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So, welcome to this class on discrete log problem, so as we were discussing about public 
key cryptography, we will continue with that and discuss about the following topics. 
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So, first, we will introduce the problem of discrete logarithm problem and try to 

understand like, what is the problem statement. We shall follow it up with an application 

of the discrete logarithm problem to a cryptosystem which is commonly referred to as 

the ELGamal cryptographic algorithm. 

And then, we shall discuss about some popular cryptanalytic techniques for discrete 

logarithms and which are commonly - I mean - with the names of which those algorithms 

are the Shank's Algorithm, the Pohlig-Hellman algorithm and the index calculus 

algorithm. And we shall conclude with another application of the discrete logarithm 



problem to key agreement or key exchange problems and it is commonly referred to as a 

Diffie-Hellman problem. 

So, it is a slight variation of the discrete logarithmic problem, but we shall see the, first 

of all that corresponding problem and also its application in key exchange when two 

parties would like to exchange information to arrive at a common key. 
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So, first of all, what is the problem of discrete logarithm? So, you consider a finite 

mathematical group where G is the group and dot is the corresponding operator, that is, 

this is a multiplication operation. And now for an element alpha which belongs to this 

group G and has order n, so we know what is meant by order. 

So, means that, if I take alpha and if I multiply it n times, then I get the unity of this 

group. So, let the group let the corresponding set be referred to as this, and it is obtained 

by raising alpha to its various powers. The possible powers which is referred as i, can 

range from the range of it lies between 0 to n minus 1, both the intervals included right. 

So, we know that alpha power n is not included because alpha powered n is back to 1, 

that is, this is a circular group. 

So, the discrete logarithmic problem, that is the DLP as it is commonly known as, is to 

find the unique integer i, where i lies between 0 and n minus 1 such that this particular 

condition is satisfied; that means, there are 2 given elements alpha and beta. The 



question is to find this i, such that alpha powered of i is equal to beta. So, basically, what 

we are trying to find out is logarithm of beta with respect to alpha. 

So, this is commonly referred to as the discrete log of beta with reference to or with 

respect to the value alpha. So, now, for proper choices of this group, like if I choose the 

parameters properly as we will see in context to the cryptanalysis, that if then this 

particular computation of this particular value is considered to be a computationally 

difficult problem. 

So, therefore, this is possible or a candidate one way function, as we have seen that in 

context to public key algorithms previously, like when we studied about r s a, then we 

have also seen that one way functions or candidate one way functions are important to 

the development of public key ciphers. Similarly, here, this is also another possible 

candidate one way function which can have potential applications in public key 

cryptography. 
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So, discrete logarithmic problem, as we know is the inverse of the exponentiation 

operation. So, if I consider the exponentiation operation in the modulo of p field then, the 

discrete logarithm is nothing but the corresponding inverse right. Now, exponentiation is 

easy to compute, we know that there is a polynomial time algorithm commonly referred 

to as the square and multiply algorithm through which we can compute the 



exponentiation quite easily. However, if their group is properly chosen, then the 

computation of discrete log is believed to be a difficult problem ok. 

So, therefore, the exponentiation is a possible one way problem because the forward 

direction is considered to be easy - is quite easy - we have a polynomial term solution for 

computing the exponentiation. And however, the inwards, that is, computing the discrete 

log is considered to be a computationally interactive or a difficult problem and therefore, 

this has got potential applications in public key ciphers. 
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So, let us see one such application and it is commonly referred to as the ELGamal 

Cryptosystem. Now, you note that in ELGamal cryptosystem, we will define or we 

denote this p to be a prime number and consider the group Z p star. 

So, we now - Remember, what is meant by Z p star, that is, here it is a (( multip)) group, 

that is, 0 is being extruded from this group. So, Z, we are assuming that, in this prime 

group that is Z p star; there computation of the discrete log problem is computationally 

difficult. So, that is our basic assumption, using this assumption we will see one proposal 

of a possible cryptosystem. 

So, let alpha which belongs to Z p star be a primitive element; primitive element, we 

know that, if I take this primitive element, then if I keep on multiplying then, I generate 

all the elements in the group. So, therefore, using this particular primitive element what 

we will do is, we will see how the cryptosystem is defined. So, immediately you know 

that for any cryptosystem it is a 5 tuple. 

So, therefore, there is a corresponding plaintext and also a corresponding cipher text 

space. So, here, the plaintext is also chosen from the Z p star, that is, it is any element in 

Z p star. However, the cipher text is actually a cross product of 2 or it is an ordered pair, 

that is, you can refer to as a y 1 comma y 2, where y 1 is an element of the Z p star and y 

2 is also an element of Z p star. So, therefore, the space of cipher text is obtained by the 

cartesian product of Z p star and Z p star. 

So, now, what is the key of this algorithm? The key of this algorithm is the public 

parameter p, which is known to everybody, that is, not only the sender and the receiver 

knows, but also the adversary knows. Similarly, the alpha and beta are also publically 

known values, but a is actually a secret. So, if I just considered like a public key cipher 

then, p alpha and beta is what is the public key, but a gives the corresponding private 

key, is a corresponding secret element. 
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Now, this value like alpha and beta satisfy a particular relation, that is, if I take alpha and 

raise it to the power of a, then I obtain beta of course, you know modulo p field. But 

here, you note that based upon this assumption if i even if i give to an adversary alpha 

and beta, because of the proper choice of p computation of a is believed to be difficult. 

Now, we will try to apply this particular assumption to encrypt a possible message say x. 

So, the idea is quite simple, the idea is what you, so when you are trying to encrypt x, 

what you do is that you choose a random number r, which belongs to Z p minus 1. So, Z 

p minus 1 means, it will lie 0 and continue till p minus 2. So, we choose an odd which 

belongs to Z p minus 1, and using that we will encrypt the value of x. 

So, odd is remembered that odd is a random choice, so what we do is, that we take x and 

we also pair it with the random component called r and obtain the cipher text y 1 and y 2. 

So, from this statement itself, you know that the computation of y 1 and y 2 actually not 

only depends upon the plaintext x, but also depends upon the random choice r. 

So which means that it is not necessary that the same value of x will always get mapped 

to the same cipher text, so this algorithm is by definition, a randomized algorithm. So, 

what we do is, essentially computation of these y 1 and y 2 as two pairs. So, note first of 

all y 2 actually, so y 2 what we do is this, that is, we take beta, which is, essentially this 

value and raise it to the power of r and multiply it with x, so that is somewhat some sort 



of a multiplicative masking. You take x and you mask it by multiplying it with beta 

power of r. So, therefore, what do you do is this, that is, you compute y 2 and remember 

that y 2 is nothing but x and you multiply it with beta power of r and do a modulo p. 
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So, next, what you do is that you compute y 1, and y 1 is nothing but alpha and raised 

again power 2 power of r, and again (( )) then (( )) of course, the modulo p is of course, 

there. Now, you note that by our previous assumption the choice of beta and alpha, we 

know that beta is nothing, but alpha power of a mod p. So, what the receiver does is that, 

when it receives this y 2 in order to find out this value of x, it needs the inverse of beta 

power of r; that means it needs to compute the value of beta power of r. 

But remember that the receiver also has got this alpha power of r, so what the receiver 

does is, the receiver takes alpha power of r, that is basically y 1, and raises both of them 

to the power of a. So, if you do that, that is equal to alpha power of a whole power of r 

and that is nothing but beta power of r. 

So, therefore, because the corresponding receiver has knowledge of this value of a 

computation of beta power of r is quite trivial, you can do it in polynomial steps. So, then 

what the receiver does is that, the receiver computes the inverse of beta power of r, that 

is beta power of r inverse, and you know that by extended Euclidean algorithm, you can 

actually compute the inverse also in polynomial number of steps - in poly steps. 



So, then what it does is that it masks this inverse or multiplies this inverse with y and 

therefore, if you multiply x beta power of r with the inverse of beta power of r then, you 

again get back x. So, therefore, the receiver is able to correctly obtain back the value of 

x. But however, it is believed that if the adversary has to find out the value of x, it needs 

either to guess the value of a or it needs to obtain the value of a through some means, 

which means, that the adversary should have the potential power of solving the discrete 

log problem in the field and that is believed to be a difficult problem. 
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So, it is a quite simple algorithm that way and now we can see the steps like y 1 is equal 

to alpha power of r mod p, y 2 is equal to x beta power of r mod p, that is, the encryption 

step for decryption what do you do is, that you take y 2 multiply it with by raising y 1 

power of a, you know y 1 power of a is nothing but beta power of r, you compute the 

inverse of beta power of r multiply it with x into beta power of r and obtain that x. So, 

the encryption, if you do the proper decryption in this way you get back the original plain 

text x. 
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So, therefore, the working of the algorithm can be summarized again like this, plain text 

x is masked by multiplying it by beta power of r yielding y 2. The value of alpha power 

of r is also transmitted as a part of the cipher text. Bob who has the secret a can compute 

beta power of r by using alpha power of r to a, and then, he obtain x by dividing y 2 with 

beta power of r, dividing means multiplying by the inverse. 
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So, note that the ELGamal algorithm as I told you is a randomized algorithm that is the 

cipher text depends on both the plain text x and the random value r chosen by Alice 



which is the encryptor. And therefore, the same plain text can actually be mapped into p 

minus 1 cipher texts depending upon the choice of r. Because you can have how many 

choices of r from 0 to p minus 2, that is p, minus 1 choices for each of this choices, the 

same plain text will get mapped into p minus 1 difference cipher texts. That way, this 

algorithm is quite good, because inherently it is a randomize algorithm and therefore, it 

gives to may be to noise properties which can which we require because of the 

requirements of semantic security. 
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So, we will just consider a very simple example here, like for example, p equal 2579 is a 

prime number and alpha is equal to 2 is the primitive element of Z p star. Consider that 

there is a secret value 765 which is a secret component. And we want and we just choose 

2 values like beta and alpha, so alpha is 2, so we just take 2 and raise it to this secret 

value obtain that beta. 

So, note that 949 is the value of beta; therefore, alpha that is 2 and beta that is 949 are the 

public parameters, but a which is a 765 is the secret component. So, now, suppose Alice 

wishes to send x equal to 1299 to Bob, so what she does is that she randomly chooses a 

value r equal to 853 and what she does is, first obtain y 1 that is by raising this 2, that is, 

alpha to the secret value 853 obtain that 435 and y 2 is multiplying or masking 1299 

which is the message, which she wants to send by, with the corresponding value of beta 

power of r. 



So, beta is 949 here, it is raised to 853 which is the random component and obtain back 

2396. So, therefore, when the cipher text will correspond to 435 paired with 2396. So, if 

you want to, so Alice sends this one as the cipher text and what bob does is that bob 

computes 23 multiply by x by multiplying 2396 by taking 435 and raising it to the power 

of 765 which is the corresponding value of the secret. 

So, you note that again, that bob has the secret value, so you can easily do this operation, 

but the adversary should be unable because it neither has the knowledge of this nor it 

cannot extract out this knowledge because of the assumption of the discrete log problem 

and multiplies. And what bob does is, bob multiplies with the inverse with 2396 and 

obtains (( )) x which is 1299 which is the same as the initial value of x, there is a 

message. 

So, therefore, we see that mathematically if you use the ELGamal encryption then you 

get back whatever message use one to encrypt with. 
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However, we will now consider the cryptanalysis problem of discrete log challenge, like 

if I want to give 2 values if I am giving with 2 values of alpha and beta, how really it is 

to compute the value of a. And we will consider some classical examples to this 

direction, but before I going to that, there is a small note that I would like to make, that 

is, if alpha power of i, so we know that in normal integers computing logarithm is not 



very difficult, because when you are not considering the modulo field, that is, when you 

are not doing the modulo operation. 

Then, your alpha power i is always a monotonically known decreasing value which 

means, if I increase the value of I, the alpha power i, it will not decrease, when you are 

not doing the congruence or when you are not doing the modulo operation. 

So, which means that this gives you the scope of applying a binary such kind of 

technique to arrive at the value of i, like for example, you check with the large value of i, 

if you see the alpha power of i that is the value that is the beta which is, so what you do 

is that you choose a large value of i, guess a large value of i and then, if you see that the 

beta is larger than that, beta which is equal to alpha power of i is larger than that, then 

you apply binary search to the larger part. 

And then, if you see that it is lesser than that, other than then that, what you do is that 

you apply binary search to the lower ritual. That way, you can actually try to converge at 

the actual value of i, if alpha power of i was a monotonically non-decreasing series that 

is if i increase i alpha power of i does not decrease. 
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But the problem with this modulo field is that, alpha power of i - I mean - there is no 

ordering of this alpha power of i, it may happen even if we increase the value of i alpha 

power of i becomes smaller. So, therefore, the only way of doing it is by an exhaustive 



search, that is the assumption, that is the I mean at least you cannot engage a simple 

binary such kind of technique to arrive at the value of i. Therefore, one possible solution 

is to do an exhaustive search in the worst case, because you may not be lucky, so you 

may need to verify all the values of i and check whether alpha power of i matches with 

the given value of beta. 

So, this we will actually engage order of n time, because n is the group order, so order of 

n times and the storage that you required is order of 1, because you can am not doing any 

storage at this point. However, you can actually engage at time memory trade of yours, 

and using the time memory trade off you can try to reduce the value of the time 

complexity - reduce the time complexity. 

However, the space complexity will automatically increase and therefore, you can 

actually do some amount of pre computations, and now, what is the idea of doing that is 

like this. 
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Suppose, you store all the possible values of alpha power of i modulo p as ordered pairs. 

So, what you can do is that you can store them as ordered towards like i paired with 

alpha power of i modulo p and sort the elements with respect to the second parameter, 

that is, with the respect to this alpha power of i modulo p you can sort them. 



You can immediately as i because of the previously description or other discussion, you 

know that if I even increase i alpha power of i mod p is not automatically sorted. So, 

what we need to do is, may be engage an efficient sorting algorithm to sort this. So, 

alpha power of I, so we basically sort this ordered pair list based on the second argument. 

Next, what do we do is that, now what we do is this, that is we search for the given 

challenge by employing a binary search, that is for example, so what I do is this, that is, I 

take i and compute alpha power of i modulo p, so this is basically a pre computation that 

I am doing. 
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And what I am doing is essentially sorting them based on the second argument and I 

make a list, say that list L1. So, now I know that I have to look for the case where beta is 

equal to alpha power of i modulo p. So that means, that if this, so this is a pre 

computation state, I have already done this and this is stored in the memory. 

Now, what I do is that I take this value of beta and I search for… after I have sorted out 

after I have sorted this list, that is this, as it is called here as L1which is the sorted list 

based on the second argument based on alpha power of i mod p. So, then what I do is 

that I take this value of beta and I search in this list using a binary search kind of 

technique. So, basically what I do is that I look for its location by applying a binary 

search kind of method. 



So, now what is the complexity here, we know immediately that the storage complexity 

here will be, because of I need to store the entire list, the storage complexity will be 

order of p, so order of p, order of n, whatever, so the storage complexity will be order of 

p. 

Now, what about your sorting algorithm? Your sorting algorithm will have a complexity 

of… So, I am referring to p as n then, it becomes n actually and this is order of n log n, 

so that is your sorting complexity. Now, I am also doing a binary search, so the search 

will actually require an order of log n complexity. 

Now, what you note one thing that, because we are actually considering very large fields 

there logarithm of n is actually very small or negligible compared to n. Remember that 

you are dealing with, say, 1048 bit of large numbers. So in that case, in such kind of big 

scenarios, so when you are dealing with, say, 2048 or 1024, 8 bit primes. 
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Then, it may happen that this logarithm of n is actually very small - actually logarithm of 

n is very small - compared to this value of n. So, then you can actually approximate this 

as order of n and approximate this as order of 1. So, when you are considering this 

discrete log cryptanalysis problem; we will always do this, that is, neglect this value of 

logarithm n compared to this value of n. So, therefore, in this case your time complexity, 



that is, the time complexity to search is actually a constant time, it is order of 1; however, 

your memory complexity is order of n. 

So, you see that this is just opposite of what we saw at the beginning, we what the 

beginning what we started with the time complexity of order of n and space complexity 

of order of 1. But using some pre computation, you can actually reduce - your reduce -

drastically your time complexity, but of course, at the cost of your space complexity. 

Now, there is an algorithm which is called as the baby step giant step algorithm, which 

actually tries to optimize both. So, it is called the shanks baby step giant step algorithm 

and we will next see the description of this algorithm. 
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So, consider this algorithm, that is, what it does is that the problem is again the same that 

is given alpha and beta and given a choice of group and a value of n my objective is to 

find the corresponding value of a for which beta matches with alpha power of a in this 

group. So, what is done is like this, so first you actually set a value a variable m to the 

square root of n, and then, you start computing alpha power of m j, where j runs from 0 

to m minus 1, that is, your value of alpha power of m j is what is computed and stored. 

So that means, immediately you understand that what is the amount of storage required 

for this, it is equal to m because, you need to do m such computations and m is square 

root of n. The other thing which you do, so what you do is, again store this m ordered 



pairs like j comma alpha m j with respect to their second coordinate, that is, you sort 

them by an efficient sorting algorithm and obtain the list which is called L1. 
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So, basically the list L1 is, so m is equal to square root of n, that is, it is said to square 

root of n and what we do is that we make a list L1 which is sorted list based on the 2 nd 

argument in your j comma alpha m j, so where your j is actually running from 0 to m 

minus 1. So, you compute various values of j and you find out or calculate the value of 

alpha power of m j, that is, the list L1. The list L2 is actually made out of a different 

weights what you do is that this sorted list based on the 2 nd argument of rather in i 

comma beta by alpha power of I, so here also your i ranges from 0 to m minus 1. 

So, now you note that in L1 the elements are computed how? The elements are looking 

like, say, when you start with the value of j equal to 0 it is alpha power of 0 - that is one. 

Next, you have got alpha when value of j is equal to 1, it is alpha power of m, then alpha 

power of 2 m and so on. So, it is a kind of a big jump, you see that it is alpha power of m 

alpha power of 2 m and so on - m is quite big number. But here, you are actually 

computing like beta power of alpha power of I so that is alpha power of 0 which means it 

is beta. Next, you divide this beta by alpha power of 1; next, you divide it by beta power 

of alpha square and so on. 



So, these are actually small jumps, and therefore, these jumps are referred to as the giant 

steps and these are actually the baby steps. Now, what you do is that, in this list L1 and 

L2 which are both sorted, you are trying to find out a common element based on the 2 nd 

argument. So, the 2 nd argument in this list L1 is alpha power of m j, in the 2 nd 

argument, here is beta power of alpha i. 

So, now since both of them are sorted, you can actually traverse down both the lists in 

linear time and you can find out an element which actually matches in the 2 nd 

component. That means, in linear time you can find out that alpha power of m j is equal 

to beta power of alpha i and you can find out the corresponding values of i and j. 

So, this means that beta is equal to alpha power of m i, sorry, m j plus i. So that means, 

what you are supposed, so if you get a corresponding, so basically here in this lists L1 

and L2 obtain i and j such that this relation is maintained. So, note that you can do this in 

linear time because both the lists are sorted. You can find such a common element and if 

you do that, then your, what you are supposed to return, because you have got the value 

of i and j is nothing but m of j plus i and that is the value of the discrete log. 
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Now, let us do an sort of an analysis of this algorithm. First, you know that the steps 2 

and 3 can actually be pre computed; that means, here in this algorithm the steps 2 and 3 

can be pre computed - 2 and 3 can be pre computed and if. Therefore, if step 6 is 



successful, that is, if alpha power of m j is equal to y is equal to beta alpha power of 

minus i then, alpha power of m j plus i is equal to beta. 

So that means, that the logarithm of this value of beta with respect to this value of alpha 

is nothing but m j plus i. So, this algorithm returning m j plus i is actually correct, so that 

gives the correctness of this algorithm. The next is, whether this algorithm will 

terminate, so you should note that this set is always successful, that is because when you 

are computing this m j plus i the maximum value of j is, what m minus 1 and what is the 

maximum value of i? That is m minus 1. So, when you plug in these maximum values 

you get m into m minus 1 plus m minus 1, that is nothing but m minus 1 into m plus 1 

that is equal to m square minus 1. 

So, m square minus 1 is nothing but n minus 1, and I know that the logarithm of beta 

with respect to b alpha can be maximum equal to n minus 1, so which means, I am 

checking for all the possible or potential values of the exponent. But only this has been 

done in a slightly clever way; the clever way is because, you are essentially using some 

amount of storage, but I may also do some amount of time - expending some amount of 

time complexity. But the fun is here, that you are actually doing both in terms of order of 

m, and m is actually square root of n. 

That means both of your time complexity and your space complexity is reduced to order 

of square root of m. So, this is the advantage over the previous two algorithms, you are 

doing a kind of better trade off between the time and the memory requirement of this 

algorithm. 
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So, the algorithm runs in order of m time with order of m memory, again I am neglecting 

the logarithmic factor that is, the corresponding log factors are neglected and this is the 

complexity. And again note that m is equal to square root of n, so therefore, this is an 

order of square root of n time and square root of n time and n memory requirement. 
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So, now we will actually discuss about another algorithm which is called the pohlig-

hellman algorithm. So, this pohlig and hellman algorithm is based upon the Chinese 

remainder theorem. So, the Chinese remainder theorem, if you remember that we 



discussed is basically expressing whole as part and then using this parts to compute the 

whole. So, what you do here is that you take the n, which is the group order, and you 

decompose that or do a prime factorization of that. 
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So, therefore, you believing here that you know the corresponding values like the 

corresponding prime factorization of m. See for example, I am assuming here that there 

are k such prime factors and you know that by the theory of arithmetic, that you know 

that you can actually obtain like p 1 to the power of e 1 p 2 to the power of e 2 and so on. 

P k to the power of e k, so this is the prime factorization and all of these prime values are 

distinct primes. And our objective is again the same, that is, we want to compute the 

logarithm of beta with respect to alpha. So, what is the first objective? The first objective 

is, to instead of computing a itself we are trying to compute a, but mod of p 1 to the 

power of p i to the power of e i. 

That is, we are trying to compute the logarithm but modulo each of this corresponding p 

1 to the power of e 1 p 2 to the power of e 2 and so on until p k to the power of e k. Now, 

once we have them from there we can actually engage the Chinese remainder theorem 

and we can obtain the value of a modulo n. 



So, that we can, we know that we have a very efficient algorithm for doing that, so the 

main problem is, how do I essentially construct the values of a modulo each of this p 1 to 

the power of e 1, p 2 to the power of e 2 and so on. 
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And for this we have a very detailed step, so let us go gradually through them. Now, 

suppose, you consider that one of those prime factors is q, and the corresponding 

exponent is c, so that means, you know that if you take modulo q power c, the n becomes 

congruent to 0, because n is divisible by q power of c. 



What about q power of c plus 1, it is definitely not 0 because that is the highest value of c 

is the highest such value, you can have atmost c factors of q (( linear)). 

So, therefore, n is not congruent to 0 modulo q power c plus 1, so remember that the 

primes are distinct. So, we next compute x is equal to a modulo q power c, so we take a 

and we want to compute mod of q power c. So, for that we note one thing, that is, x that 

is this value of x must lie between 0 and q power of c minus 1; that means, you can 

always write x like this. You can always write them as a i multiplied with q i, where each 

of this a i’s again lies between 0 and q minus 1. 

So, you can always decompose x because x lies between q power of c minus 1, you can 

draw an analogy of this to your normal binomial decomposition. You know that if there 

is a value of x which lies between, say, it is less than q power of c minus 1 is replace the 

q by 2 you will understand the analogy. So, therefore, x you can always write as a sigma 

where i is equal to 0 2 c minus 1 a i to the power of q i. 

Where each of this a i’s are actually again, lying from 0 to q i minus 1, q minus 1. And 

for your i, actually range from again as is shown in the series will range from 0 to c 

minus 1. Now, in that case therefore, a you know that q power of c divides x minus a or a 

minus x; that means, a is equal to x plus some integer multiplied by q power of c, so that 

x is this series plus s multiplied with this q power of c. 
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So, therefore, your a is actually equal to sigma of a i q to the power of i, that is the value 

of… (( )) ranging i from 0 to c minus 1 plus s into q powered of c. So, what is this is 

value, this is nothing the value of x. So, our objective, if you want to find the value of x 

we will need to find the values of all this a i’s a 0 2 a c minus 1. So, therefore, we need to 

find out, need to determine a 0 a 1 and so on, till a f, c minus 1. So, we need an algorithm 

through which we can determine from a 0 to a c minus 1. 
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So, the first step is to compute this a 0, ok and for that we give a very nice claim that is 

beta and alpha are the two values for which I am need to find out the discrete log of beta 

with reference to alpha. And we make a claim that is beta, the claim is like this, that is if 

you take beta and raise it to n by q, then you obtain alpha again raising it to a 0 n by q, so 

that is the claim. So, let us see, it is a quite simple proof. 
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That is, you know that beta is equal to alpha power of a, right, so, therefore, your left 

hand side here is nothing but alpha power of a multiplied or raise to the power of n by q. 

So, what is alpha power of a? Alpha power of a is nothing but sigma of a i q i, q power 

of i plus s q power of c whole raised to the power of n by q. 

So, now, if we just see, that is you have got alpha and just considered a power of 0 here, 

a power of 0, q power of 0, right plus a power of 1 q power of 1, that is 1, plus a power 

of 2, that is again raise to the power of q power of square and so on, the final term is s q 

powered of c, the whole thing is raised to the power of n by q. So, you note that apart 

from this term all the other terms are actually having a value of q in the exponent. 

So, therefore, this will be like alpha powered of a 0 whole powered of n by q multiplied 

with alpha to raise to some constant times n. And you remember the n was the order of 

alpha, so which means the alpha powered of n is equal to 1, so that means this is equal to 

alpha a 0 n by q, right. 

So that actually satisfies this, so that means, if you would like to compute the value of a 

0 what will you do? You will raise various values of alpha, ok and say you will consider 

like… and you also note one thing that is the value of a 0, you note that it lies between 0 

and q minus 1, note this thing, right. 



So, what will you do? You will try with all these q values in the worst case, in a very (( )) 

way, you’ll try for all these q values, and you will check that which for which case alpha 

n by 2 to the power of n by q raise to the power of that value of s is equal to beta power 

of n by 2. 

Wherever it matches, you will refer that to as a report, that as the value of a 0. So, what 

is the time complexity here, it is order of q, right and if you can actually engage the 

shanks algorithm here, then you can reduce it to the order of square root of q. So, 

anyway, so basically from order of root q to order of q, you have an algorithm, you 

already know a way of doing it, right. 
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So, you can actually obtain the value of a 0, so if the value of c that you have got is equal 

to 1, then it is done, because you do not have any other value of, any other a values right. 

But if your c value is higher than that, then you need to compute a 1, a 2 and so on till a c 

minus 1, right. So, this is actually your step 1, which actually computes the value of a 0. 

So, in step 2 onwards, we will try to compute the other values. 
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So, for that we have, like so if c is equal to 1, then we are done in the second step, 

otherwise we proceed to obtain the values of like a 1, a 2 and so on till a c minus 1. And 

for that we actually have got a similar kind of approach, but slightly little inward, so 

how, so what is the, what is the claim here? The claim that we make here is this that is 

we say that let us denote this b as equal to beta 0. 

We actually engage a recursive technique to obtain the values of a 1, a 2 and so on, so it 

is a kind of recursive technique. So, first we get a 0, from there we obtain a value of beta, 

I say that it is beta 1. 
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So, we start like this, we make a… So, we have obtained a 0, right, so what we do is that 

after this a 0, using this a 0, we obtain a value called beta 0. Now, using this beta 0, we 

obtain and a 0, we obtain the value of a 1. From a 1 we again obtain the value of beta 1, 

we gradually continue this until and unless we obtain a of c minus 1 and we stop. So, let 

us see how the definition of beta 1 you can get from the definition of beta c. 
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 So, your beta 0 or rather beta j is defined like this, beta j is equal to beta, and you raise it 

alpha minus, alpha to the power of minus a 0 plus a 1, actually this will be a 1 q, so, 

minus a 1 q minus a 0 plus a 1 q plus and so on till a j minus 1 q j minus 1. 
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So, this beta, so, therefore, if you do that, then you get like this right, beta j is equal to 

beta, and you raise it to the power of alpha minus a 0 plus a 1 q plus so on and the final 

thing is a j minus 1 q of j minus 1, ok. And you note that beta is nothing but equal to 

alpha power of a, right, so alpha power of a minus a 0 plus a 1 q plus so on till a of j 

minus 1 q of j minus 1, right. 

Now, what was a? So, if you remember a was like this, right, a was equal to sigma of a i 

q power of i, where i goes from 0 to c minus 1 plus s of q power of c. So, therefore, if 

you plug in this value here, then you get alpha but you note that all the higher powers 

remains, but these things are kind of subtracted out from a, right. 

So, what remains is a power of j q power of j plus a power of j plus 1 q power of j plus 1 

and so on till a of c minus 1 q of c minus 1 plus s of q power of c, right, so that is your 

beta j, beta power beta j, ok. So, what we do next is that we raise beta j like our previous 

case like when we computed a 0 similar to that, we raise this beta j and we would like to 

divide it by n by q of j plus 1. 



So, if you do that then you’ll see that all the higher terms get cancelled, it is from this 

point it gets cancelled, except for this. So, here you have got alpha a power of j by q, ok, 

but the higher things are again like alpha some other constant k 1 again multiplied with 

n. Again you know that alpha n being a group order, this again goes to unity and so what 

you have got is alpha a j by k. 

So, therefore, again you can actually engage again a shanks algorithm or a simple 

algorithm to do a fining for this value of a j. You already know the value of the 

corresponding beta j, and from there you can engage an algorithm to find the value of a j. 

You know beta j, right, because beta j is your definition, you see that beta j depends upon 

beta j actually depends upon the coefficient till j minus 1. So, in your recursive approach, 

if you have obtained till a j minus 1, then you can actually define the value of beta j. 

So, using this beta j, now you can actually obtain the value of a j, and again using this a j 

you can define beta j plus 1, right, again using the beta j plus 1 you can obtain the next 

value of the corresponding a coefficient. So, essentially you can actually summarize 

these two descriptions like this, that is there are two equations, one equation is this, that 

is beta j n by or raise to the power of n by q plus j plus 1 is equal to alpha a j n by q, I 

missed an n here actually, there is an n multiplied. 

So, because of this n right, so this n multiplied, so therefore beta j to the power of n by q 

power of j plus 1 is equal to alpha to the power of a j n by q, this is one equation. The 

other equation is the definition of beta j plus 1, which you can always define like beta j 

alpha to the power of minus a j q j, this is the second equation. So, this is exactly the 

same thing, but only the previous thing is, I mean you can write that as recursion like 

this. 

So, what the the point is that you can actually engage these two equations, and compute 

the value of a 0, then you can obtain the value of a 0, then compute the value, then 

compute the next value of beta, and compute the next value of a 1, compute the next 

value of b 2 and so on, you can apply them and obtain the value of a c minus 1 by 

repeatedly applying equations 1 and 2. 
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So, now we will see some… This is the final summarization of that, that is given your G 

n, alpha, beta and c and q, you can actually obtain the… what you are basically doing is 

computing beta j raising it to the power of n by q power j plus 1. And checking that for 

which value it is equal to alpha i n by q, though which ever value is this, you know that 

this is the corresponding value of a j and we are repeating this, right, so that way you can 

actually obtain a 0 till a c minus 1. 

So, note that this algorithm is for a particular prime value, and for a particular, I mean for 

a particular prime value, and for a particular exponent value. c is the exponent and q is 

the prime prime factor and the corresponding exponent. So, you need to repeat this for all 

the prime factors. And what is the complexity of this algorithm? You since you are doing 

this, and if I assume that each of these steps is order of q, and you are doing it for all the 

c coefficients, the order is like order c q, right. If you use shanks algorithm, you can 

actually reduce it to o c q power of half. 
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So, let us consider a very simple and small example like p equal to 29, alpha is equal to 2 

and beta is equal to 18, order of n is in this case 28 and therefore, you know that p is the 

prime value, order is 28, because that is 1 less than the prime value, right. So, as the 

prime factors are 2 square into7 power of 1, 4 into 7 is 28t and is set the the value of q is 

equal to 2, and c equal to 2, because that is your first prime value and the first exponent. 

So, then the state 1 a will be like finding the value of a 0, because your c is equal to 2, so 

that means how many coefficients will you have, you will have a 0 and a 1, right, and 

since q is equal to 2, the value of a 0 can be either equal to 0 or can it can be either be 

equal to 1, right. So, what you do is that you check for this, for both this values, and you 

find that in this case, note that, noting that a 0 will lies between 0 and 1, in this case we 

find that when a 0 is equal to 1, this equation is satisfied. 

That is alpha raise to the power of 14 a 0 is equal to beta to the power of 14 modulo 29, 

because that is a modulo p field, right, and your p is 29 here, so you find that a 0 is equal 

to 1. So, next what you do is that you compute the next value of beta, and you raise beta 

1 to the power of n by q square, and obtain the value of alpha, I mean, check when it is 

equal to alpha to the power of n by q raise to the power of a 1. Again you do two checks 

like, because a 1 can either be 0 or it can either be one, so 0 will of course not satisfy this 

and you find that 1 satisfies this, you can check that also. So, if 1 satisfies, then you 

know that a 0 is 1, a 1 is 1, so what is the corresponding value? It is 311, and your prime 



is 2 here, so it is 3. So, you get that a is congruent to 3 modulo 4, so similarly you can do 

this and find out that a is congruent to 4 modulo 7. 

So, then you can actually apply a Chinese remainder theorem, which we have studied 

previously to find the value of a, which is modulo 28 and that is congruent to 11 in this 

case. So, that is your solution that is the discrete log problem. So, here, this is a step 1 a, 

and the computation of these things will be the, I mean computation of the subsequent 

position the step is 1 b actually. 

And you have to do it for all the prime factors, in this case, there are two prime factors, 

one is 2 and other one is 7, and you obtain the value of the discrete log, right. So, this is 

the basic algorithm for the pohlig hellman algorithm. 
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So, after this we will study the index calculus method, and see how much time we have 

for the next discussions, ok. So, for the index calculus method, the previous I mean 

algorithms can be applied to any group, but the present algorithm is more specialized, it 

finds the discrete log in Z p star, where p is a prime value and alpha is the primitive 

element modulo p. So, it finds the discrete log in Z p star, where p is a prime and alpha is 

the primitive element modulo p. 
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 So, what is done in this index calculus algorithm is by using something which is called a 

factor base, ok. So, you start with some small primes and assume that your factor base is 

composed of some small primes. And you for the for the first step there are two steps, in 

this algorithm the first step is to compute the discrete log of all these prime values in this 

factor base. 

Suppose the p 1, p 2 and so on, till suppose p b prime numbers are there in your factor 

base, you compute the logarithm or discrete log of all these prime elements with respect 

to your alpha, which is the primitive element in Z p star. Then using these logarithms 

you try to compute the logarithm which is required. So, we will see next how to do that. 

So, the first step is to of the algorithm, is to find the logarithms of the b primes in the 

factor base. The second step is to compute the discrete logarithm of a desired element 

beta using the knowledge of the discrete logs of the element in the factor base, ok. 
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So, let the factor base b be equal to p 1 p 2 and so on till p b, and assume that c is greater 

than b, that is c some number which is greater than b, it could be like b plus 10 or d plus 

20, something in the pre computation phase. Next, what we do is that we construct, we 

actually choose some (( )) value of x j, ok and find out the value of alpha power of x j, it 

is a random choice and we factor it out. And the thing is that you have to find out a 

randomly choose, but check that when you are doing a prime factorization of alpha 

power of x j, the prime factors should belong to this factor base. That is it should be 

expressible in the form of this congruence, that is p 1 to the power of a 1 j, p 2 to the 

power of a 2 j and so on till p b to the power of a b j modulo p. 

So, now if you get such an x j value, and if you so that, so you have to you have to find 

out j, I mean you have to repeat this and find out c such choices, and note that c is greater 

than b, ok. So, what so what we do first is that we can also express this congruence in 

this logarithm form by taking the log on both sides, then you have got x j is congruent to 

a 1 j multiplied with log of p 1 with respect to alpha plus so on till a b j log of p b base 

alpha. 

And note that when you have to considering the exponents, then you are doing a modulo 

of p minus 1 right, because the exponent is modulo p minus 1. So, you actually, you are 

doing that, and you obtain j such, I mean you obtain c such congruence’s. And since your 



c is greater than b, you can expect that you will have a unique solution for each of these 

logarithms. 

So, using this technique, you can try to compute the discrete logs of each of the prime 

elements in the factor base that is a first step. 
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The next step is actually quite trivial, like what you do is suppose you have already have 

obtained the discrete logs, so the elements in the factor base, we now compute the 

discrete logs of beta with respect to alpha. Now, choose a random integer s, where s lies 

between 1 and p minus 2 and you compute a gamma, where gamma is equal to beta 

multiplied by alpha power of s modulo p. 

Now, you attempt to factor gamma over the factor base, so, therefore, again you have to 

choose s such that gamma can be factored over the factored base, ok, this means you 

have to repeat this choice of s. So, then, if you can factor out, then then you have got p 1 

to the power of c 1 and so on till p b to the power of c b modulo p. If you take the 

logarithm on both sides, then you have got log beta base alpha, which you want plus s 

equal to this thing, right. 

And since you know all these c 1 till c b’s, and you also know all these individual 

logarithms, computing of computation of this logarithm is actually very simple, you just 

take this sum, subtract out s and do a modulo p minus 1 operation. 
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So, therefore, this is quite durable, and if there is an example to show that you take p 

equal to 10007 alpha is equal to 5 and suppose the factor base here is 2, 3, 5 and 7, the 

first step is to choose some arbitrary value of x, in this case the choice of x or 

0000635369865, where if you have raised this alpha to this powers and computed the 

modulo, you are able able to express the outputs in the factor base as a. So, this gives 

raise to three congruence, which if you solve, you will be able to find out the logarithms 

of each of this primes in the factored base. 
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Then you arbitrarily choose a value of s, in this case a random value of s equal to 7736, 

gives you a value if you multiply this with 9451, you will get 8400, which can again be 

factored in this factor base. If you take a logarithm in both sides, and if you subtract out 

s, take the sum and again subtract out s, do a modulo 1306, then you are able to obtain 

the corresponding logarithm. 
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So, I stop here at this point, and the just (( )) note that the complexity of this algorithm is 

ordered, but its a sub exponential algorithm, and is actually reduces to order of e 1 plus 

small (( )) of 1 and raise to the power of square root of l n p l n of l n p, which you can 

prove, but the proof is beyond the scope of this class. 
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So, I will just again continue with this discrete log problem in the next class, but a small 

point which you can think on is this, that is you can think of this problem, like suppose 

the logarithm of beta to the base alpha in a group g lies in the interval of s, t, where s and 

t are 2 integers, such that 0 is less than equal to s is less than t is less than n, where n is 

the order of alpha. You can actually think of how you will modify the shanks algorithm 

to compute the logarithm of beta to the base alpha in order of square root of t minus s. 

So, the you already know the interval, and you have to develop the algorithm to do that. 

So, in the next class, so my reference has been stinson books, and the next class we will 

continue with the diffie hellman problem. 


