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So, today, we will study the RSA cryptosystem. So, essentially we are, we of smallest 

discussed about the symmetric part of what symmetric cryptosystems of which is in our 

syllabus. So, we will now start with asymmetric cryptography. 
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So, with our number theoretic whatever we have learnt, we are more or less ready to 

understand the RSA cipher. So, today, we will take up the RSA ciphers basic definition 

and also to understand that whether how to operate essentially, and then, we will discuss 

about another interesting topic which is called quadratic residues. So, that will be also 

essential to understand something what is called test for primality.  
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So, we will take up one-by-one. So, first of all, we know all these that, what is the 

definition of a public key cryptography as oppose to a symmetric key cryptosystem. So, 

essentially, we have got two keys. Here, we have got the sender, which uses the 

recipient’s public key to encrypt, and the receiver, which uses his private key to decrypt. 

So, therefore, as oppose to the symmetric key crypto system where there was only one 

key share by the sender and the receiver. In this case, there are two pieces of key - one is 

called the public key and the other one is called the private key. 

So, in order to encrypt in asymmetric cryptosystems, what we use is the public key, 

whereas to decrypt, we use the private key. So, this rather the security of this particular 

type of constructions is based upon something, which is called one way functions. So, 

what are one way functions? One way functions are those functions which are easy to 

compute but they are hard to invert, but there is something which is called a trap door 

one way function, because I mean for the person who does not have sudden trap door 

information or some secret information, for him constructing or computing the inverse 

should be hard.  

But to a legal user who has the trap door for him, computing the inverse should be an 

easy problem. So, therefore, this serves as a trap door. So, an example which is 

commonly used is like this. Like if you take a large composite number which is made 

again as a product of two large prime numbers, then it is believed that factorization of N 



is actually a very hard problem, because therefore, if I give you p and q from their 

computing, n is easy, but give you N from there, finding out or ascertaining p and q is a 

difficult problem. But if you are given one of the factor say p, then computing the other 

factor is quite easy. So, that is solves something like a trap door. So, therefore, this is the 

basic idea behind one way functions and trap door one way functions.  
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So, often public key cryptosystems are also used for something which is called digital 

signatures. So, in case of digital signatures as you can understand, the objective is 

something to do like the handwritten signature. So, therefore, for example, I have an 

handwritten signature and that is supposed to be like another person should not be able to 

copy that signature.  

So, the idea is that in this case, since you have the private key, we just not supposed to be 

disclosed to every, I mean, I mean all people do not know the public key. So, therefore, 

in this case, when I will encrypt, I will encrypt using the… So, therefore, I will, in order 

to do the signature, I will use the private key, but in order to verify whether the private 

key is really my private key, you will use a public key.  

So, actually the private key and public key are suppose, I mean like an inverse of each 

other, but you can apply in any order, like you can apply the private key first or the 



public key first but it depends upon your application. So, when you are doing encryption, 

then actually you are using public key to encrypt. 
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But when you are doing signatures, there actually you are using private key to do the 

signals and the reason is quite easy because of the application. So, this is the pictographic 

view, that is, when you are trying to encrypt, then what you do is, that you take the 

plaintext and you have got all. Say suppose I want to send it to a person; so, therefore, 

suppose I want to encrypt, therefore, I have to encrypt using public. 

(( )) 

And in order to decrypt, then I will use the private key. Therefore, always has a 

corresponding private key, but from this key ring which has got all the public keys like 

whether I want to talk to Joy or Mike or Alice or Ted or anybody else. So, therefore, 

what we can do is that, from whatever, I mean whom I required to contact or 

communicate with, I will choose the appropriates public key and then encrypt the 

corresponding plaintext message, and then, the cipher text is being transmitted and Alice, 

because Alice knows only the private key, no. It is assumed that nobody else except from 

for Alice can actually decrypt the information.  



So, therefore, you see that there are certain things to be understood from here like how 

Alice generates the public key and private key pair is actually very central to this 

algorithm.  

Why does Alice require a public key? 

Why does Alice require a public key? So, therefore, the idea is that you know the 

definition of symmetric key crypto systems. So, in that case, what we are assumed is that 

both the sender and the receiver shears the particular piece of information, but there is a 

problem, that is, you have to do the key exchange, because both of, both of the, I mean 

sender and the receiver has to establish the same piece of key but that is not so easy 

because you have to essentially have some costly channel for that through which you can 

settle out the key. 

So, actually public key encryption was actually, I mean it was around 1976 at that, that, 

time actually when these type of ciphers came into existence, I mean in the literature at 

least, because the advantage is that, here, you can actually do without a key exchange. 

That is a very fundamental advantage. Why? You know, because here, the idea is like 

this, that is, suppose Alice generates a private key which he does not communicate to 

Bob or at to anybody else, but what he or she publishes is actually the public key. So, 

from private key to compute the public key is quite easy but from public key to compute 

the private key is a computational difficult problem.  

So, therefore, they Alice the under locking security of this type of algorithms and that is 

the advantage also. So, therefore, now you essentially have got this private key through 

which you can decrypt and it is assumed that nobody else but Alice can decrypt, because 

Alice only has the private key, and from this public key information, I mean any (( )) 

who will try to obtain the private key will actually face a quite appeal task, which should 

not be allowable in the today’s computational context. 



(Refer Slide Time: 07:43) 

 

So, this is the basic idea, so, where public key encryption fix in. So, for authentication, 

when you are doing a signature, you are doing just the opposite. Therefore, here, when 

Bob writes I mean generates, so, Bob what he does is that, he takes his private key and 

he generates a cipher text, but this verification process is can be done by corresponding 

public key.  

So, anybody can verify but sign only Bob can sign it because Bob only has the private 

key. So, that is the basic story or the basic application of public key ciphers and we will 

also study, I mean for example, the RSA algorithm which came into existence by the 

three great people like, you know, Rivest, Shamir and Adleman. So, they invented this 

RSA algorithm and this RSA’s underlined security is based upon a problem which is 

called factorization, but there are actually an array of other not large, not so large also 

but still a quite a few, I mean for example, you have got the defy element problem which 

we will study also is based upon something and there is something called discrete 

logarithmic problem.  

So, there are certain computationally assumed to be computationally hard problems 

based upon which, asymmetric cryptography are constructed. So, when you make an 

asymmetric cryptographic algorithm, even knew cryptographic algorithm, the first thing 

is to find out such a hard problem.  



And also it is not so easy, because you not only have to find one hard problem, we just 

supposedly a good one way function or a candidate for a one way function, but at the 

same time, you also need a trap door one way function because you need that a legal 

person should be able to retrieve the data, should be able to decrypt the data so that 

makes it quite challenging. 

And at the same time, I mean constructing one way functions I know, I know, that even 

after so much amount of work, people are not been able to really prove that it is a one 

way function. It is only like it is believe to be a one way function. Therefore, it is called a 

candidate for a one way function, but we do not really know this is the track or one way 

function. So, therefore, let us go into the RSA algorithm. Therefore, you have got this 

RSA crypto system. So, therefore, here actually you take two prime numbers p and q 

which are actually significantly large numbers.  
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So, large means suppose around 1,024 bits. So, typically I will just give you some thumb 

rule data actually. That is it. So, therefore, you take two say around say 1024 bit value n 

and which can be also decomposed into p and q of similar kind of dimensions. So, here, 

your p and q are two prime numbers. If you multiply them, you get m, but there is a 

clean material which is actually made up of the public key part and also the private key 

part.  



So, here, you have got n which is actually the public key information, everybody knows 

what is the value of n; n is published actually but p and q are secret information’s. So, 

suppose I want to encrypt some data, I have my own p and q values.  

So, there is something which is called a, which is actually also the, I mean part of the 

private key and that is a b which is actually the public. So, here, you have got two 

materials like a and b which, if you multiply and if you take mod of phi n, then you get 1. 

Therefore, a and b are the multiplicative inverses of each other in the field of, what is the 

field? But modulo phi n, but what is a field?  

Z n star 

Z n star. Therefore, you are doing a modulo phi n there, and therefore, for K equal to n p, 

q, a, b, there are two parts - the values n and b comprise the public key, whereas the other 

part that is the values p q and a forms the private key. So, what is the encryption 

function? The encryption function looks fairly easy. You take x which you want to 

encrypt. So, as I told that b is the public key. Therefore, if you want to encrypt x, what 

you do is that you take x and raise it to the power of b and take a modulo m, and if you 

want to decrypt, then you take x to the power of b mod n which is y, and then, what you 

do is that, you raise it to the power of a in mod n.  

So, the belief is that, therefore, what you have to now prove is that, if you do decay y, 

you get back to x. That is what you need to prove. So, the values n and b comprise the 

public key and the values p, q and a forms the private key, is the definition clear? 
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So, there are certain things to be kept in mind like a and b, if you multiply and then take 

modulo phi n, you get back one encryption function is x raise to the power of b - where b 

is the public key mod n, and if you are decrypting, then you raise it to the power of a. So, 

a has to be the private key part and you do a model. So, actually you see that whether b is 

the public key or a is the public key does not really matter. If it is holds because since 

multiplication is a competitive process. Therefore, really does not matter where b is a 

private key or b is a public key.  

But the thing is that when you are encrypting, then you use b as a public key, but when 

you are generating digital signatures, then b will be a private key. So, it just depends 

upon the application, but mathematically anything can work. So, we have to prove this 

result.  

(( )) 

Yes  

(( ))  

It comes. First of all, let us see the proof then, then you will understand actually. So, 

actually in the definition of the encryption function, it really does not matter but it 

matters in case of a b equal to 1. So, what is phi n?  



(( ))  

No, but phi n, that is fine, but what is phi n? Computationally it is equal to  

Number of p minus 1  

P minus 1 into q minus 1. So, it comes in the definition phi n means p minus 1 into q 

minus 1. So, there p and q comes. So, let us try to understand the proof. The proof can be 

actually divided into two parts.  
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So, first, you see that a b equal to 1 or congruent 1 mod phi n means the a b of this, of 

this type that 1 plus t of phi n - where t is some integer greater than equal to 1. Therefore, 

if you take a mod of phi n, then you will get back 1. So, suppose x belongs to Z n star. 

Therefore, x belongs to Z n star means if I raise x to the power of a b; then that means 

that is x to the power of 1 plus t phi n and this you can decompose into x into x to the 

power of phi n whole power t, and, you know, by your previous result like last day we 

saw x to the power of phi n mod n is equal to 1.  

So, using that result, you get that x mod n. So, this follows from Euler’s theorem, but if x 

does not belong to Z n, I mean whether it does not belongs to Z n star; so, whether 

basically it belongs to Z n difference Z n star, then the proof is slightly trickier. So, let us 



see this. So, this part is clear? This is called straightforward follows directly from the 

Euler’s theorem.  

So, in this part, so, if x does not belong to Z n star, that means the g c d of x and n is not 

equal to 1 because x and n are not common sub expression-prime. If x would have 

belong to Z n star, then x would have been common sub expression-prime to n, but if x 

does not belong to Z n star, it implies that x and n, if you take the greatest common 

devisor, it is not equal to 1. Now, what is n? n is the product of two prime numbers p and 

q. So, if, in that case, if you are and remember the x is also less than n; so, that means 

what? That means that x has to be either a multiple of p or it has to be a multiple of q.  

So, in this case, let us assume that the g c d of x, p can be either p or g c d of x c, q will 

be equal to q. So, because if x is a multiple of p, then the g c d of x, p will be p, and if the 

g c d of x and I mean if x is a multiple of q, then g c d of x comma q will be equal to q. 

Note another thing that, if the g c d of x comma p is equal to p, then the g c d of x 

comma q has to be equal to 1, why, because otherwise x will be a multiple of both p and 

q, and therefore, it will be more than n but we know that x is by definition less than p q, 

because it belongs to Z n. It is x belongs to Z n difference Z n star; so, x belongs to Z n.  

So, therefore, x, therefore, g c d of x, p will be equal p, then it implies that g c d of x,q is 

equal to 1; that means what? That x and q are mutually common sub expression-prime. 

So, if x and q are mutually common sub expression-prime, then I can apply my from 

Euler’s simple theorem, and what is that?  

X to the power 

X to the power of phi q  

Phi q 

And phi q is q minus 1 because q is a prime number, and therefore, that should be equal 

to  

1 (( )) 
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1, and therefore, we apply this that is x to the power of phi q equal to 1 mod q and we get 

this as, therefore, x to the power of phi q equal to 1 mod q, I can raise it to the power of t. 

So, t is any integer and that still remains one. So, what about this? That x to the power of 

phi q, I mean t phi q, if I raise to the power of phi p, that still remains one, and, you 

know, that phi p into phi q is what phi n. So, that means x to the power of t phi n is 

congruent to 1 mod of q.  

So, that means I can write this x to the power of t phi n as 1 plus k into q - where k is 

some positive integer. So, multiplying both sides by x, if I multiply both the sides by x, 

then I get x to the power of t phi n plus 1 equal to x plus k q x. Now, use this is since 

somehow this software does this thing. So, therefore, this since g c d of x, p is equal to p 

because we are assume that g c d of x, q is equal to 1. So, g c d of x, p equal to p, and 

therefore, x is actually a multiple of p. So, if you take this and if you substitute here, you 

get x plus k c p q.  

So, now, if you take a mod of p q on both sides, you get back only x. So, you see that t of 

phi n plus 1 is nothing but a b, and therefore, x to the power of a b is equal to x or 

congruent to x mod of n. Similarly you can prove the other case also. So, are we 

convinced about the proof? So, therefore, the RSA holds whenever x belongs to Z n in 

that case. So, we are prove that, it holds when x belongs to Z n star; we have also prove 



that it hold when x belongs to Z n difference Z n star. So, it belongs to whenever x 

belongs to Z n.  

So, what we are proved is that, if you take x, if you encrypt it and if you decrypt it by the 

corresponding inverse in Z n star, that is, when you are taking a mod of phi n, then 

actually what you obtain is the plain, the plain text with which you started. So, what we 

have proved is the inevitability of the RSA transformation. That is the encryption or the 

decryption or inverse of one or one another.  

(Refer Slide Time: 19:47) 

 

So, this is a simple example of p equal to 101 and q equal to 103. Therefore, this is 

actually this is the RSA algorithm being shown but actually this is not secured, why, 

because p and q are too small. So, therefore, these are all insecure RSA example. So, you 

can say that in if I multiply it will be 11413 and phi n works to 100 into 112. So, just 

believe that it is correct now, but you can see this because hundred one and hundred  

9 

112, therefore, it follow straight. So, this you can actually factor. Therefore, 2 power 6 5 

square and 7. So, now, b can be used for encryption if and only if it is not a multiple of 2 

5 or 7, why? Yes because b has to have an inverse, multiplicative inverse, and therefore, 

b has to be mutually co-prime with phi n.  



So, if b has to have because a b is congruent to 1 mod phi n. Therefore, b has to be 

mutually common sub expression-prime with phi n. Therefore, b should not be divisible 

by 2 5 or 7. So, let b be equal to 1 value say 3533. In practice, Bob will not factor phi n 

but will check whether g c d of b comma phi n equal to 1 using the Euclidean algorithm, 

and, you know, that it is quite an efficient algorithm, it has got a polynomial run time. 
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And we will compute the b inverse at the same time. That is the way how we will get the 

b inverse. So, Bob what he does is that, Bob publishes n equal to 11413 because that is a 

product of the two prime numbers and also the corresponding public key. So, suppose 

Alice now wants to send some information say x equal to 9726 to Bob. So, what she does 

is that, she computes x to the power b mod n. So, therefore, that is 9726 to the power of 

3533 which is the public key and does a mod of n. So, mode 11413 and what she 

computes is 5761 and send it to Bob.  

So, now, Bob needs compute b inverse mod phi n. So, he engages, the Euclidean 

extended Euclidean algorithm do that and computes and finds out 6 5 9 7 and then 

decrypts it using 5761 to the power of 6597 and believe me it reduces to 9726. 

Therefore, you get back whatever you started with; that is a basic idea. 
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So, now, the next question which comes to our mind in terms of implementation is that, 

how do I compute this x to the power of c efficiently, because I need to compute the 

powers. So, one good algorithm which I have doing that, I mean first in order to start 

what we can do is that, we can multiply x say c times, but you understand that that will 

actually not be very efficient. So, what we can do is that we express c in the binary 

format, and then, we can employ an algorithm which is the square and multiply 

algorithm. So, it is quite a simple algorithm. 
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So, I will just, whatever I mean give a sketch of this. So, 7 suppose you need to compute 

x power 7. So, what you do is that, I take 7 and I express 7 in the binary format. So, 111 

is the corresponding binary format for 7. So, what you do is that, whenever you see a 1, 

so, each either is like this that, each time you start with x equal to 1. So, each time 

whether you see a one or whether you see a 0; so, first of all you parsing the digits here 

like this. So, whenever you see a 0 or whether you see a one, you are always doing a 

squaring operation.  

But if you see a one, then you do a multiplication operation multiplication means 

multiplication with x. So, therefore, what you do is that, you take x equal to 1 and since 

you see here a 1, so, what you do is that you compute 1 square. So, first of all x will be 

equal to 1 square which is 1, but since there is a 1, therefore you will also multiply this 

with x. So, you get x. In a second stage, you see again a 1. So, you do x equal to 1 square 

equal to, I mean whether x equal to x square because there is x you square it, and then, 

you multiply the current x with x. So, you get x to the power of 3. 

In a second case, you again see a 1. So, what you do is that you take x and you square it, 

so, it becomes x power 6, and then, since so 1, you multiply this with x. So, you get x 

power 7. You see that this will also work, I mean let us take another example say 5. 5 is 

equal to 101 and see how it works. So, here, again, you start with x equal to 1, and since 

you get a one, the first step will be again x equal to x. So, I am just combining these two 

steps. In the second stage, you see a 0. So, you will do only the square part and not the 

multiplication part. In the third, again you see 1. Therefore, you do what you do x power 

4 and then you multiply this with x. So, you get x power 5.  

So, in this case, you see that the maximum number of times you need to do this operation 

is actually the bit length of the corresponding exponent value. So, you can actually do it 

more efficient. So, what will be the run time of this? If p is your maximum number of 

values to the in the field, then it will be log p. So, therefore, it will be log p base 2. So, 

therefore, this has got this is more an efficient algorithm. There are ways how you can 

actually probably try to increase the efficiency but this is the basic, I mean a skeletal 

algorithm.  
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So, next thing that we need to do is that, we need to compute the parameters of RSA. So, 

parameters of RSA means what? You have to choose the corresponding values. 

Therefore, what we do is like this that you generate two large prime numbers p and q 

such that p is not equal to q. So, and what is n? n is the product of p and q and phi m is 

equal to p minus 1 into q minus 1. Now, you have to choose a random b such that the g c 

d of b, phi n has to be equal to 1. Then compute the inverse of b mod phi n and then the 

public key is you publish is n, b and the private key which you publish is p, q, a.  

Sir  

Is it for the n, b you can always calculate try to calculate a? 

From where  

In an n and b  

From n and  

B as a public key cannot you compute that a equal to b inverse mod phi.  

Yes, that you cannot because of the phi n thing. So, that is the nice question. If you had 

not ask, then I would have asked in during the exams. So, can you think of why it will 

not work?  



Because if I know the n phi n is already known. 

Phi is known 
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Is phi n known, because see, what you will know is you know n equal to p, you know n 

equal to p q. So, what is phi n? Phi n is… 

Phi n is a number of try in number numbers which are actually less than and which are 

co-prime to n. So, I can always find the kind of numbers.  

No, that is why, that is why the size of n is 1,024. So, in that particular thing, so the, with 

so many values that approach would not work, and computationally also you see that phi 

n equal to p minus 1 into q minus 1. So, therefore, if you can find out phi n, then what 

does it mean? It means that you can write this phi n as p q minus p plus q plus 1. 

So, therefore, if you can compute phi n, that means what? That means that you can 

compute p plus q. If you can compute p plus q, you can also compute p minus q because 

you know p q. So, that means you can solve this and you can find p q. So, that means 

you can actually solve the factorization problem. So, but the thing is that, it is assume 

that factorization is quite a hard problem; again with 1,024 bits is really hard problem.  



So, therefore, the idea is that, if you do not know the value of phi n, form there 

computing the inverse of a is actually is not so easy. So, that is a again an assumption 

there is no proof. So, it is just to belief. So, therefore, I have written here that it has been 

conjectured that breaking RSA is polynomial equivalent factoring n but there is no proof, 

just to belief. So, typical value of n is generally 1,024 bit long and the factors are also 

large of around 512 bits. 

So, here, you see that you have to do manipulation with so many bits. So, although you 

have got a goods squarer multiply algorithm to do that but actually it is quite 

computationally intensive. So, although it is efficient in terms of complexity theory, but 

in terms of practical implementation, it is not really so efficient. 

So, therefore, if I have a very handled device and implant an RSA algorithm into that, 

my power will get extinguish very soon. So, therefore, you see that when you need 

proper replacements of these kind of asymmetric key algorithms, and therefore, there are 

actually lot of work been done. For example, off let the one of the current standards to 

uses something which is called elliptic of cryptosystems. So, therefore, you can actually 

show that whatever security you get with say around 1,024 bits similar kind of security 

you can get with around say 192 bits of elliptic curves. So, therefore, that is quite 

efficient, but no doubt, RSA is wonderful algorithm.  
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So, therefore, the next thing that we need to understand is that, we need to understand 

that whether, therefore, you see that the first step was to generate two large prime 

numbers - p and q. Therefore, how do you understand? If you I have got a large number 

say around 512 bits, you choose a number and you have to ascertain that whether that 

number is a prime number or not. So, that is also a quite difficult problem, and you must 

have heard of the phenomenal work which has been done by Agarwal and Kathiyala and 

Saxena the AKS algorithm which actually shows that you can actually solve this problem 

in polynomial time.  

So what we will discuss is about some probabilistic methods of doing; some randomize 

algorithms through which we can actually approach is approach this problem. So, 

although that AKS problem is an undoubtedly a wonderful theoretical work, but the 

thing is that there are so many good probabilistic algorithms which has got a success 

probability very high and they are also very efficient.  

So, therefore, this problem practically essentially is quite a solvable problem. Although I 

cannot say I mean without the AKS algorithm, it was not understood that you can 

actually said with certainty that it is a prime number, but actually you can using this 

algorithms, you can actually say that with a high probability. So, therefore, they Alice 

the implication of this, I mean why we need primary details. Therefore, given a number, 

you have to ascertain that whether the number is a prime number or not.  

(Refer Slide Time: 31:30) 

 



So, therefore, the question that we address is that, how do we say whether a given 

number is prime or not, but we will actually not do it in only one class but we will go 

break that into two classes. So, therefore, but the thing is that first we need to understand 

certain things like; we will propose some randomize algorithms and these are called 

Monte Carlo algorithms.  

So, what we have seen in the previous class was the Las Vegas algorithm and the 

difference between Las Vegas and Monte Carlo algorithm is this. That is in Las Vegas 

algorithms, what we saw was that it can fail, many, may be that it will not terminate, but 

if it terminates, it will give you a correct answer. But in case of Monte Carlo algorithms, 

it will definitely terminate, and there are two types of Monte Carlo algorithms - one 

which is called a yes based Monte Carlo algorithm and another which is called a no 

based Monte Carlo algorithm.  

So, if it is a yes based Monte Carlo algorithm, then if it gives you an answer yes, it is 

correct; it is defiantly true, but if it says no, then there is an at most probability, like I 

mean that is an error probability in that. So, there is an estimate say epsilon which says 

the at most the error probability will be epsilon. So, that means that if the answer is yes, 

it is correct in case of yes based Monte Carlo algorithms.  

But if the answer is no, then you have to take with a pinch of salt. So then, the idea is 

that, the idea is that there it is it is not defiantly trust worthy but there is an error 

maximum upper bound of the error probability. So, therefore, these algorithms will give 

you an answer during time that is polynomial, I mean, therefore, now come to this 

question, that is, we will engage some type of, we will see some types of Monte Carlo 

algorithm to do these and these algorithms actually given answered in time which is 

polynomial in say log n base two. So, which is the number of bits required to store n? 

However, that is a probability that the algorithm may claim that n is prime when it is not. 

Therefore, it will say that some numbers are prime numbers where actually it is not a 

prime number and these numbers are called pseudo prime numbers. So, basically rather 

the problem that we will be addressing is actually whether it is composite or not. 

Therefore, it will be like given a number, you have to say whether it is composite or not. 

So, you understand it is a decisional problem yes or no. 



But you do not, you are not solving the factorization problem. So, therefore, even if we 

have this polynomial time algorithm now like the AKS algorithm, RSA is not threaten 

because the RSA essentially believes or other lies upon assumption that you cannot 

factor. So, what we are only giving you is a primarily details but not a factorization 

algorithm follow. 
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So, therefore, that is, there should be any confusion regarding that. So, we will just there 

is one theorem which is called the prime number theorem, which says that if the number 

primes less than or equal to N can be estimated by the formula, it says N by ln N. So, if 

you take say N is of the order of 512 bits, then N will be around 2 to the power of 512.  
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So, if you take pi n in that case or pi to the power of 512, then it will work out to around 

2 around 2 to the power of 512 divided by divided by ln 2 to the power of 512. So, there 

is a problem here. So, it will around 2 to the power of, it will be around 2 to the power of 

512 divided by 355. So, what you can show is that show a random. So, if you take a 

random 512 bit integer, so, if you take a random 512 bit integer, then it will be prime 

with a probability of around 1 by 355. So, what it shows is that, how many prime 

numbers do you have? So, it is around 2 to the power of 512 by 355, and how many 

numbers do you have? 2 to the power of 512. 

So, the probability that a randomly chosen number is actually a prime number is actually 

as high as 1 by 355. So, which means if you repeat this, we have seen now that, if there 

is an experiment which is a probability of 1 by p, if I repeat that experiment for p times, 

then we are bound to get one success. The expectation is that we will get one, one, 

success then the probability of that is quite high.  

So, therefore, if I repeat this experiment for 355 times, then there is a high probability 

that I will get at least one prime number. So, that number is not so large you know. So, I 

can do that, and actually if we choose only odd numbers, then you can actually double 

your probability that, instead of randomly choosing numbers, I only choose the odd 

integers. So, that will double my probability.  



Yes, that will, therefore, yes, therefore, the probability of this is quite high, and therefore, 

what we will see is that the expected number of trials is not so large. Therefore, I can 

engage randomize algorithms to that; random algorithms which are just based upon some 

random decisions.  

(Refer Slide Time: 36:38) 

 

So, now, let us see what is a Monte Carlo algorithm. So, idea is that these are 

randomized algorithms, which is, which are generally yes based. So, it is yes based. 

Therefore, it means that there is always an answer. When the answer is yes, it is correct, 

and if the answer is no, then the answer may be wrong.  

And if I say that error probability of an yes based Monte Carlo algorithm is epsilon, then 

I mean to say that for any instance if the answer is yes, it can say no with a probability of 

at most epsilon. So, therefore, for any instance if the answer is yes, it can say no with a 

probability of at most epsilon. So, therefore, this probability is again thus we have seen 

in case of Las Vegas algorithms also is over all the random choices of the algorithm; that 

means if the algorithm receive some inputs, then it is over the input space. 
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So, the question that will be addressing is this, that is, given a positive integer n greater 

than or equal to two is n composite. So, you understand that is a decisional problem and 

we will try to discuss some an algorithm which is called the Solovay Strassen algorithm 

to solve this and it is a Monte Carlo algorithm for composites. Therefore, it says yes. If it 

say yes, then n is really composite because the problem is composite; it is composite, so, 

which says yes. So, first thing is it will defiantly terminate. Second thing is that if it says 

yes, then it is correct but it can say no also. If it says no, then a probability of error is at 

most half.  
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So, in that case, what I am saying is like this, that is, if it is composite, there can be two 

cases - one is yes and the other one is no. So, if it is yes, it is defiantly composite, but 

what I am saying is that, the, if the probability, if it, I mean given, then it is composite 

the probability that it will say you a no is actually at, I mean the probability of it is, so, it 

is an error. So, therefore, this will be at most half. So, it says probability of no given 

composite is at most half. Therefore, it is less than or equal to half; so, that means that 

probability that if I say you a yes, given it is composite is greater than equal to half.  

So, therefore, that means that, if the number n is composite, then it says yes with a 

probability of at least half, but to understand that, again we need some more number 

theoretic results and that is something which is called quadratic residues. 
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So, the idea of quadratic residues is quite nice and it is quite easy also to understand. So, 

what is this, that is, suppose, so, the let us see the definition. So, definition is as follows, 

that is, suppose p is an odd prime number. Therefore, p is an odd prime number means 

what? Exclude 2 and a is an integer. Then a is define to be a quadratic residue modulo p 

if a is not congruent to 0 mod p and the congruence y square equal to a mod p. So, if I 

say y square equal to congruent to a mod p has a solution y which lies inside Z.  
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So, therefore, the equation y square equal to a modulo p will have a solution for y which 

belongs to Z p. So, therefore, if I will say you that there is a quadratic residue and if I say 

you that a is a quadratic residue, that means two things; that means first it means that a is 

not congruent to 0 mod p. So, what does it mean? A does not divide p. So, a is co-prime 

to p basically. Therefore, so, a is not congruent to 0 mod p, and the other thing is that, I 

mean for if there is an equation of y square congruent to a mod p, then there is a solution 

for y where y belongs to Z p. 
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So, let see one example. So, example would be like this say in Z 11, consider Z 11 and 

find out 1 2 3 4 and find out all the squares of that. So, that means that 1 square equal to 

1, 2 square equal to 4, 3 square equal to 9, 4 square equal to 5. So, what does it mean 

that, you see that all these values are essentially the quadratic residues.  

Because if I give you 5, then you can find out a 4 which is, and if you raise it to the 

power of 2, you get obtain 5. See, you see that this is a palindromic sequence. You get a 

1 here; you get a 1 here; you get a 4 here; you get a 4 here. Why? It is quite obvious, 

why, because you can actually write this 10 as 11 minus 1, and if you take modulo 11, 

whether you take a square, all those 11, I mean all other terms of multiples of 11. 

Therefore, they vanish and you get back only minus 1 square which is 1.  



So, therefore, in this fashion, you can understand that you will always find, I mean that 

the number of quadratic residues in this case will be exactly equal to 11 minus 1 by 2, 

because of this, because you will always have an even number, 1 here, 1 here, 4 here, 4 

here. So, you can find out how many number of quadratic residues will be there. 
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So, if you generalize this, then actually there are exactly p minus 1 by 2 quadratic 

residues. So, if this is not the, not the case, that is a is define to be a quadratic non-

residue modulo p. If a is not congruent to 0 modulo p and a is not a quadratic residue 

modulo p.  

So, in this case, what are quadratic residues? See, for example, 6 is a non-quadratic 

residue; 2 is a non-quadratic residue. So, how many non-quadratic residue are there, that 

is also same; that is also 5 because we have excluded the n. We have said at beginning 

only, I mean a is not congruent to 0 mod p. If we see the definition, in both quadric 

residues or non-quadratic residues, this a congruent to 0 mod p is excluded.  

(( )) 
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Is it so? Anyone yet? How many numbers are there in Z 11? There are eleven numbers. 

So, that is exactly same. So, therefore, how many solution are there to this question x 

square equal to a mod p? So, you can actually prove that, I mean it is quite easy also. 

You have understood more or less the idea, then it will be exactly there are two solutions 

for the congruence.  
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So, therefore, if I give you one value here, say if I give you 1, then how many values 

from where you can get 1? You can get from 1 and you can also get from 10. So, for 



every number a, there can be two vise. If you square, you will get back a and the proof is 

exactly same as what we thought it is quite simple.  

Only I mean if I go through details, then minus it says that, if y squared is congruent to a 

mod p, then y belongs to Z and y belongs to Z p star. Then minus y whole square is also 

equal to a. Therefore, you can actually understand easily that y and minus y are both the 

solutions. So, y and minus 1 means in this case p minus y.  

So, one solution is y and the other one is p minus y. If you square them, you will get 

back a, but why are there exactly two results, because if you write like x square minus a 

equal to you know I am congruent to 0 mod p, then you can factor that and it will 

become equal to x minus y into x plus y congruent to 0 modulo p and c is prime p is 

prime, then p divides x minus p or p divides x plus y. 
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So, that means x is congruent to plus minus y mod p. So, there are exactly two solutions 

which will satisfy this equation. So, the proof is exactly intuitively what we understand, 

but what is the quadratic residue problem. Therefore, how do you understand that 

whether a number is quadratic residue? So, quadratic residue what you can do is that, the 

problem is this an odd prime p and an integer a is given and the question is a a quadratic 

residue modulo p. 
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So, what you can do is, first of all, you can raise and find out like what we have done for 

Z 11, but can there be any better algorithm than that? So, in order to solve that, again all 

are come to the rescue and we you have got this nice theorem. It says that let p be an odd 

prime number, then a is a quadratic residue modulo p p if and only if this is satisfied, that 

is, a to the power of p minus 1 by 2 is congruent to 1 modulo p.  

And the time complexity of this check is quite easy to understand is whole log p whole 

cube, because what you have to do is that you have to raise this power raise, and raising 

power you know is o log p whole cube, why, because if you just think of the square and 

multiply algorithm, do you understand why it is o log p whole cube?  
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So, can you, can you, can you justify why it is true? So, you see that there are two parts 

if and only if. So, let us start 1 by 1, I mean it is quite easy with the proof. So, the case 

one will be like, if you say that a is a quadratic residue modulo p, so, that means what? 

That is, there is a solution y if you raise to the power of a.  

So, y lies insight Z p. So, there have to exist such a y. Now, what about the equation a to 

the power of p minus 1 by 2 in in that case? It is y to the power of two whole to the 

power p minus 1 by 2. So, what is that equal to y to the power of p minus 1 mod p, and 

what is that?  

Y to the power of (( ))  

Yeah, what is that equal to? 

(( )) 

Equal to 1. That is the form Euler’s little theorem. So, y to the power of p minus 1 mod p 

is equal to 1. Therefore, this proves the only if part. What about the other part? You start 

with those, that is, a to the power of p minus 1 by 2 is equal to 1 mod p, and by my 

previous days, you will remember that cyclic group idea. Then actually I can, if there is 

an elements say b which is a primitive element in this group, there has to exist one 

primitive element.  



So, if I say that b is the primitive element, then I can always write a as b to the power of 

some I value, and you know what is the range of I. So, it has to lie inside that cyclic 

group. So, therefore, in that case, if you plug in b to the power of I here, you get b to the 

power into p minus 1 by 2 is congruent to 1 mod p, but we know that b to the power of p 

minus 1 is equal to 1 mod p and p minus 1 is the minimum is the least number which is 

like that, because why? Because b is a primitive element. It is a least number for which 

this equation is obtained.  

So, that means that p minus 1 has to divide I into p minus 1 by 2 because p minus 1 by I 

into p minus 1 by 2 has to be a bigger number. So, if, I, p minus 1 divides I into p minus 

1 by 2, it means that I is divided by 2, that is, I is an even number. 
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So, this implies that I is even. So, if I is even, then you see that from this equation, you 

can obtain a square root of this a, and therefore, you can say that plus minus b to the 

power of I by 2 is a square root of a, and that proves that a is quadratic residue. So, we 

stop at this point and we will continue. We will see that how we can use this to 

understand the primality test, I mean, yeah, to understand the primality test and other 

certain other issues. So, again follow that up with the factorization problem also. You 

stop at this point. 


