equivalent to saying that x 0 is 0. That means, your a is actually 

this plus 2 x 1; that means, you can compute the value of a by 2 and that will be equal to 

this plus x 1, right. 

So, therefore, what is the value of l 1 of alpha power of a by 2 that will be the value of 

this or this, right that is the first bit, that is equal to x 1. And this is exactly equal to that 



of l 2 of beta because in that case, this one was a second bit right. So, therefore, l 1 alpha 

power of I mean, l 1 alpha power of a by 2 is equal to l 2 beta right. 

So, therefore, what you can do is that, if you can check that if I just check this, so, I 

know that beta to the power p plus 1 by 4 is a probable square root, I compute l 1 of that 

and check whether it is equal to l 2 beta, right if I can compute l 2 beta of course, right. 

So, if yes then alpha power of a by 2 will say is congruent to gamma, which is equal to 

beta to the power of p plus 1 by 4 else, half a power of a by 2 will be congruent to p 

minus gamma because that is a other probable square root right, so that means, either this 

is the square root or this is the square root, agreed on this. 

So now, we will actually see the steps to obtain the entire discrete block. Now, you know 

that a which is equal to log beta base alpha is nothing but, this is equal to x i and you 

multiply it with two power of i right to obtain the entire decimal value of a. So, therefore, 

you see, so you see that alpha power of… So, if you obtain the value of beta then, beta is 

equal to alpha power of like something like x 0 plus 2 x 1 plus so on, right. 

So, therefore, l 1 of beta, we can actually use l 1 of beta because we saw that it was an 

easy problem to obtain the value of x 0. So, one can easily obtain the value of x 0 by the 

previous technique that we have seen, right. 
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So, now the question is how to I mean now the question is that, we have discussed that 

we will assume that, somebody can compute the second beta, can compute the value of l 

1 beta either can compute the value of l 2 beta and from there try to obtain the value of a. 

So, therefore, what we will do is this, that is we will take, we will adopt a method like 

this; we will take beta and compute the value of beta divided by alpha power of x 0. 

So, if I take beta and divide beta by alpha power of x 0, then that is equal to what? Alpha 

to the power of 1 plus 2 x 1 modulo p, so basically, what we have done is that, just taken 

out the part for alpha power of x 0, this is the part which remains, right. 

So, now the square root of beta exists for sure, why because you know that this is an 

even value, the exponent is even right. So, what we do is that, we compute the value of 

gamma which is equal to beta to the power of p plus 1 by 4. So, note that beta has been 

updated by these values, do you see that? So, we compute the value of beta to the power 

of p plus 1 by 4. 

Now, you obtain I mean, in order to obtain the actual square root because you know that, 

there is a dilemma because this is plus beta power of beta power of p plus 1 by 4 or p 

minus that. So, what we do is that, we compute x 1 from the oracle to compute l 2 beta. 

So, assume that there is an oracle which actually computes the value of l 2 beta. So, that 

is the way how we do the proofs, right. 

So, we assume that there is an oracle which computes the value of l 2 beta and gives the 

value of x 1. So, now, we can check that whether x 1 is indeed equal to l 1 gamma, right 

we are actually obtain the value of gamma and I know that, computing l 1 gamma is 

easy. So, I can actually use compute the value of l 1 gamma and check whether it is 

equal to the value of oracle l 2 beta returns right. 

If this is so, then the square root of beta is indeed beta to the power of p plus 1 by 4, else 

it is equal to p minus that right. So, basically at each stage, you are sure about what is 

this square root, right. So, therefore, you can continue this method like this. So, you see 

that we continue this process of the oracle beta to obtain the bits x 2, x 3 and so on to 

obtain the value of the discrete log in this fashion, ok. 



So, summarizing this is the algorithm, the final algorithm that is what you do is this. That 

is you take so, therefore, the objective of this is using l 2 oracle to solve the discrete log 

problem. So, I have been given with p alpha and beta, my objective is to compute the 

value of a. So, what I first do is that, I obtain the value of x 0 by computing the value of l 

1 beta right. 

So, then I compute the value of beta is equal to beta by alpha power of x 0 modulo p, 

because I know already a value of x 0 I can compute alpha power of x 0 and then I start a 

running index I equal to 1 and until and unless while beta is not equal to 1 what we do is 

this. We calculate the value of x I which is equal to what oracle l 2 beta returns and 

compute the value of beta to the power of p plus 1 by 4, ok. 

And now, we check that, where that if l i gamma is equal to x i if l i gamma is equal to x 

i, we will say that beta is equal to gamma because then beta is a square root, otherwise p 

minus gamma is a square root .Then we again compute the value of beta by dividing beta 

by alpha power of x i so that means, you see that at each stage, we are actually taking out 

we are computing the square root, right. 
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So, that means that, if you have to been given like say for example, alpha power of so on. 

So, for example, first of all we have got like plus 2 x 1 plus x 0, you have divided this by 

alpha power of x 0 that was the first step, right. And from there you compute the value of 



alpha x 1 plus 2 x 1 and you know that, the square root existed because this one was an 

even quantity, right. 

And then, what did you do? You basically took out I mean you confirm that, you confirm 

the square root of this, right. and then what and What will be the square root of this? The 

square root of this essentially will be like you can you essentially have computing the 

you are raising this value to the power of half, right and once you compute the square 

root of this, again you have got like something like alpha this thing plus x 1, right. 

So, you have got 2 here, you have got 2 x 2, you see that. So, now, if I divide again this 

by alpha power of x 1 I again have this right, alpha so on plus 2 of x 1 right. So, that 

means, sorry 2 of x 2, two of x 2 right, so that means, I again can I again can I know that 

again that the square root of this exist, because this is again an even number, right. 

So, that means, again I can compute confirm the value of square root and I know that, if I 

confirm the value of square root, then I am again raising this to the power of half right. 

So, again it becomes something plus x 2. So, again I divide that alpha power of x 2 right. 

So, what you are basically doing is that, using this oracle which solves the l 2 beta, you 

are actually confirming the value of the square root, ok. 
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And from there, you are actually dividing that contribution and computing the discrete 

logs, gradually one after the other you are obtaining the bits and you are if you are able 

to obtain all the bits, then you essentially solve the discrete log value. 

So, that is a basic algorithm to solve the discrete log problem. Now, some final 

comments on this would be like, the prove holds for any p, where p is equal to for p 

minus 1 is 2 power of s 3. So, we does we told you that this is actually hold for any p 

minus 1, where p minus 1 is equal to 2 power s into t. So, it does not necessarily hold 

only for p is congruent to 3 modulo 4, we can actually have a similar result when p 

minus 1 is congruent or rather is equal to 2 power of s t, where s is an integer ok. 
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So, in that case, we will see that we can I mean using the previous thing we have reflect 

that, obtaining s l s b’s will be easy, because you now that, p minus 1 is equal to 2 power 

s t right. So, therefore, using the similar technique, you can obtain s l s b’s x 0, x 1 x 2 till 

x’s minus 1. But, however, obtaining the x plus 1 th bit will be difficult, I mean if you 

are able to obtain the x plus 1 th bit, right then exactly similarly what we have seen in 

context to p equal to congruent to 3 modulo 4, you can obtain the entire discrete log ok. 
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So, therefore, if you I mean the discrete log problem here, it will be difficult for this kind 

of beta, when i is going from 0 to s, I mean to s minus 1, but So, therefore, here in this 

part it will be easy, this will be easy, but l I beta will be hard, when i is greater than equal 

to s, it will be difficult. So, it is difficult, again the hardness is difficult in the sense that if 

you are able to solve this problem, then you are able to solve the discrete log problem, 

ok. 
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So, when I say hard it is an assumption, it is an assumed hardness, right is this part clear. 
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So, now, we shall conclude by some comments under semantic security of ElGamal 

crypto systems. So, in this case, now objective is that, I have been provided with the 

ciphertext for two different plaintexts and I have to distinguish, right at the say from the 

ciphertext are whether x 1 has been encrypted or whether x 2 has been encrypted. So, for 

that, let us just little bit recap the ElGamal crypto system. 
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We know that, E x comma r is equal to y 1 comma y 2, where y 1 is equal to alpha power 

of r and y 2 is equal to x multiplied with beta power of r, for some random r, ok. 

So, now we can use the Euler’s criteria to test what, to test that to test y whether y 1 and 

beta are quadratic residues, how? So, what you can do is this right, you can have actually 

you know that I mean as a as an attacker, you have an access to y 1 right. So, therefore, 

what will you do is that, you will raise y 1 to the power of p minus 1 by 2 and check that 

whether it is equal to 1 or not and from there, you can conclude that whether y 1 is a 

quadratic residue or not. 

Now, if y 1 is so you know that, y 1 is a quadratic residue is equivalent to saying that r is 

even number. So, you can derive the parity of r, right. Similarly, you know that, beta is 

equal to alpha power of a, I mean it is a public variable. So, you can again compute beta 

power of b minus 1 by 2 and from there you can conclude that whether beta is a 

quadratic residue or not. Now, if you know that, beta is a quadratic residue again from 

there you can obtain the information that, whether a is even or not right. 

So, therefore, using Euler’s criteria from y 1 and from beta you can obtain the parity of 

both r and a right. And therefore, you can obtain the parity of a r right. So, you can 

obtain the parity of a r means, then you can actually obtain you can obtain some more 

information like, you know that if a r is an even value, then you know that, beta power of 



r is nothing but, alpha power of a r. So, from there, you can also conclude that whether 

beta power of r is a quadratic residue element right. 

So, therefore, one can actually engage use this Euler’s criteria to understand that, 

whether beta power of r is a quadratic residue or not, do you see this. So, if beta power of 

r is a quadratic residue, then I can always write beta power of r as some value of alpha 

power of b, where b is even, right. 

Now, the other thing is that you know that, if so, similarly you also know that, y 21 is 

some alpha power of you can say alpha power of c or all that you know it is alpha power 

of r, so you also know that from the fact that, whether y 2 has is an has it is a quadratic 

residue or not, you know that also that whether r is even or not right and what is x? x is 

nothing but, y 2 multiplied with the inverse of beta right. 

So, what is y 2? Now, y 2 is alpha power of r multiplied with the inverse of alpha power 

of b right. So, that is equal to alpha power of r minus b, yes or no right. So, now, you see 

that if x is a quadratic residue, then you know that r minus b has to be even right. 

So, which means that either both r and b are odd or both r and b are even, right; so which 

means that, if I have got two classes of plaintext. Say one class of plaintexts, where all of 

them are quadratic residues and the other class, where both of them are non quadratic 

residues. So, suppose I choose one value of x 1 from here and I choose 1 value of x 2 

from this class of x 2, right. I will do an encryption, ElGamal encryption on x 1 and I 

will do an ElGamal encryption of x 2. 

Now, from this I can actually obtain understand that, whether x 1 has been encrypted or 

whether x 2 has been encrypted, because what I will check is the parity of these things 

and try to see that, whether both r and b are even or both r and b are odd. If both an r and 

b are even and both r and b are odd, then it indicates, so if either both r and b are even 

and or both r and b are odd, that it indicates that x is a quadratic residues, do you see 

that; otherwise, x is a non quadratic residue. 
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So, summarizing this is what it says here that now, this fact can be used to distinguish the 

encryptions of two messages x 1 and x 2, where x 1 is a quadratic residue, but x 2 is not. 

Now, it is an encryption of x 1, if and only if both y 2 and beta power of r are both 

quadratic residues and both non quadratic residues. 

So, one can stop this attack, if beta is a quadratic residue at every plaintext is required to 

be a quadratic residues. So, you see that the some extra condition needs to be imposed to 

make ElGamal encryption also semantically secure, right. 
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So, I will give you one point to kind of some exercise to solve, like we have talked about 

beta is congruent to 3 modulo 4. So, you can also take this problem of beta being 

congruent to 5 modulo 8. 

And suppose that a is congruent residue modulo p, suppose one problem what you can 

do is that you can show that, a power of p minus 1 by 4 is congruent to plus minus 1 

modulo p and if a power of p minus 1 by 4 is congruent to 1 modulo p then, you can 

prove similar to what we have done actually. That is prove that a power of p plus 3 by 8 

modulo p is a square root of a mod p; otherwise; if it is minus 1, then you can show that 

2 power of minus 1 into 4 power 4 a raise to the power of p plus 3 by 8 modulo p is a 

square root of a mod p. 

And given a primitive element alpha, which belongs to z p star and given any beta which 

belongs to z p star, you can show that l 2 beta can be actually computed efficiently. So, 

this is an exercise, which you can take and which you can try to solve. 
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So, my references are been from Stinson’s book that is of for Stinson cryptography 

theory and practice of Chapman and hall and C R C, you can get more details of what we 

have discussed. And in next day’s topic, we will introduce the topic of elliptic curve 

cryptography. 
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