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 Ok so welcome to today’s talk lecture on number theory so today we shall be discussing 

about some elementary concepts in number theory which forms the kind of very a center 

i mean it is very central to the field of the cryptology so we shall i mean it is a really 

fascinating field and quiet a big vast field but, today we shall essentially understand 

some of the basic concepts 
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So today’s objective of this particular talk shall be on congruences modular arithmetic 

introduction to field theory euler totient function and fermat’s little theorem so we shall 

be talking about these topics so one of them is congruences which is modular arithmetic 

which is very important to understand field of cryptology and then we shall try to give 

the define the concepts of what is meant by mathematical field which is very again very 

central idea to the study and then discuss about a particular function which is called as 



euler totient function very popular and very useful kind of parameter and then conclude 

the talk with discussion on fermat’s little theorem so we will be actually discussing about 

fermat’s euler theorem 
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So starting so essentially we will find that when we’re doing cryptology or when we’re 

doing a normal kind of computation i mean in in related to the ciphers then we 

essentially do not with deal with infinite sequences so we for example, we do not have a 

set which rather we do not have a set which is which can be which can take infinitely 

large number of values so which means that there is a finite number of values and we are 

supposed do our computations on finite values so therefore, there is i mean we have to 

define our arithmetic in a finite set of values so for that or rather in order to study such 

kind of operations one basic concept or one very important concept is something which 

is called as congruences 

So we say that a is congruent to b modulo m so a and b are supposed to be integral 

integer numbers and we say that a is congruent to b modulo m and we denote them as 

them as follows that is a is congruent to b mod m if m divides a minus b or b minus a so 

that is the basic idea therefore, let us see some examples like minus two will be is equal 

to will be congruent to nineteen modulo twenty one the reason being that twenty one 

divides nineteen minus of minus two that is twenty one and similarly, twenty will be zero 



mod ten because if you take or rather one way of thinking is that ten will divide twenty 

minus zero or zero minus twenty 

So i mean so therefore, i mean the idea is that if you just think in terms of numbers then 

this number if we divide by the modulus of operation and then this particular number on 

the right hand side is nothing but, the remainder therefore, so that is the way of how to 

kind of compute modular computations so this is nothing but, the simple modulo 

computation now you may note it that congruence modulo m is actually an equivalence 

relation why now because it is an equivalence relation on the set of integers so let us try 

to reason it out 
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So we know that for in order for a particular relation to be satisfying their properties of 

an equivalence relation it has to satisfy three important concepts of reflexivity 

symmetricity and also transitivity so let us try to first of all argue why it is reflexive so 

we see that reflexive its reflexive because any integer is congruent to itself modulo m 

therefore, if you take a number a or other integers take any number then this number is 

also congruent to itself so why it is because of this if you take a number a and discus that 

whether and i say that a is kind of a is congruent a mod m right therefore, this is perfectly 

why now because this means that m divides a minus a which is zero ok 

So this is true therefore, a is congruent to a modulo m therefore, the reflexivity 

relationship holds therefore, if i define my relation by congruency which means that 



number a is related to b if a is congruent to b modulo m this is the basic definition of the 

of of the relation that we are considering of the congruence relation then this relation 

satisfies the property of reflexivity because of this reason 

Now what about symmetricity now you see that in terms of symmetricity also it holds 

because as we say that if a is congruent to b modulo m then it also holds that b is 

congruent to a modulo m why now because this says that if m divides a minus b then m 

also divides b minus a therefore, the symmetric the symmetricity relation also holds and 

this is also true for all all a and b therefore, it is true for all integer values a and b now 

this is really important it holds for this relation holds the symmetricity properties holds 

for all values of a and m b hm 

What about transitivity so you see that in it is also transitive why because if a is related 

to b mod m and i tell u that b is congruent to c mod m then this implies that a is 

congruent to c mod m why now because you see that m divides a minus b and m divides 

b minus c so from there we can conclude that m also divides a minus c why now because 

you could have written this a minus b mod simply as some multiple of m similarly, you 

could have written b minus c as some other multiple of m ok 

So now if you have added these two equations right if you have simply added these two 

equations then you would have got a minus b plus b minus c is nothing but, lambda plus 

mu which is again another integer times m now form here b and b cancels and we have 

got a minus c is equal to some other constant we can call that to be some epsilon or 

something so it is something some integer multiplied with m and therefore, this means 

that m divides a minus c and therefore, this this also holds true so we see that this 

relation is also transitive and therefore, since it is and this will hold for any such a b and 

c right and therefore, since it satisfies the properties of reflexivity symmetricity and also 

of transitivity we say that this particular relation of congruence also satisfies the i mean it 

is an equivalence relation ok 

So therefore, it basically induces a partition on the set of integers we know that 

equivalence relation induces a set of parti[tion]- i mean induces a induces a partition on 

the set on the set right therefore, it holds this property holds true 
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Now the following are actually some equivalence statements and you can easily verify 

them it says that a is congruent to b mod m is same as saying that there is an integer 

value of k which satisfies that a is equal to b plus k m so this is what i just just wrote in 

the previous slide so you see that m divides a minus b because a minus b is k which is an 

integer multiplied with m it is an integral multiple of m now when divided by m then 

both a and b leave the same reminder so these is also same as saying as a is congruent to 

b modulo m now equivalence class of a of a modulo m that is a modulo m consists of all 

integer that are obtained by adding a with integral multiples of m now this is called or 

defined as the residue class of a mod m so which means that if i say that the class which 

is called the residue class of a mod m 
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Then what we do is that we take a and we add all possible integral multiples of m 

therefore, therefore, by saying you that there is a residue class of there is a residue class 

of a mod m thin it means that this consists of all integer so it is basically a set of all 

integers which are obtained by adding a integer multiples of of m therefore, it could be 

like a plus minus m a plus minus two m and so on so the basic idea is that if we just take 

any number from here and you divide it by m then the remainder which you obtained is a 

therefore, the remainder defines that particular class therefore, this class is a residue class 

of a mod m and it is also an equivalence class because it satisfies i mean it it satisfies the 

properties of equivalence class we are just seeing that right 
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So therefore, so here is an example for residue class of one modulo four so one modulo 

four will be one and then one plus minus four therefore, and again one plus minus two 

multiplied four and then one plus minus three multiple multiplied by four and so on so 

the set of residue classes mod m is denoted by z m z so z this is also denoted in this in 

this fashion 
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So this particular notation is also,metimes known as z m it is also denoted as z i mean the 

you can also denote it as like this so it is also an equivalent way of may be shorter way of 



representing this z so this this just defines that this is the set of residue classes mod m 

and it is denoted by z slash m z and that equal to z m therefore, now now this particular 

set we will have all the possible all the possible values so it’ll essentially have m values 

so what are the m values possible the m values will run from zero one and till m minus 

one so this is the set which essentially comprises of this values that is from zero two m 

minus one now this is also called an a complete system or a complete set of incongruent 

residues therefore, you see that if you just take a number so an example of this would 

like let us take the example of ten and then define like what is z by ten z so then this will 

comprise of numbers from zero one till m till nine that is ten minus one is nine 

So that means that if we just take m is equal to ten then these are the possible values of 

numbers which are which are possible i mean maximally possible and which also have 

which are also incongruent to each other so that means that if you take any numbers from 

this from this set for example, let us take like one example one one random choice could 

be like two and another arbitrary choice could be say five then two and five are never 

congruent to each other modulo ten so that is why why is two not congruent to five 

modulo ten because ten will not divide two minus five or five minus two so that means 

all the elements in this set are actually incongruent to each other and this is the maximal 

possible possible number of incongruent values that can that can happen ok 
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You can take any number of outside this particular set for example, if you just take an 

arbitrary choice like say twelve then you’ll find one number in this set which is 

congruent to this number modulo ten which is that number for example, you can choose 

two so you see that two and twelve are congruent to each other modulo ten why now 

because ten will divide twelve minus two right therefore, you’ll find that this particular 

set which is like z defined by z slash m z is also called a complete set of incongruent 

residues for a complete system 
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Now there are example this is an example given here for complete system for modulo 

five so we know now for mod five it will be like from zero to five minus one that is zero 

one till four and this an another example you can verify like that this is minus twelve 

minus fifteen eighty two and minus one and thirty two this set is also a complete system 

why now this is also a complete system because if you just take these numbers like you 

take minus twelve so we what we are considering is z slash five z right so you see that in 

this set if we just take twelve then twelve is actually so it is minus twelve right so minus 

twelve if you take modulo five so what does it mean what is this value so if you divide 

twelve by five therefore, you will get that this is equal to is it correct yes because if you 

just take this number five then five you divide minus twelve plus two because that is 

minus twelve plus two is nothing but, minus ten so five divided minus ten ok 



Now what is minus two if you if you would like to bring in this among this numbers like 

from zero one [till/two] three and four then this particular number minus two will be 

actually equal to three therefore, because it is you can verify this because five will agian 

divide minus two minus three so this is same as minus two modulo five will be same as 

three modulo five what about the next number the next number here in this set was given 

as minus fifteen so minus fifteen if you take modulo five what will be it it will be zero so 

similarly, you can do it for the other once also like eighty two will be equal to two 

modulo five because five will divide it into minus two and minus one will be congruent 

to four mod five and thirty one will be congruent one mod four one one mod five so you 

see that the numbers that i obtain after taking the modulo five essentially are nothing but, 

another order of the numbers zero one two three and four therefore, you see that this is 

also a kind of these numbers like this set like minus twelve minus fifteen eighty two 

minus one and thirty one is also another example of a complete systems and any two 

numbers from this set are are incongruent to each other they are not congruent we can 

check this 
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So there is a theorem i mean i am i- i really do not have i- i am not going the proof but, 

its very simple you can verify it like if a is congruent to b modulo m and c is congruent 

to d modulo m then this implies that minus a and minus b are congruent to each other 

modulo m we can also add like a plus c is congruent b plus d modulo m there should be a 

modulo m here and a c is congruent to b d modulo m so you can verify this and its very 



simple like what you can do is that you can start like writing as a is equal to b plus some 

constant multiple of b of m and c is equal to d plus some constant times m and then try to 

find out minus a and (( )) and this is very simple so this is this is quite trivial to prove 

Now what is the implication of this result now the[re]- there is a very is strong 

implication of this result so let me reflect on this see for example, what we understand 

here is that this number a may be quite a large value and this number c maybe also 

another quite large value and suppose you’re actually interested in computing doing 

computation on large values now if you would like to do computation of large values 

but, you always have this modulo m then the idea is that what it says is that instead of 

taking a plus c or rather adding a plus c and then doing a modulo m is same as doing a 

modulo m on a doing a modulo m on c and reducing this numbers between zero to m 

minus one and then adding these two numbers so let me kind of illustrate this with a very 

simple example 

(Refer Slide Time: 17:57) 

 

So let us take a large value of a so for example, you consider that a is again let us 

consider that our m value is five and let us see that a is supposed a large value like may 

be larger than this so it may be like twenty seven and let us consider another value which 

is say b or rather c and consider that this is say something like forty nine now let us try to 

add these two numbers so we know that if we add these two numbers then we get 



seventy six and therefore, if i do a modulo five here that means that i divide this by five 

and my remainder is one ok 

So therefore, i write that a plus c modulo m is nothing but, equal to one it is congruent to 

one so another way of writing this is rather the way we are writing this a plus c is equal 

to one mod m now let us try to do i mean apply the previous result so what we will do is 

that we will take twenty seven and perform a modulo five operation so if i do that then i 

see that twenty five is divisible by five so the remainder is two similarly, i take forty nine 

and do a modulo five operation so we see that forty five is divisible so this is actually is 

equal to four now you see that four also can be written as minus one right so therefore, 

we write the twenty seven is equal to two mod five and forty nine is minus one mod five 

now if i add these two numbers like twenty seven plus forty nine then i can obta[in]- add 

this instead of these two numbers and reducing what i can do is that i can actually add 

these two small numbers and i get one modulo five which matches with this result 

So which means that i need not do the additions with large number when i am doing a 

modular operation right when then i really do not need to add these large numbers but, 

what i can do it is that i can reduce this numbers modulo five reduce this number modulo 

five and then add these two numbers so this particular particular technique can actually 

make our computations quite simple and this is actually applied in the implementation of 

cryptosystems quite regularly to make your implementations easier ok 
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So we will squarely get this idea or rather find more examples of this as we proceed but, 

this is a very interesting and very important results which we should understand 

similarly, when we’re talking about multiplication we can also again instead of 

multiplying two large numbers which is even more complicated we can actually reduce 

these numbers mod m and then just multiply this small numbers for example, imagine 

like if you have to multiply twenty seven and forty nine and then do a modulo five 

operation right then this this multiplication is not i mean it is not proceeding well you 

have to do it and you can make mistake right and most importantly when your computer 

does it it may not make mistakes but, what it may do is it may require large number of 

time right so the resource may be useful may be used up so instead of that what you can 

do is that you can reduce it it becomes two and this becomes minus one and you know 

that this result is very simple this resulting is nothing but, minus two mod five which is 

nothing but, three ok 
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So you can just straight away from these two results we can obtain this product that 

actually makes your computations much easier otherwise you would have it would have 

become a little more difficult right so this result has got lot of impact therefore, and here 

is a another example so you can probably try to understand the impact of the previous 

result from this example so let let us consider so this is the very important number in 

number theory but, let us not go into that say is the two to the power two to the power of 

five plus one is divisible by six forty one and a proof is required for that so one way of 

doing it like it will be two to the power of five is thirty two therefore, let us compute two 



to the power of thirty two and then add one and then divide by six forty one and then see 

that whether it is divisible or not 

But this is quite tedious approach instead of that lets see this we know that six forty one 

can be actually written as six forty plus one and six forty can be factorized as five 

multiplied by two to the power of seven plus one now this factorial (( )) is quite easy 

right because its divisible by five and the others are just powers of two therefore, we can 

write as five multiplied by two to the power of seven is nothing but, minus one modulo 

six forty one why now because we know that five two to the power of two to the power 

of seven will be equal to six forty one minus one right so we can rearrange this as five 

into two to the power of seven is equal to six forty one minus one 

Now if take modulo six forty one then this vanishes and therefore, minus one remains as 

a remainder now from the previous result we know that if i raise this to the left hand side 

to the power of four it is same as write i mean raising the right hand side to the power of 

minus one hole to the power of four when you’re doing modulo six forty one operation 

because this means that we are multiplying this four times and therefor the right hand 

side also needs to be multiplied four times therefore, straight away from here we get five 

to the power of four multiplied by two power of twenty eight is nothing but, congruent to 

one modulo six forty one 

So now we see that five to the power of four is nothing but, six twenty one six twenty 

five and we know we know that need not actually require to multiply these two numbers 

but, we can actually deduce this number modulo six forty one so that should be make our 

computations easy right and then multiplied by two power of twenty eight and that is 

congruent one modulo six forty one so this equation is not disturbed by this now we see 

that six twenty five modulo six forty one is nothing but, equal to minus sixteen therefore, 

this result is nothing but, minus two (( )) power of four multiplied by two power of 

twenty eight is congruent to one modulo six forty one and that means that two power of 

thirty two is nothing but, equal to minus one modulo six forty one so that means that six 

forty one divides from the definition of congruence we know that six forty one divides 

two power of thirty two minus of minus one that is six forty one divides two power of 

thirty two plus one so this particular thing is proved 



But you see that throughout this we are actually not done a single bit large computation 

and that is the advantage of previous theorem therefore, idea that when you need do 

multiplications or additions or computations on large numbers and when you’re doing a 

modular operation then it is better to reduce each individual numbers and perform the 

operations that’ll you’re your computations easier 
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So now we actually i mean so this is we actually shift our focus and go into a little bit of 

field theory now we fields are actually very central to the understanding of crypto that is 

for example, the common that is the recent standard which is known as the advanced 

encryption standard relies heavily on finite fields therefore, we will try to understand 

some of the basic of fields that is what are what are the fields and what are the properties 

of a mathematical field ok 

So let us start with something which is called semi groups so first of all let us define 

something which is called a transformation or an operation so here is an x is a set and let 

us define a map which is defined by this circle has nothing but, a transformation which 

takes two numbers from this set x let let it be x one and the other one is x two and 

perform an operation therefore, this example of this could be an addition that is just a 

simple plus in the integer domain or multiplication so, the so you can generalize it means 

that i just take two numbers from the set x and i perform these computations and 

therefore, this element therefore, this transforms an element x one coma x two to the 



element x one operation x two and this is [vocalize-noise] so this is just this is a simple 

transformation ok. 

So now the sum of the free residue classes that is so here is an example like examples of 

this transformation as i told you that integer is one example similarly, you can also 

define in the residue classes like that we just take two residue classes a plus m z and b 

plus m z so this was so we know that a plus m z and b plus m z and if i just need to find 

out the some of these residue classes then this is nothing but, a plus b plus m z similarly, 

the product of the residue classes a plus m z and b plus m z is equal to a multiplied b plus 

m z so this is the same thing which i just told you before this that is if i need to kind of 

multiply or add two large numbers in the modulo m domain then i just find the 

remainders right and just add the remainder or multiply the remainders this is perfectly 

defined ok 
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So now an operation this circle on x is associative so we now we would like to define the 

associativity of this it means that a operation b operation c and if i do this it can also be 

associated as a this operation can also be performed as this that is a operation b operation 

c being given a priority and this holds for all a b c in x so this is how associativity is 

defined ok 

And we know what is commutativity which means that if a operation b is same as b 

operation a for all a and b in x then it is said to be commutative (( )) so examples we 



know that integer addition is an associative operation right and it is is it commutative 

also it is also commutative but, what about an example which is not commutative for 

example, matrix multiplication is not commutative we know that if i take two matrix a 

and another matrix as b and if i multiply a and b then it may not be the same as that b and 

a ok 

So now we define what is meant by a semi group so it says that there is a pair of h so it is 

a set so we define a transformation as just as we told right now so it consists of a set h 

and an associative operation so that means if the operation is also associative on h and 

then it is called a semi group so of semi-groups means simply that there is a set h with an 

operation circle and this operation is also associative so if the operation is also 

associative then if the operation is associative then we say it to be a semi-group now the 

semi-group is also called abelian or commutative if the operation is also commutative 

and examples of this could be like integer set the addition defined over it integer set 

multiplication defined over it residue class set and addition defined over this and the 

residue class set and multiplication defined over this ok 

(Refer Slide Time: 29:04) 

 

So we know that these are examples of abelian or commutative semi-groups because this 

is also associative because it is a semi-group and also further its abelian or commutative 

so which means you can do it either as a operation b or as b operation a for all a and b 



which belongs in the set so, implications are as follows so there are some interesting 

implications 

So let h and this operation be defined as a semi-group and let us define like a let us 

define some powers of a as follows so a power one is nothing but, a and a power n plus 

one is defined as a operated with a power n so this is the recursive definition of a power 

n plus one for a which is in h and natural value of n so this is a natural number n now if i 

need to compute a power n and operate it with a power m then it is same as doing as a 

power n plus m or if i do as a power n and take a whole power m then this is same as 

doing a power n m and where a is in h and n and m are nothing but, natural values or 

natural numbers 

Now you see that it is a further interest result which says that a and b are in h and we 

perform and if a and if the operation is commutative that is if a operation b is same as b 

operation a then a power the a operation b and if i raise it to power of n is same as a raise 

to power of n operated with b raise to power of n so we can actually reflect upon these 

are kind of definitions and we can actually i mean we can actually reflect upon this 

definition by by for example, choosing the value of n to be two ok 

(Refer Slide Time: 30:28) 

 



(Refer Slide Time: 31:25) 

 

So let us take n is equal two and consider the operation as a transformation b raise the 

power of two so we now that we can actually write this as a power of b by our recursive 

definition as a power b now we apply we know that this is this operation is so the first 

thing that we start with is this so that is the first definition but, since this is a semi-group 

so we know that it is associative so we can actually do like a b operation a operated with 

b and we know that because if i apply commutativeity then we actually write this as a 

with b and we know that again we can actually do this that is a apply associativity and 

perform this operation like this and this is nothing but, a square operated with b square 

therefore, this we can actually inductively apply and obtain the results that is a operated 

operation b if i raise it to the power of n is same as a raise to the power of n operation 

operated with b power n 
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So now we let us the define some something which is called monoids so first of all one 

of the definition the central definition of the monoids is something which is called a 

neutral element a neutral element of the semi-group h operation is an element e in h 

which satisfies e operation a as same as a operation e and that that means that this is 

equal to a for all a in h therefore, we see that an easy way of understanding the neutral 

element would be to consider an example so let us consider the example of let us 

consider the example of for example, a field of z and so this is an integer set this is an 

integer set and there is a plus operation defined so we so we have just defined that this is 



a this is an example of if so this was an example of semi-group so we have defined what 

is meant by a semi-group 

And let us consider this particular example and see that how or rather what is the neutral 

element in this set so i think all of us know what is the neutral element in this set so if i 

so the by the definition it means that if i take a and if i apply the opera[tion]- operation 

plus and there should be a neutral element a so that i get back a or so this is called a right 

neutral element and similarly, there is something which is called a left neutral element 

which says that if i add e with a and if i obtain a so this is the left neutral element so this 

is the right right neutral element this is the left neutral element that i get back here now 

you see that this defines that so this actually gives us an idea that this e is nothing but, 

zero right so for example, if i add a with zero then i get back a and if i add zero with a i 

also get back a so zero is the neutral element in the semi-group z plus 

(Refer Slide Time: 33:43) 

 



(Refer Slide Time: 33:55) 

 

Similarly all so therefore, if the semi-group contains a neutral element like this then it is 

actually defined to be something which is called a monoid so, a semi-group has there is a 

result which says that a semi-group has at most one neutral element and this is actually 

not very difficult to prove so the first result that we can actually kind of reflect is that the 

left neutral element and the right neutral element are the same so if i just consider the left 

neutral element so the left neutral element and the right neutral element are the same why 

Now you can just say that the left the left neutral element be e one and let the right 

neutral element be e two so what about e one operation e two now you see that if i just 

think that this is the left neutral element then by the definition i know that e one 

operation with e two should be e two because this is the left neutral element now what 

what if i think this to be the right neutral element like if i just think that e two if i think 

that e two is the right neutral element then i know that e one operation e two will be e 

one therefore, from here i understand that e one and e two are the same right 

So therefore, the left neutral element and the right neutral element are the same now the 

other thing that holds is that if there is one neutral element then there can be at most one 

right neutral element so this proof i i mean it is quite easy actually you can follow the 

similar principle but, i leave this as an exercise that is if there is a left neutral element 

that is for a left left neutral element there can be at most one right neutral element so 

therefore, so from here we know that if there can be at most one right neutral element 



then this right neutral element is again same as the left neutral element by this definition 

so there can be at most so from these two results we can conclude that there can be at 

most one neutral element ok 
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So therefore, if the semi-group which essentially has a neutral element which is called a 

monoid has can can have at most one neutral element therefore, this result holds true that 

is semi-group has got at most one neutral element now if e which belongs to h is a 

neutral element of the semi-group and and of the semi-group and then b also belongs to h 

then there is a definition of inverse like this that is if i take a and if i operation operate it 

with b then this is same as and it is same as b being operated on a and i obtain e so for 

example, when i am doing when i consider the semi-group z coma plus then what will be 

the inverse of a it will be minus a so because if i know that if i add with minus a that i 

obtain back the neutral element which is zero 
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So if a has an inverse then a is called invertible in the semi-group h and in a monoid each 

element has at most one inverse so this also result can be proved that is if there is a 

monoid so in the monoid then each element has at most one inverse so examples are like 

this that is if i consider z coma plus the neutral element is zero and inverse is minus a if 

you consider z under multiplication the neutral element is one and the only invertible 

elements are plus one and minus one because if i just consider any other integer le[t’s]- 

says five then there is no integer say integer number if you multiply with which you will 

obtain back the neutral element except therefore, the neutral element exists only for plus 

one and minus one 
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What about the residue class z slash m z plus and operation is plus then neutral element 

is m z itself and the inverse is minus a so this should be actually minus a plus m z so it 

means that if i take if if i just consider this particular set that is z z m z which is a semi-

group and then the operation is defined as plus then a neutral element is m z so that is the 

neutral element and the inverse is so this is the neutral element and the inverse is minus a 

plus m z so that is the inverse and you can verify this it is quite simple so, what about z 

m z and product z m z coma product in this case the neutral element is one plus m z and 

the inverse and this result we will see actually is are those elements t which are actually 



which are actually co-plained to m that is every element does not have an inverse but, 

only those elements for only those elements inverse exist which are actually co-plained 

to m so which means that the g c d or the greatest common devisor of that number and m 

is actually equal to one so we will see this as we go ahead 
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So then we define what is called a group a group is a monoid in which every element is 

invertible so a group is a monoid in which every element is invertible and the group is 

commutative or abelian if the monoid is also commutative so examples of this will be 

like z coma plus which is an abelian group and z product which is not a group so so this 

is actually not an example of a group and then we have got z coma m m z and plus z 

slash m z and plus which is an abelian group so why is this not a group this is not a group 

because from the definition of a group a group is a monoid in which every element is 

invertible and we have just defined just discussed in the previous slide that is in this 



particular set only invertible elements are plus one and minus one so every element does 

not i mean rather every element does not have does not have an inverse therefore, z coma 

multiplication is actually not a group because every element does not is not invertible in 

this is not invertible in these semi-group ok 
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So therefore, that is that is the definition of a group and there is higher concept to this 

which is called ring and ring is nothing but, r and they are actually triplets so there is not 

only one operation as plus and there is another operation also along with it such that r 



coma plus is an abelian group the way we have defined and r coma product is r coma the 

second operation is actually a monoid in addition it satisfies the properties of 

distributivity which says that x if we mul[tiply]- i mean product if we take product with y 

plus z then which is same as x dot y plus x dot z for x y z which belongs to this ring the 

ring is also called commutative if the semi-group r coma dot that is this one is also 

commutative and a unit element of the ring is the neutral element of the semi-group r 

coma dot so a unit element of the ring is a neutral element of the semi-group r coma dot 

therefore, a neutral unit element of this ring will be as defined as the neutral element of 

this of the monoid r coma dot. 
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So then we define what is called a unit group which means that let r be a ring with unit 

element an element a of r is called invertible or a unit if it is invertible in the 

multiplicative semi-group of r so an element a i repeat this definition a element a of r is 

called invertible or a unit if it is invertible in the multiplicative semi-group of r that 

means multiplicative semi-group of r will be this if it is invertible in this particular semi-

group then it is said to be invertible and the element a is called a zero divisor if it is non-

zero that is if the element itself is non-zero and there is a non-zero b in r such that if i 

take the product of a and b or the product of b and a then we get back zero now units of a 



commutative ring actually from a group and this is called the unit group of the ring and it 

is often denoted by r star ok 
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So that is the definition of a unit group and we can actually have one very i mean some 

example because i think this is little abstract so in order to understand this let us take 

some examples so let us consider the set or rather let us consider the ring z m z and let us 

define let us define rather let us take the value of m to be something like ten so we know 

that the elements here will be like zero one two and so on till nine now you consider like 

whether all the elements so let us consider like some some let us consider some 

interesting facts let us consider the numbers for example, two and let us consider like let 

us multiply two with all possible elements which are there all possible nonzero elements 

which are there in the set 
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So let us consider two into one two into two two into three two into four two into five 

and so on if you consider these mult[iply]- these products and if you take the modulo ten 

operation that is if you take mod ten for all of them then you’ll find that this is actually 

equal to two this is actually equal to four this is six this is eight but, this one is zero so 

this shows us an example where there are two elements which are nonzero like two is 

nonzero and five is also nonzero but, if i multiply this and if we take i mean in these 

particular if i take a modulo ten then what i obtain back is zero therefore, from this 

definition we say that two is actually a zero divisor the element two is actually a zero 

divisor therefore, this particular thing i mean therefore, i mean this this is an example 

which shows that zero divisor exists therefore, let us come back to this and see whether 

element a is called a zero divisor if it is a nonzero and there is a nonzero b in r such that a 

multiplied with b or b multiplied with a is zero so this is an example to understand this 

particular aspect 
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Now what about this an element a of r is called invertible or unit if it is invertible in the 

multiplicative semi-group of r so let us see that among these particular i mean numbers 

like zero one two an[d]- nine what are the elements which are invertible so let us leave 

out zero because zero is obviously not invertible let us consider one so we know that if i 

take one and multiply it with one i get back one itself what about two so if i take two and 

if i multiply with with any of the numbers will i get back one so actually we will see that 

no you will not get back two is not invertible ok 

So the numbers which are invertible in this particular set from zero to nine can actually 

be found out like this there we see one similarly, three will invertible four will not be 

invertible five could not invertible six will not be invertible seven will be invertible nine 

will be invertible eight will also be invertible sorry eight not will not be invertible nine 

will be invertible and the reason rather the one you see we have checking is that if i take 

the g c d of any of these numbers a and with ten if a is invertible then this g c d of and 

ten should be equal to one so if the g c d of a coma ten is equal to one then we we say 

that a is invertible so a is invertible if and only if the g c d of a coma ten will be equal to 

one so that means you’ll find that this particular set that is one three seven and nine will 

actually form something which is called as unit-group therefore, this will form a unit-

group so i mean it is often defined as r star in this ring so we will see more examples of 

this but, as we proceed we will see more examples of this 
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So let us consider zero divisor therefore, the zero divisors of the residue class z slash m z 

is actually a plus m z and this is the generalization of what we said that is zero divisors of 

the residue class z slash m z is actually a plus m z such that if you take the g c d of a and 

with m then it is neither one nor m but, it is somewhere in between so that is nontrivial g 

c d of a and m and the proof is very simple it says that if a plus m z if the zero divisor of 

z slash m z then there is an integer b this follows take down the definition such that a b is 

congruent to zero modulo m but, neither a nor b is zero modulo m so which means that m 

divides a b so a b is congruent to zero means m divides a b but, neither a nor b is actually 

divisible by m 
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So this atomically implies that if i take the g c d of a and m then this should be some 

significant value that is it means that if you take m so, say that a b is congruent to zero 

modulo m right so that means that a b will be equal to i mean rather m divides a b right 

so if a m divides a b so which means that a b divided by rather a b divided by m this 

should be a number right this should be an integer number this is an integer value but, we 

know that neither a nor b are actually divisible by m therefore, a by m is not an integer b 

by m is not an integer so that means that a and b definitely i mean i mean there should be 

a cancellation between a and m and that means that the g c d of a and m should be 

actually something which is between one and m so it is neither one nor m see for 

example, if you just consider the example just now what we considered with m is equal 

to ten and a being equal to two and b being equal to five ok 

So now let us consider two into five divided by ten this ratio so you see that two into five 

by ten therefore, it means that the g c d of this particular thing is actually not equal to its 

not it is neither one nor ten but, it is in between therefore, this shows that there should be 

a i mean there should be a number d which divides both a and d also divides m there 

should be a number d and that number is neither d is not neither equal to one nor nor is 

equal to m so this proves that this shows that m divides a b but, neither a not nor nor b 

and therefore, this implies that the g c d of a and m lies between one and m. 
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Now conversely if one this lesser than equal to g c d is less than g c d is a coma m less 

than m then define then if i define a number b as m divided by g c d a coma m then both 

a and b are nonzero modulo m so then both a and b are nonzero modulo m that is true 

from the definition itself right but, if what what if i multiply a and b so if i multiply a and 

b then what i obtain is a so if i if i take this definition of m divided by g c d of a coma m 

and if i multiply this with a then i obtain zero modulo m the reason is if i if i multiply this 

with a and this is the g c d of a coma m then this divides a and therefore, what i obtain is 

an integer multiple of m and therefore, if i take a congruence or rather if i divide it by a 

and take the remainder then the remainder is zero so this proves that a b is congruent to 

zero modulo m thus a plus m z is a zero divisor of z slash m z 

So therefore, we will see that i mean zero zero divisors i mean it is very easy to detect 

zero divisors how i mean because we just this simple test reveals the zero divisor if i take 

the g c d of number a and along with m and if the g c d lies between one and m then 

actually it forms the zero divisors so there is a natural corollary to this that if p is a prime 

then set z plus z slash p z will have no zero divisors because because if i take the g c d of 

a number with p then it is always equal to one because that is the definition of primelity 

right so that means that it automatically implies that there are no zero devisors if p is a 

prime number in this particular z slash p z 
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So then we come to the definition of field which says that a field is a commutative ring r 

plus multiplication in which every element in the semi-group r multiplication is 

invertible therefore, if every element is invertible then it is a field so examples of this 

would be like the set of integers is not a field because you know why i mean the set of 

integers cannot form a field because every number is not invertible the set of real and 

complex numbers from a field and the residue class modulo prime number except zero is 

a field why because we are seeing that because of this particular result if p is a prime 

then z slash p z will have no zero divisors so that automatically implies that this is not a 

field 
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So then we come to the concept of euler’s totient function which says that if a is greater 

than equal to one and m is greater than equal to two are integers and if g c d of a coma m 

is equal to one then we say that a and m are relatively prime now the number of integers 

in z m where m is greater than one that are relatively prime to m and does not exceed m 

is denoted by phi m or which is also called as euler’s totient function or phi function 

therefore, we will we will start with this define it in a recursive fashion and it says that 

phi of one is equal to one ok 
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Now what about let us consider phi of twenty six so twenty six is a number of english 

letters which are there and we let us consider the value of phi of twenty six we can see 

that phi of twenty six is equal to thirteen if p is a prime then phi of p is p minus one and 

if n is equal to one two twenty four then the values of phi n are as follows so this is just a 

enumeration so, you’ll see that you can verify these results but, the fact is that this 

function is very irregular that is you’ll not find any distinct even (( )) like it is not like as 

n increases phi n always increases you can see that there is defect time also ok 
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So now the let us see the properties of phi n so there is a very interesting result which 

says that if m and n are relatively prime numbers then phi of m n is nothing but, the 

product of phi m and phi n now this result is very interesting and helpful to compute the 

phi of higher numbers or larger numbers for example, phi of seventy seven is same as phi 

of seven multiplied by eleven which is same as phi of seven multiplied by phi of eleven 

and we know that if seven is a prime number then phi of seven is nothing but, six and phi 

of eleven is nothing but, ten so the product is sixty similarly, phi of one eight nine six 

divide i mean if i obtain the prime factorizations i can obtain the result of six twenty four 

so this result can be extended to more than two arguments comprising of pair wise co-

prime integers 
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So let us see some interesting results that is it says that if the first results says that if there 

are m terms of an arithmetic progression a p and has got common differences which are 

prime to m then the remainders form z m so if there are m terms of an arithmetic 

progression and has got common difference that is if the common difference is prime to 

m then the remainders form z m so this is a quite simple result which you can check the 

other one says that an integer a is relatively prime to m if and only if its remainder is 

relatively prime to m so if an integer a is relatively prime to m then it automatically it is 

an bidirectional implication is that same as saying as that its remainders is also relatively 

prime to m 

And the other interesting results is that if there are m terms of an a p and i’ve got a 

common difference prime to m then if it is actually a combination of these two results 

which says that then there are phi m elements in the arithmetic progression which are 

relatively prime to m because so you can follow like because it says that the reminders 

form z m and you know that if the reminders form z m and and because i mean an integer 

is relatively prime to m only when the remainder is relatively prime to m so we actually 

need to find out the number of remainders which are relatively prime to m and that 

follows from the definition as phi m right therefore, if there are n terms of an arithmetic 

progression and the common difference is also prime to m then there are actually phi m 

elements in the arithmetic progression which are relatively prime to m 
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So we will apply this result to obtain this nice uh result the nice observation so let us 

consider phi of m n so we know from the definition phi of m n means those numbers or 

rather means the number of values inside from one to m minus n which are actually co-

prime to m n so let us now arrange this numbers from one to m n minus so this is nothing 

but, m minus one i mean so this is m n minus n plus n so this is m n therefore, from one 

to m n all this numbers we have arranged them in this fashion so it is like one two and so 

on till n we arrange them in this fashion 

So now you consider that among these numbers if you need to find out so if since m and 

n are relatively prime to both m and both n now you see that there are i mean among this 

numbers if you consider like this number like for example, is so, you’ll find that there are 

phi n columns that is there are phi n columns in which all the elements are co-prime to n 

so if you see that for example, this particular column that is the last column that is n n 

plus one this this column all the elements are not co-prime to n because this is actually 

you will find that n multiply this n plus n this m minus one into n plus n and so on so that 

means that you need to find out the number of columns in which all the elements are co-

prime to n and we know that there’re there are actually phi n columns in which all the 

elements are co-prime to n 
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Now among this columns which are actually co-prime to n we will like to find out what 

are the number which are actually co-prime to m so we see that we apply the previous 

result and see that for example, let us consider this so in this particular column so assume 

that k is actually co-prime to n and consider this column and the result says the previous 

result says that if so what is that what is the what is the difference here what is the 

common difference the common difference is k now if this k is actually therefore, co-

prime to m then the the previous result says that if there are m terms of an arithmetic 

progression and has a common difference which is prime to m then there are phi phi m 



elements in the arithmetic progression which are relatively prime to m so that means that 

these elements i mean there are phi m elements which are actually co-prime to m 

So if there are phi m elements here which are co-prime to n and there are phi n five 

elements which are actually i mean which all the elements are co-prime to n then 

combining this we obtain that the phi m into phi n numbers which are actually co-prime 

to both m and both n and that actually forms as phi gives us the number of phi m n ok 
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So therefore, we conclude like thus there are phi n columns with phi m elements in each 

which are co-prime to both m and n and thus there are phi m phi n elements which are 

co-prime to m n this proves the result 
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We can actually apply this result and we can obtain some interesting observations like 

phi p ot the power of a will be equal to p to the power of a minus p to the power of a 

minus one and these is quite evident for a equal to one but, for a greater than one out of 

the elements one two p p to the power of a the elements p p square p to the power of a 

minus one are multiplied with p are not co-prime to p to the power of a the rest will be 

co-prime therefore, we can obtain like phi p to power of a will be p to the power of a 

minus p to the power of a minus one and that is actually equal to p power of a into one 

minus one by p 
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We can actually extend this result and apply this like follows and compute the phi of any 

value in this case we know from the fundamental theory of arithmetic that we can 

actually take n and obtain phi if we and we can obtain this prime factorizations then it 

will be easy to compute the value of phi n so that means the if factorization of n is 

available then computation of phi n can be obtained using this this this formula so for 

example, if i need to the compute phi of sixty then we can and we know prime 

factorization of sixty as four multiplied by three multiplied by five and phi of sixty will 

be sixty into one minus one by two into one minus one by three into one minus one by 

five so that is this is equal to two square therefore, this is this is straight away application 

of this result 
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So then we see that just let us conclude our todays talk with theorem of fermat which 

says that it is called fermat’s little theorem and its very useful so it is so you see that if g 

c d of a coma m is equal to one then a power phi m is actually congruent to one modulo 

m actually this result is euler’s fermat’s theorem and variation of this is same as fermat’s 

theorem it says that if in fermat’s little theorem this this m is actually a prime number we 

know we know that if phi m (( )) is prime then phi of p will be equal to p minus one and 

therefore, a to the power of p minus one will be congruent to one modulo m so that is 

fermat’s little theorem but, let us consider the generalized theorem and let us consider a 

set r which is formed of r one to r phi m we know that there are phi m elements which 

forms a reduced set modulo m 
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Now if g c d of a coma m is equal to one we see that a multiplied with r one so we just 

take this numbers and you multiply each of them with a now this if g c d of a coma m is 

one then this results also reduced systems modulo m now this is just to be a permutation 

of the set r so this is we have considered na we have considered one example previously 

where we have seen that if you’ve taken some numbers and those numbers essentially 

where nothing but, rearrangement right like if you see that in the previous example of 

this this this particular set so this particular set was just a rearrangement of the original of 

the original remainder ok 
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So therefore, similarly, i mean applying this if you just take this set of remainders and if 

you multiply them with a number a which is co-prime to m then you obtain another order 

of the of the remainder now if we just take therefore, therefore, therefore, it is basically 

the same set of the remainders but, in some other order therefore, the product of these 

particular elements will of these elements will also be the same so if i just take this 

numbers and i multiply them this should be the same as the product of these numbers so 

that means writing them i mean in one this will this will work out to be a to the power of 

phi m because there are phi m numbers and on the left hand side you’ll have r one to r 

phi m multiplied and the right hand side you’ll also have r one to r phi m multiplied now 

note that since these numbers are actually co-prime with m therefore, they can be 

cancelled out and therefore, what remains is a power phi m is congruent to one modulo 

m and that is the euler’s fermat’s formula 
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So example of this can be applied to find out very interesting results like suppose seventy 

two to the power of one thousand one is divided by thirty one and we need to go argue 

that so you know that seventy two is nothing but, equal to ten modulo thirty one hence 

seventy two to the power of one thousand one will be equal to ten to the power of 

thousand one mod modulo thirty one now if i apply fermat’s theorem then since p is a 

prime number then ten to the power of thirty should be equal to or congruent to one 

modulo thirty one note that thirty one is prime therefore, raising both sides to the power 

thirty three will be ten to the power of nine hundred ninety is congruent to one modulo 

thirty one and therefore, we find that it it is this can be worked out like this ten to the 

power of thousand one will be ten to the power of nine hundred ninety which is the 

nearest number and these are the subsequent remaining numbers 
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So similar number these small numbers you can reduce quite easily using and apply the 

previous results to these computations then you can see that this will work out to 

nineteen modulo thirteen one similarly, you can work out this example take this as an 

example exercise that is find the least residue of seven to the power of nine seventy three 

modulo seventy two note seventy two is not a prime number so i conclude here and we 

have followed these texts from telang and from buchmann for the i man for this part and 

next day’s topic will be probability and information theory 


