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So, we will today discuss about Primality Testing algorithm. So, we are essentially 

continuing with the adhesive crypto system. And last time, we have actually motivated 

the fact, why we are why we would study a primality testing algorithm, because we have 

to choose large prime numbers. 
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So, therefore, what we do is that we randomly choose two numbers say p and q, and 

those two numbers has to be prime. So, therefore, we need an algorithm through which 

you would able to understand whether a number is prime or not. 

So, therefore, we are continuing with quadratic residues. So, I will continue with that and 

then discuss about a primality testing algorithm, it is called Solovay Strassen algorithm 

and then there is a symbol with which we need to compute; in order to do this, I mean 



have to or use this, algorithm that is called the Jacobi symbol. So, we will see how to 

compute the Jacobi symbol efficiently and then discuss about some error bounds for the 

solovay strassen algorithm, so this more or less the agenda for today. 
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So, this is the recap of what we are studying like last time, we saw the proof of this result 

which is over Euler’s criteria that given a number a or rather a variable a, which is a 

quadratic residue modulo p if and only if, a to the power of p minus 1 by 2 is congruent 

to 1 modulo p. So, we prove this result and therefore, if this result is satisfied then a is 

said to be a quadratic residue, right. 

If a to the power of p minus 1 by 2 is something else then this that this not equal to 1 

mod p, then a is said to be a non-quadratic residue, but the thing is that, a to the power of 

p minus 1 by 2 can have only 2 possible values, it can be either plus 1 or it can be minus 

1 why, because this follows from the Fermat’s theorem. So, Fermat’s little theorem is a 

to the power of p minus 1 has to be congruent to 1 modulo p right, so that means that if 

I… So, therefore, this result is the square of one. So, therefore, it is either square root of 

1, so it is either plus 1 or minus 1. 

So, what we have discussed last day is that, if this is equal to plus 1 or rather this 

congruent to plus 1 that it is a quadratic residue, but modulo p, but if it is therefore, if it 



is other way wrong that is if is the other case, it is congruent to minus 1 modulo p then a 

is said to be the non-quadratic residue. 

So, this is the quite an efficient check because you can easily understand that we can 

actually do o log p cube, o log p whole cube number of steps to understand whether a 

number is quadratic residue or not. Otherwise, what was the newer approach, you would 

have continued and found out whether there is a satisfaction on the equation of I square 

equal to a, so that is not sufficient. So, therefore, this Euler’s criteria use an efficient way 

to solve the quadratic residue problem. 

(Refer Slide Time: 03:09) 

 

So, now we introduce a symbol which is called the Legendre symbol which is defined 

like this. So, this notation is like this; that is it is like within first brackets you write a and 

you write p like this (Refer Slide Time: 03:13). So, this Legendre symbol a comma p is 

actually defined like this. So, you see that its 0, if a is congruent to 0 modulo p and other 

ways it is, if it is a quadratic residue modulo p, then it is called 1 plus 1 and if it is a non-

quadratic residue modulo p it is actually minus 1. So, these are definition of the Legendre 

symbol. 

So, you can easily see from this definition Legendre symbol is nothing but, a to the 

power of p minus 1 by 2, why? Because we know that also the right hand side if a is a 



quadratic residue is plus 1, if it is non-quadratic residue it is minus 1 and if a is congruent 

to 0 modulo p then the right hand side computes to 0, right. 

So, therefore, you see that this and this satisfies each other and therefore, we can say that 

the Legendre symbol a comma p, where p is an odd prime. So, p is an odd prime means 

primes which are greater than 2, then the Legendre symbol is defined as a by p like this 

sorry a I called it Legendre symbol a comma p and that is actually congruent to a to the 

power of p minus 1 by 2 modulo p. So, these are definitions. So, it follows from the 

definition straight away. 
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So, now the next question is whatever means that is another notation called the Jacobi 

symbol, which actually uses the Legendre symbol. So, you will see that the Jacobi 

symbol is like this (Refer Slide Time: 04:50), like suppose n is an odd positive integer 

and the prime power factorization of n is like this. So, you see that this follows from the 

fundamental of arithmetic that I can take any n and I can break it up or factor it up as a 

product of primes right. So, therefore, you see that p 1 to the power of e 1, p 2 to the 

power of e 2 and so on, right. So, therefore, this is just a factorization, prime 

factorization of n. 

And then the Jacobi symbol a comma n is defined as follows; it is defined as like the 

product from i equal to 1 to k, because they are k prime factors and you actually 



complete the Legendre symbol of a with respect to each prime factor and you raise that 

to the power of corresponding e i. So, if this is for example, if the i th term of this is p i 

to the power of e i, the i th term of the Jacobi symbol is Legendre symbol of a comma p i 

raised to the power of e i, you understand the definition right. 
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So, with an example … So, therefore, for example, if you want to compute 6278 and 

9975. So, you are interested in computing the Jacobi symbol then, what I will do is that 

first of all, I will factor 9975. So, therefore, the prime factorization of 9975 is as follows 

3 into 5 square into 7 into 19 ok. 

So, therefore, from the previous definition this Jacobi symbol is nothing but, 6278 

Legendre symbol with respect to 3 and raise to the power of 1 because 3 has a power of 1 

here. Similarly 5 is a power of 2, so you compute the Legendre symbol of 6278 and 5 

raised to the power of 2 and similarly 6278 Legendre symbol 7, Legendre symbol of 

6278 and 19 ok. 

So, now you see that this is actually equal to 2 and 3 is Legendre symbol why because 

what is this? This is a to the power of p minus 1 by 2, right by my definition and modulo 

p; that means, I can do that with a mod p and raised to the power of p minus 1 by 2 also 

right. So, therefore, 6278 if I take a modulo 3 I am and my remainder is 2, I can simplify 

this stuff. So, therefore, 6278 if I take a modulo with 5, 3 is the remainder right. So, 



therefore, 6278 similarly if you take modulo 7 with 6 and 6278 if you take modulo 19 is 

88. 

So, therefore, now this is quite simple to calculate, you will find that all of these values 

actually are computing to minus 1, why? We can either compute this or check that this is 

not actually a quadratic residue with this modulo. So, therefore, it is either a non-

quadratic residue or you can compute a power p minus 1 by 2, where a is 2 and p is 3. 

So, all of this compute to minus 1 and therefore, if you will compute this, it will compute 

to minus 1. So, this is the way how you can compute the Jacobi symbol of 6278 with 

respect to 9975. 

So, you note one thing that in order to compute this Jacobi, what we have done is that 

actually we have factored out 9975 right. So, you appreciate the fact that actually if this 

number is quite large, certain approach would not work because factorizations I do not 

know what are the prime factorizations right or other its quite difficult for me to compute 

those prime factors right. So, therefore, I need some other way out right. So, you 

understand the problem right. So, therefore, but this is how this follows from straight 

from the definition and this quite with small (( )) with small values. 
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So, now the main fight like prime versus composite how can I differentiate the number 

from prime, I mean how can I differentiate whether or rather understand whether a 



number is prime or composite. So, we give you a result which says like this, that suppose 

n is greater than 1 n is odd; obviously, if it is even you can straightaway understand it is 

not a prime number right. 

So, if n is prime then I use this result that a n that is the I mean, so, therefore, if n is 

prime means what. So, if n is prime then what is this Jacobi or Legendre symbols both 

are same actually, right. 

So, therefore, I mean if n is prime then what we can say is that, the Legendre symbol of a 

with respect to n or the Jacobi symbol that is ok. So, this is actually congruent to a power 

n minus 1 by 2 modulo n right. So, this is quite ok, I mean this follows straight from the 

definition of prime numbers right. 

But if n is composite, then this actually may be the case or may not be the case because 

there are some primes which are called pseudo primes which also satisfy this equation. 

So, therefore, if I use these criteria as a primality testing mechanism, I have to ensure 

how many such cases are given upper bound of how many composite numbers actually 

will actually satisfy this equation right. 

So, therefore, but if n is composite, it may or may not be the case that the above equation 

holds for any odd composite n, where n is an I mean if n is an Euler pseudo prime to the 

base a. So, I call that Euler pseudo prime to the base a for at most half of the integers of a 

belonging to Z n star ok. 

So, this is the result. So, therefore, the result says that if we just choose any odd 

composite number n, then at most there can be half of the integers of a belonging to Z n 

star which will satisfy these things, so not more than half. So, we may wonder why, but 

these are fact first of all ok. 

So, therefore, you understand, first of all understand why how this works that is or why 

do we need this? Therefore, what we do is that our traveling is that given a random 

number a which I choose from say Z n, I am interested to decide that whether that 

number a is a prime number or not. So, what I do is that I compute the Jacobi of n with 

respect to n ok. 



And then also compute a power n minus 1 by 2 and check whether they are same; if they 

are same, then I conclude that n is a prime number right, but the thing is that as I told you 

that there are some composite numbers for which also this equality holds or this 

congruence holds. So, therefore, we need to find out rather I mean, how many such cases 

or what is the maximum number of such odd composite numbers which will also satisfy 

this equation ok. 

So, therefore, this particular last point says is that for any odd composite n, where n is an 

Euler pseudo prime therefore, it is actually not a prime number it is a pseudo prime. So, 

it is basically a composite number you can see from this statement itself. So, if you 

compute the Euler when if you I mean for n is an Euler pseudo prime to the base a for at 

most half of the integers a, which belongs to Z n star. So, let us try to reason out why this 

is so, ok. 
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This is actually an exercise from Stinson. So, I was giving you the solution for that, but 

this is actually left to as an exercise there, I think there are some more parts, but some 

parts I have solved here. See for example, you can define like this, that is you can define 

a set G n, where G n is defined like this, that is you take a from Z n star and you compute 

the Jacobi symbol of a with respect to n and actually the congruence satisfies a power n 

minus 1 by 2 modulo n. So, what does it mean that all these numbers essentially if you 

choose a and if you apply the previous test will pass right. 



So, now the question is that whether this G n is actually I mean is actually I mean all of 

them are prime or not or what is the maximum cardinality of this particular set, right. So, 

therefore, first we will prove there actually G n is the subgroup of Z n star. So, if this is 

so, that is if G n is actually a subgroup of Z n star; so subgroup means what, subgroup 

means that it itself a group, if you recall it is itself a group and at the same time it is also 

closed. 

It is a multiplicative group, so and at the same time it is also closed. So, therefore, you 

see that since G n is chosen from Z n star that is a belongs to Z n star. So, it is automatic 

that it is all the elements are chosen from multiplicity group. So, what do we need to 

show is there is also closed under multiplication correct. 

So, now by if this is so and if we also show that G n is actually not Z n star which means 

that it is actually small, then I can follow this from Lagrange’s theorem, which I stated in 

the last day’s class that actually the cardinality of G n will be smaller than Z n star by 

cardinality of Z n star by 2. Why? What was the statement of Lagrange’s theorem? It 

says that if there is a subgroup then the order of the subgroup divides the order of the 

group right. 

So, therefore, the order of the subgroup is what G n cardinality and therefore, that has to 

divide Z n star right. So, therefore, the cardinality of this obviously, lesser than the half 

right you understand that. So, therefore, this cardinality has to be upper bounded by the 

cardinality of Z n star by 2 and cardinality of Z n star is maximum equal to n minus 1 if n 

is prime it will be n minus 1. So, I can actually write these inequalities ok. 

So, therefore, what we have to show is that G n is individual subgroup of Z n star right 

and also we have to show that G n is not equal to Z n star, so that means, there is at least 

1 element n will belongs to Z n star, but which does not belong to Z. Did you understand 

the idea of the proof? 

So, what you have to show is that G n is individual subgroup of Z n star. So, therefore, 

what we have to show is that the closure property and under multiplication operation and 

at the same time, you have to show that there is at least 1 element which belongs to Z n 

star, which does not belong to G n in order to show this inequality. 



So, the closure property is quite straight forward if you I mean, if you see this property 

like if you take a and b which belongs to G n. So, I can write like a Jacobi n will be 

congruent to a to the power of n minus 1 by 2 mod n, similarly b Jacobi n will be 

congruent to b power n minus 1 by 2 mod n. 

So, now what is the corresponding Jacobi of a into b with respect to n. So, that is actually 

I mean a multiplicative rule of Jacobi and it is also quite straight forward to understand 

why. 
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So, if we apply this, you can actually product I will apply like this, like so you can write 

like it is a product of a n and b n and therefore, this is equal to a power, if this is 2 

actually then it is congruent to a power, n minus 1 by 2 into b power n minus 1 by 2 

modulo n. And therefore, you see it is equal to a b to the power of n minus 1 by 2 

modulo n. So, therefore, a b also belongs to the say group G n right. 

So, why does it is to hold? You can understand from the definition of the Jacobi symbol 

why because the Jacobi was computed by factors of n if you remember right. So, 

therefore, the same factors hold for this and this also right. So, therefore, you can 

actually factor them out term by term and you can split this out like this. So, therefore, 

and also I mean, what you need to prove is that this result also holds when a b, when the 



Legendre symbol of a b with respect to a prime can be actually factored out in this way, 

do you follow what I am saying. 
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So, therefore, what I am trying to show is this; that is if that is a prime number p, so p is 

suppose prime and then, I compute the corresponding Legendre symbol of a b with 

respect to p, then actually I should be able split this like this, that is a with respect to p 

and b with respect to p. So, if this result holds, then also I can then I can easily write that 

a b with respect to n is equal to a with respect to n and b with respect to n why? Because 

I can factor out n, I can factor n and similarly, I can apply the definition of Jacobi 

symbol, it follows straight from the definition actually. 

So, and why this works this works why this works is quite easy, because you can straight 

away apply the other definition of Legendre symbol, which is the I mean a b raise to the 

power of p minus 1 by 2 and from there it follow straight away. So, therefore, between 

easy proof of this multiplicative rule for this Jacobi symbol (Refer Slide Time: 18:15). 

So, therefore coming back to this proof, so you see that because of this multiplicative 

property, actually G n is also closed under multiplication. So, since G n is a subset of a 

multiplicative finite group and it is also closed under multiplication, then it must be a 

subgroup also. 



So, what we have next to show is that, there exist at least 1 element in Z n star which 

does not belong to G and therefore you will find that there is an exercise given in your 

Stinson’s book and we have just given you the sketch for that, he says that the question I 

is like this. 
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Suppose n equal to p power k into q, where p and q are two odd prime numbers. So, you 

see that here it says that p is p and q are odd and p is prime and is also says that gcd of p 

comma q is equal to 1, so that means, that p and q do not share any common factor which 

is a non-trivial factor. So, therefore, now if you define a which is equal to 1 plus p to the 

power of k minus 1 into q, then you can easily see that a belongs to Z n star, why? 

Because if you take a and if you take the and if you observe n, then this n and this 

particular a number a cannot share any common factor common non-trivial factor. So, a 

belongs to Z n star ok. 

So, what we now next to next need to show is that a does not belong to G n, so that 

means, what we have to show that if I take a and if I compute the Jacobi of a with respect 

to n this should not be congruent to a power n minus by 2 modulo n right. 

Yes. So, therefore, what we do is that you take a and take n and you need to compute the 

Jacobi symbol. So, you know the factors of n right, it is p power k into q. So, therefore, 

you can apply this straight away and you see that this is actually equal to 1 because a 



with respect to p is 1 and a with respect to q is 1, why? Because if you take modulo p and 

modulo q only 1 remains right. So, therefore, this is equal to 1. 

So, therefore, the right hand side that is a power; so therefore, this is actually, what is the 

right hand side of what we are checking? It is a power n minus 1 by 2, so this we can 

actually do from binomial theorem right. Because a is what 1 plus p to the power of k 

minus 1 into q. So, if I need to compute a power n minus 1 by 2, I can apply to the power 

of n minus 1 by 2 and do a binomial expansion of this 3 right. 

So, therefore, you will see that this binomial expansion if you take a modulo n, then only 

these 2 terms remain, the other terms vanish why? Because k is actually greater then 

equal to 2 by my definition, all the higher terms will be actually if you take modulo n 

will be divisible by and will become the remainder will be 0. So, you can check this 

actually um. 

So, therefore, the only 2 terms which will remain is 1 plus n minus 1 by 2 into p to the 

power of k minus 1 into q modulo n. So, now, if this and this has to be equal that is if a 

Jacobi n has to be equal to a power n minus 1 by 2, then the second term has to go to 0 

right. So, therefore, n has to divide this number right. 

So, n what is n? n is p to the power of k into q. So, therefore, p to the power of k into q 

has to divide n minus 1 by 2 into p to the power of k minus 1 into q right and therefore, p 

has to actually divide n minus 1 by 2 ok. 
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And therefore, you can rearrange this and find out the n as in that case congruent to 1 

modulo p, how? Because n minus 1 by 2 has to be some integer multiple with p, right so 

its k p something. So, therefore, n is equal to 1 plus 2 k p. So, if you take a modulo of p 

on both sides, then n is actually equal to congruent to 1 mod p. 

But we know that n is actually 0 mod p because n was what p to the power of k into q. 

So, we have a contradiction and were therefore, this equality is not correct. So, therefore, 

a does not belong to G n right and what does it mean? It means the G n and Z n star are 

not the same, right. And therefore, we can apply the Lagrange’s theorem and from there 

we can say that the cardinality of G n is actually lesser than equal to n minus 1 by 2. 

So, now this is the main idea. So, therefore, you see that idea is that, I mean less than 

half of the numbers can be at most there can be n minus 1 by 2 numbers which will 

satisfy this test. So, therefore, I can apply this test with a with a with a good probability 

of success. 
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So, therefore, you will see how this algorithm works in more details, I just given you this 

I mean... So, therefore, let us go through this therefore, it says suppose n is a composite 

number therefore, there can be 2 cases: a belongs to Z n difference Z n star. That means, 

a belongs to Z n difference Z n star means what a is not co-prime to n right. So, in that 

case, gcd of a comma n is what not equal to 1 and therefore, a Jacobi n will be 0. 

Why? Because in that case it means that, if I factor out n, there should be 1 factor for 

which this will be 0, right; if you factor n into its prime factors, then one of the terms 1 

of the product terms has to go to 0. So, therefore, from there it follows. Therefore, it 

shows that there is a non trivial division. So, therefore, you know that this number a is 

actually not a rather is a composite number. So, therefore, you understand easily this is a 

correct answer, this is a composite number. 

Now, what about the next case when a belongs to Z n star then gcd of a comma n is 

actually not equal to 1 right sorry gcd of a comma n is equal to 1. So, in that case solovay 

strassen can return a wrong answer if and only if a belongs to G n right. So, what we 

have proved is that, cardinality of G n is maximum equal to n minus 1 by 2 and from 

there I can compute the probability of a wrong answer to be maximum equal to half that 

is the rational behind a solovay strassen algorithm ok. 
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So, now if you understand this, I mean the rest of the thing will be quite easy to follow. 

So, this is an example of a pseudo prime number for example, if you take 91 and if i take 

to show you that really such kind of numbers exist. So, gcd of 10 comma 91 is actually 

equal to 1. So, therefore, if this would have been something like a I mean, since this is 

equal to 1, we apply our check. 

So, therefore, it says that 10 and 91, if I compute the Jacobi it comes out to minus 1 and 

if you do 10 to the power of 91 minus 1 by 2 and take a modulo 91, this also comes out 

to minus 1. So, therefore, this satisfies my check, the solovay strassen check, but you 

know that 91 is actually not a prime number, right there are non-trivial factors. So, if gcd 

of a comma n is greater than 1 then a and n have at least 1 common prime factor. 

So, therefore, this is actually quite easy to understand why it is so, and we have 

understood why and that is the Jacobi of a to the base of n is 0 and the condition is 

actually if and only if so, therefore, this condition is actually if and only if. So, thus if 

Jacobi is 0 with respect to any a then n is composite, but remember the choice of a is 

random. So, this is what I told you that if the Jacobi computes to 0 then that means, there 

is a particular factor in the prime factorization of - if a factor n into say prime factors and 

therefore, in the computation of the Jacobi symbol there is 1 factor which goes to 0 right. 
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So, therefore, this follows from this fact that, if I take n and if I compute like p 1 to the 

power of e 1, p 2 to the power of e 2 and so on till t k to the power of e k and I am 

interested in computing the a Jacobi n, then what does it mean? I am computing I equal 

to 1 to k, a with respect to p i and raised to the power of e i. 

So, now if this computes to 0 it means that there exist a p i or other there exist i for 

which a p i is equal to 0 mod p right and what does it follow from the definition? 

Definition is what? The definition is it implies the a is congruent to 0 mod p i right this 

follows from the definition, you remember the definition of Legendre symbol; it says 

that a within that symbol p is congruent to 0 if a is congruent to 0 modulo p rest of the 

cases it is plus 1 or minus 1. That means, easily that there is a non-trivial factor of a. So, 

therefore, what is a? Can be a prime number, a is definitely a composite number ok. 
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So, therefore, this check is quite easy, this is always correct in terms of composite 

decision problem that whether a number is composite or not, this is always a correct 

answer right. So, if this is not so, that if it is not equal to 0, then there is a chance of 

making an error because we apply the next check and you know that because pseudo 

prime numbers exist what you return is actually may be wrong right. 

But, if you say that a number is actually composite, then it is true because if I find out 

that for a given number a Jacobi n is not congruent to a power n minus 1 by 2 modulo n 

then definitely a is a composite number right, but the problem is other way round; if it is 

satisfy then to understand whether a number is prime or a number is composite, then 

there is a chance of making a mistake. And what we have showed just now is at the 

probabilities of making an error is maximum half that is the reasoning of the solovay 

strassen algorithm ok. 

So, you see that if this number if this algorithm says to you that a given number is a 

composite number, it is always correct. So, therefore, this is an example of a. 

(( )) 
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It is based on monte-carlo algorithm. So, this is the summary of whatever I told you just 

now, that however, if a Jacobi is not 0, then we check whether it is actually equal to a 

power n minus 1 by 2 modulo n; if no then it is definitely composite, but if yes it can be 

prime, it can be pseudo prime ok. 

So, it can be pseudo prime in that case, what we are doing is that we are saying it is 

prime. So, the result can be erroneous and that is an error probability, but if we say that 

whenever it saying yes, it is actually correct. So, this problem is with respect to I mean 

not is prime, but whether is composite that where a number is composite or not. 

So, luckily we have the following fact that if the Jacobi symbol is not 0 with respect to a 

then gcd of a comma n is actually equal to 1. So, therefore, if a Jacobi is not 0 with 

respect to a, then the gcd of a comma n is equal to 1. So, this we have already told you 

and so a belongs to Z n star and for any odd composite n, n is an Euler pseudo prime to 

the base a, for at most half of the integers a belonging to Z n star. Thus we have the 

following monte-carlo algorithm with error probability of at most half. So, this is what I 

am trying to argue till now actually. 
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So, this is the working of the algorithm, it says it is a solovay strassen algorithm. So, you 

see that if choose the random integer a, such that 1 is less than equal to a is less than 

equal to n minus 1. So, for the first step what you do is that, you compute the Jacobi of a 

with respect to n if this is actually equal to 0, then immediately you can say that n is 

composite. 
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Do you understand this? So, therefore, what is the other case, you take y and you 

compute a power n minus 1 by 2 if x is congruent to y mod p rather mod n, then you can 



return that n is a prime number, otherwise you say that n is a composite number. So, you 

see that whenever it says a composite number like this case or this case, it is a correct 

answer, but if it says n is prime then, there is a chance of making a mistake. So, the 

decision problem is n composite. So, that is the composite problem. So, note that 

whenever the algorithm says yes, the answer is correct. So, error may occur, when the 

answer is no and the error probability is at most half, you understand this. 

So, now you see that, we need to compute this Jacobi symbol right so, but what we have 

seen is that computing the Jacobi symbol requires the factorization of n, but we know 

that factoring n is a hard problem itself right. 

But luckily from number theory, we have actually some properties through which we can 

always compute the Jacobi symbol. So, I am not going into the proofs of this properties, 

but it follow straight away from the I mean in order to prove this for the Jacobi symbols, 

you have to prove it for the Legendre symbols. And the proof for the Legendre symbol is 

quite straight forward; you can work it out and take it as an exercise ok. 

So, this I have already told you why, I mean this multiplicative property which we have 

applied for the previous thing and this also is quite straight forward to follow right. So, 

we can just go through them step by step, it says that if n is a positive odd integer and m 

1 is congruent to m 2 mod n, then if you need to compute m 1 Jacobi n, then what you do 

is that you take modulo n and you compute m 2 modulo n ok. 

So, therefore, suppose that m 1 is greater than n, you can do this right. So, therefore, you 

can take a modulo n and bring it inside n, bring it inside Z n and then you compute m 2 

with respect- I mean Jacobi of m 2 with respect to n and there is another interesting result 

which says that 2 n's Jacobi if n is congruent to 1. So, you see that n is a positive odd 

integer. So, if n is a positive odd integer, so you see that for all of this cases, n is the 

positive odd integer because that is the only case if it is even number, then there is no 

problem right. 

So, if n is a positive odd integer then the Jacobi of 2 with respect to n is actually either 

plus 1 or minus 1 and there can be total two cases, where n is equal to plus minus 1 mod 

8 or n equal to plus minus 3 mod 8 why can there will be only 2 cases? So, I told you that 

n is a odd number right. So, there are four possible factors you see that. 
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So, what I am saying is that if you take mod 8 right, then what are the possible 

remainders, it is 0 1 2 3 4 5 6 and 7. So, this I can also write as 0 1 2 3, this is I can write 

as 4, this is I can write as minus 3, this is what minus 2 and this is minus 1. So, what are 

odd numbers here? In this case the odd numbers are this, this and this (Refer Slide Time: 

34:38). So, what are the corresponding remainders? It is 1, it is 3, it is minus 3 and minus 

1. So, you have got 1, 3, minus 3 and minus 1 as the possible remainders. 

So, therefore, there are 2 cases here; n is congruent to plus minus 1 mod 8 and n equal to 

congruent to plus minus 3 mod 8. So, in these 2 cases, this continues to either plus 1 or 

minus one. 

Similarly, if n is a positive odd integer then you can apply actually like this, but what is 

more interesting to note is that, if you can write n like this like 2 power a k into t. So, you 

see that in this case, what I am computing is that n and Jacobi of m with respect to n and 

suppose I can, so if n is a even number then, I can factor out all the 2 powers that is all 

the factors of 2 and remain and I mean and so if I factor out all the possible 2 factors, 

then I will be remained with - what will be remaining - an odd factor right. 

So, therefore, t is that odd factor and therefore, you can express n as 2 power k into t and 

therefore, m Jacobi of m with respect to n will be 2 Jacobi of 2 with respect to n 

multiplied I mean whether raised to the power of k, multiplied with t with I mean Jacobi 



of t with respect to n. So, this follows straight away from the multiplicity proof and why 

it works is quite simple. 

So, what about this, that is if m and n are positive odd integers, then if you are interested 

in computing the Jacobi of m with respect to n, then it is either minus Jacobi of n with 

respect to m or plus Jacobi of n with respect to n and there can be 2 cases that is n is 

congruent to n congruent to 3 mod 4 or otherwise. So, you can again follow similarly 

why there can be only 2 cases. So, therefore, it is either equal to minus - so, you see that 

what you are doing is that you are computing the Jacobi of n with respect to m with a - 

plus sign or minus sign as be the case, ok. 

So, can you now say that how can I use this to compute a Jacobi of any 2 integers. So, 

you see that what will I first do? First if m is greater than n, then I will apply this result 

and bring it within n; I am not talking about the trivial cases. There are some trivial 

cases, which can straight away said 0 or 1, leaving those cases, I am talking about non 

trivial cases, you take a modulo n apply this do it ok. 

Next thing is that you check this, whether this number is an even number or not; if this is 

an even number, then you apply this result and factor out all the 2 powers and you are 

remaining with an odd integer value and so you compute recursively the Jacobi of this 

and this right. So, now, you are actually you have got you have to solve this sub 

problems right. So, in order to solve this sub problem you apply property 4, ok. 
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So, this is an example to show you how it works. Suppose, I am interested in computing 

7411 and Jacobi of that with respect to 9283; so, here you see that 7411 is actually 

smaller than 9283. So, therefore, I have applied property 4 and I do a minus of this. So, 

why minus, because of the check that is in this case, minus was if m and n both are 

congruent to 3 mod 4 ok. 

So, if you divide both of them by 4, you will get a remainder of 3. So, believe me for this 

right now. So, therefore, it will be minus this and this (Refer Slide Time: 38:25). So, 

therefore, now you see that this number is greater than 7411. So, what we do? We take a 

modulo of this number with 7411 and we are remaining with this particular remainder. 

So now, you need to compute this Jacobi. 

So, you see that this number is actually even number. So, what I can do is that, I can 

factor out all the 2 powers and this is what all I am remind with; therefore, I have a two 

smaller problems to solve now. So, therefore, now this number I mean this is actually 

you can easily follow what is the corresponding result for this, why? 

Power slope 

Yeah, you can apply straight away this result and therefore, you can apply basically 

property three; I mean so, therefore, this follows directly from property 2 actually ok. 



So, therefore, what do I mean, so property 2 is this that is in order to compute 2 with 

respect to Jacobi n, what you have to done is that it is either plus 1 or minus 1. So, there 

can be only two cases when you are computing the Jacobi of any odd positive integer 

with respect to 2. So, therefore, in this case it is if it is equal to so if you take a modulo 8. 

So, therefore, if you take a modulo 8 means, you take 741 modulo 8, what is the 

remainder? 3 so, therefore, it follows in this particular class, it is actually equal to minus 

1. 

So, it does not matter actually because we have raised to it power 4. So, it is either minus 

1 power 4 or plus 1 power 4 you we will definitely get 1. So, therefore, now you have to 

solve this problem that is Jacobi of minus 117 with respect to 7411. So, now, what will 

you apply? You apply the 4th property and then again apply bring it like this. So, you 

know you say this is actually greater than this right. 

So, what you do is that you take a modulo of 7411 with respect to 117 and this becomes 

40 with respect to 117 and similarly you can again observe that 40 is a even number. So, 

you can factor out like 2 power 3 into 5 and therefore, you can apply this result like you 

can. So, therefore, again the previous computation or the rather property 2 can be applied 

and you can compute that this will be 5 Jacobi with respect to 117 and similarly the rest 

of the things follows. So, therefore, you will find that minus 1 will be the final result ok. 

So, what the idea is that you can actually compute the Jacobi of any of any 2 integers 

without actually factoring out in, that is the idea and does it remind you of any algorithm 

like the way how you are computing this. 

(( )) 

Yeah. So, therefore, this is actually like the Euclidean algorithm itself. So, in the 

Euclidean algorithm, what was the maximum number of times you did that operation? It 

was actually log of n, right number of times we are doing that operation because you are 

dividing like that right because every time there is a chance that you are dividing by you 

are you are basically reducing your problem, right the number of steps was in logarithm 

with respect to the input size. 



Similarly, here also you can reason out that the number of steps you are requiring to do 

this that is you are requiring doing this modulo operation will also be logarithm with 

respect to n, why? Because in the first case also only if m 1 is greater than n you are 

doing a modulo right straight away. So, therefore, your problem size reduces to the field 

size of Z n. So, therefore, your input size is in this case with respect to Z n, the size or 

cardinality of Z n and that is n. So, therefore, you will see that the number of times you 

are actually applying this modulo operation can be at most equal to log n. 

Sir next is a property 4. 

Property 4, so property 4 is m by n right what you are trying to compute is a Jacobi of m 

with respect to n and what you are seeing here is that m there can be two cases. So, it 

says that minus m by n or n by m. So, now, what I am saying is that in order to prove this 

result, first of all you have to prove that this also holds for the Legendre symbol ok. 

So, therefore, in that case, assume that n is a prime number and you compute this. So, 

there are this is actually follows from I mean is a number theoretic result, but you can try 

that I mean it is not so difficult. I mean, so what you can do is that, you can you need to 

compute a power or rather m power n minus 1 by 2, where n is a prime number and there 

you can plug-in these two things like n is congruent to n is congruent to 3 mod 4; so that 

means, you have to write this as like say for example, if it is a multiple of 4, then it will 

be like 4 k or 4 k plus 1 4 k plus 2 and 4 k plus 3. So, this if it is equal to 3 it will be 4 k 

plus 3, right. So, you plug in this values it will come out to this. So, I am leaving the 

details of the proof to you as an exercise, you can do that. 
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So, now I have arranged this, whatever I told you is in form of an algorithm. It says that, 

if your input n is greater than equal to 0 n is greater than equal to 1 and n is odd I am 

interested in computing this Jacobi symbol of m with respect to n if n is equal to 0, then 

these two results are quite straightforward, you can easily withdrawn this results, else if n 

is greater than n then what it do is that you return the Jacobi symbol of m modulo n with 

respect to n, else you factor out m in this fashion like m equal to 2 power delta into m 

dash, where m dash is an odd number greater than equal to 1. Then you written the 

Jacobi symbol of 2 comma n with power to the delta any raised to the power of delta and 

Jacobi symbol of n comma m dash ok. 

So, then you use that either a plus 1 here or a minus 1 here depending upon property 4 

right. So, therefore, I think I made a mistake here, n dash is congruent n is congruent to 3 

modulo 4. So, it is either minus 1 otherwise it is a plus. So, So, you see that the main 

thing is that you are basically computing the Jacobi without factoring n. So, that is the 

main beauty of this algorithm and why this algorithm has got o log p step, I think it is 

clear to you and each modulo operation will have the actually o log. So, there is a 

division involved right. 
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So, therefore, the complexity of doing a division will be o log p whole square. So, 

therefore, or o log n whole square. So, the total complexity of this algorithm will be in 

that case o log n whole cube. So, this is a very light bound that I am giving you it is not. 

So, tight calculation, but overall is o log n whole cube. So, this is a polynomial type 

algorithm right to compute the Jacobi symbol. So, roughly its o log n whole cube and 

this is these are the details ok. 

So, now we will conclude with one more application like I mean so what we, so, what is 

my problem? Now we have a tool right that given a or question that whether a number is 

composite or not. I can apply the solovay stressen algorithm and with a probability of 

error probability of at most half, I can say whether the number is composite or not right. 

Now, the question is whether the number is composite or not, if you if I say it is 

composite is always correct, but sometimes I will say its prime also right. So, in that case 

there is an error probability because it can be correct, it may be wrong also and the error 

probability is at most half right. So, what comes to our mind now? I will repeat this 

experiment, right and I need and I would like to magnify my correctness right. 

So, therefore, now you can in order to compute this, what we are I I will define 2 events 

like this (Refer Slide Time: 46:10). So, a is 1 event and b is another event. So, what is a? 

a is that event which says that a random odd integer n of specified size is composite. So, 



let this a be the event a that is I choose a random odd integer n of a specified size and 

that is composite ok. 

Similarly, I choose I mean b is that other is another event which says that the algorithm 

answers n is prime m times in succession. So, if I am repeating the solovay-strassen test 

for n times, m times in succession, the algorithm answers that n is a prime number ok. 

So, therefore, probabilities of b given a is actually upper bounded by 2 power minus n 

because each times it is half right. So, therefore, it is lesser then half for each case and all 

many of them are independent applications right. 

So, therefore, this probability of b given a is a conditional probability is lesser than equal 

to 2 to the power of minus m right, but what we are interested is in the probability of a 

given b. What is a given b? It is that a random odd integer n of specified size is 

composite given that m times in succession the experiments has told you that it is a 

prime number right. 
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So, therefore, what we do for this? We apply the Bayes' theorem. So, you know that for 

Bayes' theorem I will meet the value of probability of a. So, what is probability of a? The 

probability of a is the random odd integer n of specified size is actually composite. So, 

for that we can apply prime number theorem right. So, if I apply that then, what we get is 

that this probability because of the previous discussion and since we have taken only odd 



integers it will be 2 by l n. So, therefore, the probability of a is actually almost equal to 1 

minus 2 by l n because what we are saying is now that composite right, a is a composite 

number right. 

So, a is what? This is a random odd integer n of specified size is composite and what we 

got from here is that it is a prime number. So, you take 1 minus of that it roughly gives 

you the probability that an odd integer is composite ok. So, now you can straightforward 

apply the Bayes’ theorem, it says product of a given b is equal to probability of b given a 

into probability of a divided by probability of b. So, now, I am not going into that details, 

we can see that work out it follows straight away from the base theorem, but the thing is 

that you have got the reasonably configured equation now formula now ok. 

So, but the thing is that, what we will do is that, we will plot this with respect to 2 power 

minus 2 power minus m. So, we will plot with respect to 2 power minus m and see which 

one falls first, you see that this is what is done 2 power minus m and the bound on the 

error probability. 

So, you see that although it really does not decay like 2 power minus m, but it still also 

decays quite fast and you see that for numbers of these ordered like, if you have do it for 

50 times or 100 times, then you are error probability is actually quite small. So, you see 

that both becomes fairly small and negligible values and can hence be neglected. 

So, therefore, if I apply the solovay-strassen algorithm, I will not apply it for 1 or 2 

times, but apply it for say 100 times and if 100 applications for m, for each number of 

times, if the result says you that it is a prime number, I will assume that it is a prime 

number and this gives me an upper bound of the probability and I remember that there is 

an error probability in that, but I will take it. 

So, you see that we have reasonably good and this is actually quite a primitive algorithm 

there are much more developments over this. So, therefore, you see that, but these are 

very nice algorithm in order to understand the basics of primality testing. So, what we 

have followed as the reference is the Stinson book. So, you can go back and read this and 

next is we will discuss about some factoring algorithms. 


