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So, today, we will study more number theoretic results, so, which will be useful in our 

future studies or asymmetric cryptography. 



(Refer Slide Time: 00:28) 

 

So, today, we will discuss about two interesting and important algorithms - one is called 

Euclidean algorithm which is used to compute the GCD or the greatest common divisor 

of two integers. There are also which is useful to compute the multiplicative inverse. So, 

we have defined what a multiplicative inverse. So, we will see how the Euclidean 

algorithm can be extended to compute the multiplicative inverse, and then, we will 

discuss about another very interesting algorithm, it is called Chinese remainder theorem. 

The theme is to express whole in parts. So, we will see what is that, and then, also 

conclude with some important results on cyclic groups and also discuss about a test of 

primitiveness of an element. 
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So, previous results, if you remember that what we did in the last time when we studied 

about number theory, we studied modular arithmetic. So, we have a more or less seen 

what is meant by modular arithmetic and the idea was of, the, so, Z n star was used to 

denote the set of residues modulo n that are relatively prime to n. So, I hope you will 

remember this notation. 

So, Z n star means that, if n is any number given, so, n is not necessarily a prime number. 

So, Z n star means all those elements when I am reducing the element modular n. So, 

which those elements has to, I mean the residues has to be relatively prime; so, they have 

to be co-prime to n. So, therefore, they should not have any factor with n except 1. So, 

therefore, they are co-prime to n and Z n star is used to denote that particular set. So, we 

have seen that Z n star forms a multiplicative group under multiplication; that means, 

that Z n star essentially what we saw is the every element has a multiplicative inverse. 

So, any element inside Z n star has a multiplicative inverse and Z n star is also closed 

under multiplication. 
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So, if you take two elements which is lies in Z n star and multiply them and also take a 

modulo n, then a result is also inside Z n star. So, that is the closure property. So, today 

we will take up an algorithm is called the Euclidean algorithm. So, I think all of us know 

this algorithm meaning actually. So, therefore, this is actually the same algorithm which 

we have used in our school days to compute GCD of two numbers. 
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So, the thing is that we will just study that little bit more carefully. So, let us see that 

suppose two numbers are provided to us - a and b, and we have suppose a greater than b. 

So, what do you do? Typically what you do is like this, that is, you take a and you store a 

in a variable called r naught and you take b and store that in a variable call r 1. Then, 

what you do is that, you start dividing r naught by r 1. You obtain a quotient called q 1, 

and here, you get q 1 r 1. Therefore, r. So, the remainder which you get is called r 1; I 

denote by r 1 and r 1 equal to r naught minus q 1 r 1. So, this is the remainder. So, you 

get r naught here and it subtract q 1 r 1 and you obtain r 2. So, that is actually r 2. 

So, that is, therefore, if you see that this, I can actually continue. Therefore, what I do is 

that next I take r 1 here and I divide r 1 and I continue with this process. So, therefore, at 

any stage, that is, at any mth stage, I have got this particular thing. I have got r m minus 

2 and I divide that by r m minus 1 and I get here q m minus 1 and I get here q m minus 1 

into r m minus 1 and this remainder is r m. So, r m is r m minus 2 minus q m minus 1 r m 

minus 1. So, this is the corresponding result at the mth stage of this algorithm. 

So, therefore, now, we know that we continue this kind of division, and when we get the 

remainder value to be equal to 0, then we look at the previous divisor value and report 

that as the GCD of these two numbers r naught and r 1. So, that is the fundamental 

working of the algorithm. 
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So, I think all of us known this algorithm. So, why does this algorithm work? Therefore, 

this is the pseudo code of the algorithm. You see that r naught has been stored; I mean a 

has been stored in r naught; b has been stored in r 1 and you start with m equal to 1; you 

compute the quotient. So, you are quotient is the floor of when you divide r m minus 1 

by r m. So, that is the… So, this is the r m minus 1 divided by r m and you get q m and 

then you get r m plus 1. 
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So, r m plus 1 is r m minus 1 minus q m into r m. So, same thing, I mean in the particular 

equation that we wrote, you can also write r m plus 1 equal to r m minus 1 minus q m r 

m. So, therefore, this particular state is written out here. So, r m plus 1 equal to r m 

minus 1 minus q m into r m and m equal to you increment m each times, and when you 

get the value of remainder equal to 0, you see m equal to m minus 1. That is a previous 

stage and it report the corresponding r m of the previous; I mean which is the previous 

divisor as the corresponding GCD. 
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So, now, what is the reason why this is correct? I mean the correctness of this algorithm 

can be seen by these particular equations such as what I have interested in computing is 

GCD of a, b. So, what is a? a is r naught and b is r 1. So, r naught is actually equal to q 1 

r 1 plus r 2 and r 1 is r 1. So, therefore, if I take a GCD of these two numbers because r 1 

is here and r 1 is also here, this reduces to GCD of r 1, r 2.  

Therefore, continue in this fashion I get GCD of r 1, r 2 equal to GCD of r 2, r 3, and 

similarly and then, finally, since r m is dividing r m minus 1. Therefore, the GCD is r m. 

Therefore, this actually terminates this, I mean this algorithm gives you also correctly 

that corresponding GCD of a and b. So, therefore, the Euclidean algorithm can be used to 

compute the GCD of 2 positive integers and it is also can be used to check whether an 

integer and modular n has a multiplicative inverse. 



How can you do that? How can you check? So, what is the check? Whether a particular 

element whether particular integer modular n has a multiplicative inverse. We have 

started this property. 

What is the property? 

G c d a, n. 

Yes, GCD of a, n is equal 1. Therefore, what I have to do is that, I have to compute the 

GCD and the GCD has to be 1. If the GCD is 1, then the element has an integer, I mean 

has a multiplicative inverse, but the question is how can I compute the inverse? That is 

the next question. Therefore, I can check the whether an element or whether a integer 

modulo n has a multiplicative inverse very easily, but the thing is that I am also 

interested to compute the corresponding inverse value. 
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So, this particular algorithm is called the extended Euclidean algorithm. So, therefore, let 

us study or let us try to compute the inverse of 28 modulo 75. So, therefore, if I am, I 

mean what I can start doing is that, so, what I am trying to compute is 28 inverse modulo 

75. So, suppose, first of all, I should know that whether 28 inverse really exists or not. 

So, therefore, what I will do is that I will find out the GCD of 28 and 75. 

So, therefore, what is the corresponding GCD of 28 and 75? Therefore, ideally this 

should be 1 and I have to check this thing. So, 28 if I divide 75 by 28, I get here 56, and 

therefore, this is equal to 19 1 19; I get here 9 19 2 18 and I get here 1 divide; I get here 0 

So, therefore, 1 is my corresponding GCD. So, the multiplicative inverse really exists. 

So, therefore, now, you can actually start expressing these things in this fashion. You can 

write like 75. So, this 75 is equal to 2 into 28 plus… 

Plus 19 

19 

So, 2 into 28 plus 19. So then, what you can do is that, you can see 28. 28 is 1 into 19 

plus… 

9 



9. Then you have got 19; 19 is equal to 2 into 9 Plus 1, and finally, you have got 9 equal 

to 1 into 9. So, now, the interesting thing is that, you will see that each of this 

remainders, that is, whatever you are getting the as a remainder can be expressed as a 

linear combination of the elements 28 and 75. 

See, for example, 19 is equal to 75 minus 2 into 28. So, what about 9? 9 is actually 28 

minus 1 into 19, but I know how to express 19. So, I know that 19 is nothing but 1 into 

75 minus 2 into 28. So, therefore, these I can collect and I can write like these as 3 into 

28 minus 1 into 75. So, what about the next element? The next remainder is 1. So, 1 is 19 

minus 2 into 9. So, 19 I know as 3 into 28 minus 1 into 75. So, this is not point. So, 1 

into, so, minus 2 into 9. 

So, therefore, what is 9? 

(( )) 

I think I wrote the wrong thing. Therefore, 19 is actually 75 minus 2 into 28 minus 2 into 

9. So, 9 is 3 into 28 minus 1 into 75. So, therefore, this is actually 75. Therefore, this is 

actually 3 into 75 minus 8 into 28. 
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So, now, you see that, if you take this final equation and I will write properly. So, this is 

what? This is 1 equal to 3 into 75 minus 8 into 28. Now, suppose I take a modulo 75 on 

both sides. So, what do I get? I get 1 equal to minus 8 into 28 mod 75 because this term 



goes to 0 in that case. So, now what is the multiplicative inverse of 28? It is minus 8 

because if I multiply with minus 8 I get back 1. So, therefore, minus 8 mod 75 means? 

67 

67 

So, therefore, the multiplicative inverse of 28 mod 75 is equal to minus 8 and that is 

equal to 67. So, therefore, what was the main objective? The main objective was that, at 

each stage, the Euclidean algorithm whatever remainder we were getting from Euclidean 

algorithm; we are expressing that remainder as a linear combination of the starting two 

elements. That is the mod value that, I mean what you are doing modulo with and the 

element for which you are interested in computing the multiplicative inverse. 
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And that is the main working principle. So, therefore, the main question is that can you 

express the GCD as a linear combination of 28 and 75. So, after that, it is quite easy, 

because we know that GCD has to be 1. So, if I take a modulo with this corresponding 

75, then whatever element I get on the right hand side, I mean the remain which I 

multiplying 28 to get back 1 is the multiplicative inverse of 28. 
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So, this is what I did. So, therefore, answer is actually minus 8 mod 75 equal to 67. So, 

therefore, now we will generalize this, but… So, what is the lesson that we learn? That 

all the remainders which are generated by the Euclidean algorithm can be expressed as a 

linear combination of the positive integers a and b, and although I am not proving, but it 

is quite easy to prove that the expression is actually unique. Therefore, you cannot find 

two search linear combinations which will actually satisfy this. 



So, this extended Euclidean algorithm actually generates or computes a linear 

combination in a very systematic fashion. So, that is the main objective. So, therefore, 

we will see that the extended algorithm, it just generates or computes this linear 

combination values in a quite systematic fashion. 
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So, how do we do this? So, therefore, this is how it is done. So, you define a series of t 

terms. So, t 0 to t m, and similarly, from s 0 to s m and this is how you define t j and you 

define s j. So, basically you have a recursive construction. So, you see that j equal to 0 t j 

has been initialized to 0, and if j equal to 1, then t j is equal to 1. What about s j? s j is 

just the other way round. So, if j equal to 0, and then, s j is equal to 1; if j equal to 1, then 

s j equal to 0. 

So, this is just the opposite of this definition 0 1 and 1 0, why? Because this t j and s j is 

actually used to, is the corresponding, what am I interesting to do? I am interested to 

express the remainder as a linear combination of r 0 and r 1. So, now, this, I mean the 

corresponding coefficient in that linear combination is being generated by the series t j 

and the series s j. 

 

 



So, here, the first remainder is, if I start with r 0. So, therefore, if I say that the j equal to 

0 r 0, so, r 0 will be equal to 1 into r 0 plus 0 into r 1. So, therefore, the starting point of 

this should be 1 and. So, when this is 1, this is actually 0. So, therefore, you see that 

when this is 1, this is 0. So, when you are expressing r 1, then similarly this t j has to be 1 

and s j has to be 0. Therefore, s j is 0 when j equal to 1; then s j equal to 0 and t j is equal 

to 1. 

But for the rest of the j values, that is been j is greater than 1, that is, j is greater than 

equal to 2. So, in that case, in those scenarios, t j is defined like this and s j is also 

defined like this. So, t j is what? t j minus 2 minus q j minus 1 t j minus 1. So, q j minus 1 

is a same as that we got in the Euclidean algorithm and s j is equal to s j minus 2 minus q 

j minus 1 into s j minus 1. 

So, what we can actually prove is that r j which is the corresponding remainder value of 

the jth stage can be expressed as a linear combination of r 0 and r 1 with coefficient s j 

and t j. So, there r j’s are as defined in the Euclidean algorithm and s j’s and t j’s are as 

defined in the above recurrence. So, why does it work? So, we can see why we work. So, 

for base cases like for j equal to 0 and j equal to 1, this is trivial. That is what we argue. 
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So, let us assume that it is true for j equal to i minus 1 and j equal to i minus 2 and j equal 

to i minus 1. So, what we will prove is that it is also true for j equal to i minus 1, I mean j 



equal to i. So, this is basically mathematical induction. So, we are applying mathematical 

induction to prove this result. 

So, what type of induction is this weak or strong? 

Weak 

This is weak induction. 

So, we apply j equal to i, and so, we know we expect the results for j equal to i minus 2 

and j equal to i minus 1 and we are proving the result for j equal to i. So, when we are 

assuming for j equal to i minus 2, therefore, that means that, I can assume that r i minus 2 

equal to s i minus 2 r 0 plus t i minus 2 r 1 and also r i minus 1 equal to s i minus 1 r 0 

plus t i minus 1 into r 1. So, these are two given results. 

So, what about, so, when I am computing r I, that is, r i is the corresponding remainder. 

Then that means that, what I have done in that particular step in the Euclidean algorithm 

is that I have taken r i minus 2 and I have divided that with r i minus 1. And what was 

my remainder here? It was q i minus 1 and I have got q i minus 1 r i minus 1 and my 

remainder was r i. So, what was r i? r i was r i minus 2 minus q i minus 1 r i minus 1. 

So, therefore, r i is equal to r i minus 2 minus q i minus 1 into r i minus 1. So, therefore, I 

can take this previous two given or assumed results and I can plug in them. So, therefore, 

I get r i minus 2 as equal to s i minus 2 r 0 plus t i minus 2 r 1 minus q i minus 1 and s i 

minus 1 r 0 plus t i minus 1 r 1. So, that is equal to, if I take s i r naught out from this, 

therefore, if collect r naught, I get s i minus 2 minus q i minus 1 s i minus 1 into r 0 plus t 

i minus 2 minus q i minus 1 into T i minus 1 into r 1 

So, therefore, you see at this particular these two terms are nothing, but what is S i and t 

i. Therefore, I can write this as s i r naught plus t i r 1 and that proves the case for j equal 

to i. So that means that the remainder can be expressed as a linear combination of r 

naught and r 1 where the corresponding coefficients are s i and t i, and s i and t i are 

defined by these particular recurrence. So, therefore, I can repeatedly I can keep on 

continuing this values, this coefficient values, and then, I should be able express that 

remainder at each stage as a linear combination of r 0 and r 1. So, any doubts about this? 
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So, therefore, this is now the pseudo code of the algorithm. So, it is quite simple actually. 

If you just observe it minutely, it is nothing; I mean there are just its some temporary 

variables we have been used. It is just to save some variables, but it is same thing, you 

see that t 0 minus q t and s 0 minus q s are the main things. So, therefore, you are 

basically computing the t series and the s series. So, I am here using that to compute the 

corresponding coefficient values. 

So, therefore, finally, what you are giving back by the extended Euclidean algorithm, 

when you have given two numbers, two positive numbers - a and b, you are actually 

giving back the corresponding GCD of a and b and you are also expressing the remainder 

as the linear combination of a and b. So, you are giving by the coefficients s and t. So, 

therefore, how can I use this, to compute the multiplicative inverse is quite clear. So, 

therefore, I have to just take a modulo on both sides, and therefore, I should get the 

remainder; I mean I should get the multiplicative inverse if it exists. 
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So, this is an example, same example. So, therefore, previously we were trying to 

compute. We are taking 2 numbers 75 and 28. You plug in this to the extended Euclidean 

algorithm. You get the q i series and the, I mean you get the, these are the corresponding 

quotients and this is the s series and these are t series. So, therefore, you can use this 

particular recurrence to compute these values. So, you start with 1 0 and 0 1 and, the, 

subsequently you can take these q values and you can take this previous t values, because 

at this stage, you know already the previous two stages. 

So, you can employ this recurrence to compute the values for s 2 and also for t 2, 

because you know the value of s 0 and you know the value of s 1 and you also know the 

corresponding coefficient, I mean the quotient value. So, therefore, you can check this 

that this works as follows. Finally, what you obtain is this thing, that is, you obtain that 1 

which is the GCD is actually equal to 3 into 75 minus 8 into 28. So, therefore, taking 

modulo 75 28 inverse mod 75 is equal to minus 8. Therefore, you remember that this s i 

was actually getting multiplied with 75. 

So, therefore, if I take mod 75 on both sides, then actually this series, I mean we could 

have, if we are really interested in computing only the inverse, then computing this s i 

series is a actually of no use, because I am actually taking modulo 75 on both sides. So, 

therefore, actually I can make this algorithm mod (( )) for the multiplicative inverse 



computation by actually removing this exercises, because I do not require to compute 

this. You all of you understand this that this is not require to compute this? Yes. 
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So, this is an improvement. So, note that we do not require the s i’s and can take a 

modulo 75 each time while computing the t i’s. So, this will make the algorithm mod 

efficient. So, therefore, I can actually do without computing this column and the answer 

that I will still get this minus 8. So, therefore, minus 8 mod 75 means 67. 
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So, therefore, this concludes our discussion on the Euclidean algorithm, and then, we 

will take another interesting algorithm, it is called the Chinese remainder theorem. So, 

basically it is a systematic algorithm which solves the system of congruences. So, 

originally people say that it was employed by the Chinese people. So, therefore, as idea 

was that suppose, they wanted to find out how many people were there in their army. 

So, therefore, they use to say that you stand in groups of 5, stand in groups of 3. So, in 

co-prime models, and whatever is the remainder which is a small number in inside 5 and 

3, they use to compute that, and from there, they use to find out how many people are 

there in the army without counting that was the objective. So, therefore, the idea was that 

it solves a system of congruences, and suppose m 1, m 2 and  so on as m r are pairwise 

relatively prime positive integers. 

So, the system of congruences is as follows. You take x and you report only a 1 which is 

when you take mod of m 1. Similarly, you take mod of m 2, you report a 2; you take mod 

of m r, you report a r. So, this a 1, a 2 and so on till a r are actually just the, I mean the 

values when you take modulo of x with m 1. So, therefore, this number is definitely 

smaller than m 1. Similarly this number is smaller than m 2 and similarly this number is 

smaller than m r. 

So, computing these values is actually easy in that case, because this is a quite small 

numbers. So, therefore, what you are saying is that, this, I mean when you are solving 

this x value from this system of equations. So, what you are essentially trying to say is 

that you are expressing the whole as in parts. So, therefore, the theme is that to express 

the whole in parts. So, you see that this algorithm has got lot of applications in 

cryptography and may be many other places. So, therefore, I mean for cryptography, 

actually we will see that this algorithm is naturally a secret sharing algorithm. 

So, what you are doing is that, suppose there is a file, and instead of giving disclosing the 

file and suppose there are r users. So, I am not giving everyone, I mean I am not giving 

each one the entire file content. So, what I am doing is that, I am diving it amongst the r 

value r people. So, not, I mean suppose I divide it among r people in this class, the entire 

file content becomes evident only if this r people join, but not when r minus 1 people 

join.  



So, therefore, I can write this information theoretically also; that means that, if r people 

are joining, then the information is totaled, but if r minus 1 people join, then the 

information is actually 0. So, you do not have any information of the file, but there is 

something which is called as a threshold scheme. This is not a threshold scheme which I 

have told you, but this is definitely a secret sharing scheme. So, Chinese remainder 

theorem has got so many applications actually. So, let us try to understand how it works. 
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So, first, lets us start with a small example. So, therefore, suppose that x is actually 3 

mod 5 and x is 1 mod 3. So, what is the value of x when you take mod 15? So, you can 

verify and the only answer is actually 13 mod 15. So, therefore, the only answer to this is 

13. So, the first thing to explain is why there is only one solution. That is why is there 

only one unique solution. See, in order to understand that, let us do one thing. 
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So, let us define one function which is like this you take x, which is the actual thing 

which we need to compute and you express this as topples like this like x mod 5, x mod 

3. So, you note that what are the possible values of x since you are considering x from 

mod 15, there are actually 15 values from 0 to 14. So, for each of them, what I am doing 

is that, I am storing 0 mod 5, 0 mod 3. For this case, for example, when the a x value is 

0, then I am storing 0 mod 5 and 0 mod 3; when x is 1, I am storing 1 mod 5 and 1 mod 

3. See, for example, when x is 10, I am storing 10 mod 5 which is 0 and 10 mod 3 which 

is 1. 

So, similarly, I can popular this table, and the thing or the interesting thing to be noted is 

that, this is actually a bijective mapping, which means that you will never get 2 0, 0’s in 

this on the right hand side. So, you see that the domain is actually that there are 15 

values; I mean the ranges also there are 15 values and there is actually a 1 to 1 

connections. So, therefore, it is definitely a bijective mapping. So, first, we will try to 

prove this, but it will actually give you a constructive proof; so that means, it will give 

you a solution and also prove that are this unique. 

(( )) 

Why are 

(( )) 
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So, another interesting thing I probably missed it, or so, you see that the m values are 

actually relatively prime. So, this will work with any m values which are relatively 

prime. So, it could have worked with, but therefore, you understand that it has to be 

odds, because otherwise they are not relatively prime. If you take 2 even numbers, then 2 

is a common factor. 
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So, therefore, this will work if you take 2 mutually 

Mutually prime number 



Mutually prime numbers. Therefore, you can take this as an even numbers and this as an 

odd number, but you cannot take two even numbers. 
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So, we will try to prove this. So, therefore, you see that we can do like this, that is, you 

take m. So, therefore, you take 5 and 3 and you multiply these two things. So, therefore, 

this is the modulo value 5 and this is the modulo value 3. You multiply them and obtain 

M 1 by dividing 15 by 5. So, when you take 15, you divide by the first modulo value 

which is 5 and you get 3, and now, you see that 3, since you have taken 3 or rather factor 

out 3, 3 and 5 are mutually co-prime. So, therefore, you can actually compute 3 inverse 

mod 5, and 3 inverse mod 5 is actually equal to 2. Similarly, M 2 also you can compute 

by dividing 15 by 3 and you get 5 and you can compute 5 inverse mod 3 which is also 

equal to 2. 
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So, you see that X which is that actual thing, which you are interested to compute will be 

equal to 3. So, 3 is this value, that is, 3 is this value, and you take 3 and multiply it with 5 

and multiply with the inverse value. 
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So, therefore, you take 3, you multiply with 3 and you multiply with 2. Similarly, you 

take 1, you multiply with 5 and multiply with 2, and if you take this, this works out to 28 

and 28 mod 15 is actually equal to 13. So, what is the underlying principle? We will try 

to understand that first. 



Sir 

Yes 

(( )) 
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So, let us do one thing. So, let us go ahead and read the solution and let us try to 

understand the principle, and then, we will go back to this example. So, maybe I could 

have placed this afterwards. So, let us present the constructive proof, that is, in fact, this 

Chinese remainder theorem gives an explicit formula for computing X inverse mod M - 

so, where m is actually equal to the product of m 1 to m r, and what I do is that, for each 

step, I compute m i where I divide M by small m i. 

So, what is the GCD of m i and big m i? It is of course equal to 1, because you see that 

all these numbers are mutually co-prime. So, if you divide M by m I, so, your factor out 

m i. So, therefore, this m i’s or capital m i has to be co-prime with small m i. So, now, 

therefore, I can take m i inverse mod smaller m i because m i and small m i are mutually 

co-prime. So, therefore, I can compute y i in this fashion. So, therefore, now you see that 

y i is equal to m i inverse mod of small m i. 
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So, what I say is that, so, therefore, M i y i will be equal to 1 if I take mod of m i, but if 

you take mod of m j where j is not equal to i, then what is this corresponding value, is 

actually equal to 0 because m j will divide m i. Do you understand this? That is, if I take 

M i y i and I take mod of m j where j is not equal to i, then this value will be equal to 0 

because m j will divide M i. 

So, what I say is that this is a. So, as I told you is a constructive proof. So, therefore, 

what I am saying is that this solution will be equal to sigma a i M i y i. So, therefore, 

now you see that, what I am multiplying is that I am multiplying with a i and I am 

multiplying with big M i and I am multiplying with y i. So, therefore, now you see that, 

if you go back to the example, this was the corresponding congruence value. M i was the 

corresponding thing when you divided M by small m i. 

So, in that case, M was 15 and you are divided that with 5. So, you got 3, and what was 

the value of y i? It was 2; it was inverse. So, similarly you can get the second term also. 

So, the next thing to be understood is that why it is 2. So, this you can actually easily 

check because, so, therefore, first thing is that we will we will see that this really satisfies 

the original system of equation. So, you take this row and you take mod of some M i 

values. See if you take mod of M i, then obviously you understand that only for i, this 

value M i y i will go to 1. So, you have only a i. 



But for the other things, that is, for the other j values, this will actually go to 0. So, only 

this will result in. 

A i 

A i. Therefore, if you take mod of m i, then the of right hand side will be only reduced to 

a i. So, therefore, what you can do is that, you compute this row mod m i. So, row mod 

m i will be equal to a i, why? Now, because M i y i is equal to 1 mod m i and M i y i 

equal to 0 mod m j when j is not equal to y. So, therefore, the right hand side will only 

result in a i. So, therefore, similarly, you can see that the all the system or equation will 

get satisfied. 

So, therefore, what you observe here is this that, this mapping or which I called as a psi x 

or xx is actually an onto mapping, which means that given any result, that is, given any 

corresponding congruence value, I am always able to find out an X value mod m which 

will satisfy this. So, which means that nothing is left out on the… 

Right hand side 

On the right hand side on the range part. 

So, therefore, the next thing to be argued is that this function is actually a bijective 

function. Therefore, we have actually trying to show is that this is a unique mapping. So, 

since the domain and range have got the same cardinality, this becomes quite clear 

because we showed that the domain and range has got the same cardinality, and on the 

right hand side, these are also onto mapping. So, therefore, if you combine these two 

things, it becomes a bijective mapping; so that means, that the solution is actually unique 

modulo M. So that means that you not only get a solution, but this solution is actually 

only one and only one. This is clear? 

(( )) 

Example, I gave you an example just now. 
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I gave you just now, this is example this. So, what I am interested into compute is this - 

X equal to 3 mod 5 and X equal to 1 mod 3. So, I am interested in computing this mod 

15. So, what I do is that I take M. So, if I take 5 when I take 3 and I multiply them, I get 

15. So then, what I do is that, I take 15 and I divide with the first M i value. So, that is 3, 

and then, I take 3 inverse mod of 5. So, 3 inverse mod of 5 will be 2. So, similarly I take 

15 divided by 3, I get 5 and I take the inverse of 5 it is 2. 



So, therefore, X you can actually write in this fashion. So, this is that sigma thing which 

you saw. So, this is if you open up the sigma, you get this that 3 into 3 into 2 plus 1 into 

5 into 2; it works out to 28 and mod 15 equal to 13. You can check this. 
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So, therefore, this 13 you can see will satisfy this system of equation, because if you take 

mod 5, it is 3; if you take mod 3, it is 1. Therefore, 13 satisfies this simultaneous 

equations congruences actually. 

(( )) 
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Cardinality becomes equal from here because you see that your input size is actually 

equal to what? You have been, there are 15 values in this case in the domain part. In the 

range part also you are storing them as these numbers can vary from what? From mod 5 

and mod 3. 

So, the first ordinate will actually vary from 0 to 4. There are 5 values. In the second case 

also there are 3 values. So, how many possibilities are there? There are also 15 values. 

So, in the domain and in the range there are, I mean both of them have got the same 

cardinality, and at the same time you also showed that it is onto. Therefore, it is a 

bijective mapping. 

(( )) 
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So, what I am saying is like this, that is, suppose I am giving you some solution here like 

this where these are co-prime and all this things. So, there are actually from their, you 

can at least find out one X value for which this is getting satisfied. 
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So; that means, in the right hand side, I mean you can note that this is like a function. 

Therefore, you see that if I give you some value in the right hand side, in the left hand 

side you always getting 1 value; it is not that you are not getting some value. From this 

function, you will definitely get at least one value. And since the number is same in both 

the cases, there has to be a it is a bijective mapping. You can also actually formally prove 

this by fusional principle also, but I am not going to do that. So, but this is quite straight 

forward actually. I hope you understand this. 
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So, therefore, you will now conclude with some more useful facts say which will be 

useful for our r s a understanding actually. So, suppose G is a multiplicative group of 

order n and G is belonging to G. So, assume that G is a multiplicative group and has got 

order n. So, order n means that number of elements are actually n. 

So then, the order of G will actually divide n. So, what is small g’s order? So, suppose 

there is a multiplicative group and say there is a g element which belongs to capital G, 

then the order of g, I call this as order of g is actually equal is the smallest number or 

smallest positive integer m for which g power m is equal to 1. And of course, this is the 

corresponding unity element so that identity element. Therefore, g to the power m is 

equal to i or 1. 

1 mod 

And yes, mod of m of course. So, what I am saying essentially is that, the order of g will 

divide actually n. So, therefore, the order of g will actually divide the number of 

elements in the group G. So, this is actually O means this is, are the number of elements 

in G. So, this I am not proving, this is called Lagrange’s theorem. So, we will just 

assume this. 

(( )) 

Mod m 



(( )) 
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1 mod n. So, therefore, there are two natural interesting corollary that as follows. If you 

take b which belongs to Z n star, so, Z n star is a multiplicative group that we k. Now, 

therefore, suppose the order of b is say d. So, therefore, b to the power of d should be 

equal to 1, and what is the order of the group Z n star? It is 5 n. 5 n we have seen. What 

is a 5 n? Therefore, b to the power of 5 n has to be equal to 1 mod n because b will 

divide 5 n, and therefore, b to the power of 5 n is also equal to 1. 

Yes 

Similarly, from this, it follows that, if n is a prime number, then 5 p will actually be 

equal to p minus 1. So, b to the power of p minus 1 will be equal to b. Therefore… 

(( )) 

Yes 

So, therefore, b to the power p will be equal to b mod p. And this is written in this form, 

and I mean because suppose there can be two cases. So, here, we have written b belongs 

to Z p. So, first of all, assume that b belongs to Z p star. So, what does it mean? Whom 

does it exclude? 

(( )) 



No, whom does it p is a prime number. 

So, all elements are co-prime, but if I say b belongs to Z p star and then; that means that 

from b belongs to Z p which element am I excluding? 

(( )) 

0 

I am excluding 0. In Z p, actually 0 is there, but in Z p star 0 is not there. So, here, you 

see that 0 will satisfy this equation trivially. So, therefore, what we need to show is only 

the when b belongs to Z p star. And if b belongs to Z p star, then the previous result 

holds. So, b to the power of 5 p. So, b to the power of 5 p means what? b to the power p 

minus 1. See, in that case also this holds. So, therefore, this holds for b belongs to Z p. 

That is why it is written like this b to the power p is actually equal to b mod p. But if I 

written b to the power of p minus 1 equal to 1, then b would have belong to Z p star; I 

could have now written b belongs to Z p. 
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So, therefore, so, therefore, so, we have seen that what is the cyclic group. So, you see 

that if p is a prime, then Z p star is the group of order p minus 1 and any element in Z p 

star which as an order which will divide p minus 1. So, in fact, if p is prime, then there 

exists at least 1 element in Z p star which has got an order equal to p minus 1. 



So, what does it mean that, if you take that particular element and if you keep on 

multiplying, then the smallest number for which it will repeat or it will give you 1 is 

actually p minus 1. So, that is, at least 1 element whose order is actually equal to p minus 

1, and therefore, it is called as a cyclic group, because if you take this element, then it 

will generate all the elements in that field, and finally, it will come back to itself. So, 

therefore, it is called as cyclic group and this element is sometimes called the primitive 

element. So, here, if you remember that cycle that we draw in context to AES, you take 

an element if you keep on multiplying like alpha, alpha square, alpha cube, alpha to the 

power of 4 and so on. Then finally, you get alpha to the power of p minus 1, it will be 

equal to 1. 
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And in p minus 1 is the smallest number for which that happens; so that means, this 

alpha if you multiply, it will generate all the elements in that field, and therefore, the 

name called cyclic group. 
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So, therefore, primitive element is defined like this. If p is prime, then Z p star is a cyclic 

group, and any element alpha having order p minus 1 mod p is called a primitive 

element. So, thus alpha is a primitive element if and only if. If you take alpha to the 

power of I and from 0 to p minus 2, you get actually the entire Z p star. So, therefore, 

you can use alpha and compute the corresponding powers, and finally, you get the entire 

Z p star. So, therefore, alpha generates the entire group. So, alpha is called the primitive 

element. 
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So, you see that this is an example to a clear that. So, you take alpha here and alpha is 

equal to 2 and you keep on computing the powers. So, therefore, here your n value is 19. 

So, I am taking mod 19; so, that means, I am computing alpha, alpha square, alpha power 

3 alpha power 4 and so on till alpha power 18. So, you see the alpha power 18 is equal to 

1; so, that means, now you see that all the elements which are there in Z n star is actually 

generated here. So, that means what? This alpha is a primitive element because it is 

generating in the entire group. 

So, you see that there are some elements for which the order is not actually equal to p 

minus 1, but smaller than p minus 1, but in this case, you will find that there are exactly 

6 primitive elements, why, because this is one primitive element; this is one primitive 

element; this is one primitive element; this is another primitive element; this is another 

primitive element; this is another primitive element. So, how many primitive elements 

you have? There are six primitive elements. 

So, can I justify why there are exactly 6 when n is equal to 19? So, we will try to see all 

these things. So, therefore, note that the order of each element. So, you can note that the 

order of each element in Z 19 star and you will find that. It will divide the, I mean each 

order which you take here will actually divide, divide what? 

(( )) 

19 or 19 minus 1? 

19 minus 1 

19 minus 1  

So, therefore, each order will actually divide 19 minus 1 and primitive element will have 

the largest order. So, the order of primitive element is actually equal to 18. So, therefore, 

you see that, do you understand why it is a cyclic group, because you take this, it will go 

back to 1 means after that, if you multiply, it will come back to this. So, it will continue 

like this. Actually all the elements are cyclic groups. So, if you take these, therefore, you 

take 4 16 7 9 17 11 16 5 1; again it come backs to 4. So, you see that all of them are 

forming cyclic groups, but only the largest if you take a primitive element, then it forms 

the entire multiplicative group. 
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So, actually you can show that any element b in Z p star where p is a prime can be 

written uniquely in the form of beta equal to alpha to the power of I. So, this follows 

straight from the definition of primitive element. Where alpha is a primitive element and 

lies between 0 and p minus 2 the order of beta. So, where beta is equal to alpha to the 

power of I is actually equal to p minus 1 divided by GCD of p minus 1, i, and beta is 

itself primitive if and only if GCD of p minus 1 and i is equal to 1. 

So, now, can you say how many primitive elements will be there? 

Yes 

(( )) 

What? 

You said something. 

5 of p minus 1 

So, if you take in this case 19, therefore, number of primitive elements will be 5 of 18. 

So, what is 5 of 18? 
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So, what is 18? 18 I can write as 3 square into.. 

2 

2. So, what is phi 18? 

(( )) 

Phi of 18 is 6. I hope you remember that 18 into 1 minus 1 by 3, and similarly, you can 

write that. So, this will compute to 6. So, therefore, that is the reason why you had 

exactly six primitive elements. So, now, why is the order of beta equal to p minus 1 also 

we can justify I think. Let it be like this, that is, order of beta is equal to p minus 1 

divided by GCD of p minus 1, i. So, I will be try to give you a simple proof for this, that 

is, if you take say beta equal to alpha to the power of I and let the order of this element 

be it is a K - where K is some positive integer; so that means what? That beta to the 

power of K should be equal to 1 mod of p. 

So, this one I could have written as some alpha to the power of some t into p minus 1 

mod p, where alpha is the corresponding primitive element because alpha to the power of 

p minus 1 is what? 1. So, therefore, this is 1. So, what about the left hand side? It is beta 

to the power of k. So, therefore, that is alpha to the power of ik is equal to alpha to the 

power of t p minus 1. 



So, from here, I can actually write that i of k equal to t of p minus 1, and therefore, k is 

equal to p minus 1 divided by i by k. So, now, certain things becomes important, I mean 

observable from here. That first of all, i of k has to divide p minus 1 because otherwise k 

is not integer. 

Sir, i by t. 

Sorry, I by t, yes. 

So, i by t. So, i by t has to divide p minus 1. So, i by t has to divide p minus 1, and what 

is the other thing that you observe from here that i by t has to be a factor of i also. So, i 

by t is also a factor of i. So, therefore, now if I since the order is actually the least such 

number, therefore, it has to be corresponding to this denominator has to correspond to 

the greatest common divisor of p minus 1 and i, because the order is the least such 

number. So, therefore, it actually equal to p minus 1 divided by greatest common divisor 

of p minus 1 and i. 
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So, this you can prove in a other ways also. This is just one sample. So, you see that p 

equal to 13 phi of 13 minus 1 equal to phi of 12 and that is actually equal to 4 or 6? 

4 



Now, this is this is a different example I think. So, p equal to 13 phi of 13 minus 1 equal 

to phi of 12, this works out to 4. So, what does it show? It shows that if you take p equal 

to 13, then there are 4 primitive elements. So, the question now which I will ask you is 

that is 2 a primitive element for Z 13 star. So, what it will do? The first thing that we can 

do is that we will generate all the p minus 1 powers of 2 and check that whether it is 

equal to 1. So, this is quite a lengthy process. 
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So, actually, luckily we have this theorem which gives you easy check for the primarity, 

so, for the primitiveness. It says that suppose that p is greater than 2 is prime and alpha it 

belongs to Z p star. Then alpha is a primitive element modulo p if and only if alpha to the 

power of p minus 1 divided by q is actually not equal to 1 mod p for all primes such that 

q divides p minus 1. So, how can I proof this result? So, you see that one part is quite 

clear, because if alpha is actually a primitive element, then obviously p minus 1 by q 

being smaller than p minus 1. This can never be equal to 1, because in that case, alpha is 

not a primitive element. 

The other thing that we needs to be proved is that, if alpha to the power of p minus 1 by 

q is not equal to 1 for all such primes, then alpha is a primitive element. So, therefore, 

the contrapositive of this would be what? That if alpha is not a primitive element, then 

there exists a q which divides p minus 1 such that alpha to the power of p minus 1 by q is 

equal to 1. That is the contrapositive. So, we will prove this. 
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So, therefore, we will say that alpha is actually a not, I mean alpha is not a primitive 

element. So, which means that their exists an alpha power d, which is equal to 1 mod p, 

and what d is actually? Smaller than p minus 1. So, we know that d divides p minus 1. 

Therefore, p minus 1 by d is actually an integer value. So, therefore, let q be a prime 

number which divides p minus 1 by d. So, you see that the moment I am saying that, let 

q be a prime number. So that means that, basically what I am saying is that there exists a 

q for which this is true. 

So, therefore, q divides p minus 1 by d. So, therefore, this implies that d also divides p 

minus 1 by q. So, now, since alpha to the power of d is equal to 1 mod p, this implies that 

alpha to the power of p minus 1 by q is also equal to 1 mod. So, therefore, this proves the 

result. Did you followed the proof? 
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So, that concludes this particular lesson. So, we are followed from Stinson and also 

portions from William Stallings cryptography and network security, and next day, we 

will continue with the RSA cryptosystem. 


