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Pseudorandomness 

In today’s class, we will discuss about Pseudorandomness. 
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The objectives of today’s discussion will be on random bit generation. Then, we will try 

to understand what is the notion behind pseudorandomness. Then, we will follow it up 

with some statistical tests and also some idea about what is meant by cryptographically 

good pseudorandom bit generation. We know pseudorandom bit generation in context to 

various other fields in computer science like testing and so many other things. 

However, we will also try to understand what is the extra requirement for cryptographic 

purposes. There is a requirement of unpredictability like for example, we have seen 



LFSRs. In general, LFSRs are quite good pseudorandom bit generators, but they are not 

so good for cryptographic purposes. We have seen why. Because they are quite 

predictable in nature; that is, given the sequence, we can again obtain back the given 

LFSR structure and from there again regenerate the sequences. 
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Usefulness in cryptography for randomness is enormous. The key stream in context to 

one time pads, we have seen that the requirement was randomness. Similarly, if there are 

other applications like in generating the secret key for block ciphers, you would like to 

make it random. Similarly, we have not discussed till now in public key cryptosystems 

like for example, RSA, we required to make some choices on prime numbers. Therefore, 

for example, primes p and q are required; they are all supposed to be random. 

In digital signature algorithms, the private key has to be also determined in a random 

fashion. Therefore, the idea when I say that it is random means that they are supposed to 

be chosen from a space and that space should be quite large. So, that is one requirement. 

The other thing is that the probability of a particular value being selected should be equal 

for any value. Therefore, this is required because if there is a bias in a probability 

distribution, then any adversary can use this property to make an optimized search. 

Therefore, he can target the search to a particular region of high probability. Therefore, 

in order to avoid such things, we would require a uniform probability distribution of all 

the values. Therefore, these are the requirements. 
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We have got a notion, which is called true random bit generator. That is something like 

an ideal random number generator. Therefore, what is a random bit generator in an ideal 

case? It is a device, which outputs a sequence of statistically independent and unbiased 

bits. Therefore, it is a device; suppose you can think of a magic device, which will output 

its bits, which are statistically independent and they are uniformly chosen. So, that is the 

idea. Therefore, if you have a random bit generator, which means that it is a device, 

which will produce a sequence of bits; all of which is a random sequence. Therefore, the 

probability of any particular bit is uniform and it is also unpredictable. That is, they are 

not correlated. Therefore, given a bit, the next bit should not be correlated depending 

upon the other bit. 

You can use that to generate a random integer in this fashion. How? Suppose I want a 

random integer in the closed interval from 0 to n, then what you can do is that you can do 

that by generating a random bit sequence of say ceil of log n plus 1. So, you generate 

many bits and then whatever sequence you get, you convert back into a random integer. 

Therefore, given a random bit generator, you can use that to produce random integers. 

Ideally, a true random number generator should be used, but the problem is that they are 

quite costly in nature and they are also inefficient. Therefore, how we alleviate this 

problem is instead of having something, which is really true random, we try to substitute 

them by certain generators, which are actually called pseudorandom generators. The idea 



is that the output of the random generator and the output of the pseudorandom generator 

should not be distinguishable to an efficient algorithm. When I say efficient, I mean to 

say a polynomial internal algorithm. What does polynomial means? The input in this 

case is, for example, the number of values being generated. Therefore, the runtime 

should be polynomial. Such an adversary should not be able to distinguished between the 

output of this particular generator from that of a really true random generators output. 

So, that is the basic idea. 
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Pseudorandom bit generators are deterministic algorithms. What does it mean when I say 

a deterministic algorithm? Each time you start with a particular starting point, it will give 

you the same result. Therefore, it is a deterministic algorithm, which given a truly 

random binary sequence of length k, outputs a binary sequence of length l, which is 

much greater than k and which appears to be random. So, the idea is that in case of a 

pseudorandom bit generator, there is a starting point of  the small random number, for 

example, which is of length k bits. 

What you do is that ideally you use a true random bit generator and from there, you 

obtain a small k bit true random value. Now, using that, you try to generate a very large 

number of pseudorandom bits. As I told you, a true random generator is expensive and it 

also inefficient. Therefore, what I will do is that I will use it for generating small 



sequences and then I will engage this true random generator’s output by a deterministic 

algorithm to give me a larger sequence, which appears to be random. 

The input to this particular pseudorandom bit generator is called a seed. When we say it 

is a deterministic algorithm, it means that each time you give the same seed, the same 

output generates. Therefore, it is required to change the value and then change the seed 

as well. So, keeping the seed constant and trying it several times, it will still give you the 

same output. So, it will really not be random in that case. So, you need to change the 

seed also. The output is called a pseudorandom bit sequence. 

You see that this is actually not a fully random output because you can easily figure it 

out why. In an ideal case, when you are generating a binary sequence of length l, there 

are 2 to the power of l possibilities. However, when you are using a k-bit sequence to 

generate this, you see that out of this 2 to the power of l, you are generating only 2 to the 

power k. However, still it should look random, which means that there should not be any 

polynomial type algorithm, which is able to exploit this particular fact. So, it is not 

actually random, but it should appear to be random. Therefore, that is the basic notion 

behind a pseudorandom bit generator. 
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In order to evaluate whether a pseudorandom bit generator looks random, there are 

various tests, which are being proposed. These are called random tests. The objective of 

all these tests is not to say that a binary sequence is random or pseudorandom. However, 



the objective is to say that a binary sequence is not random. This is because you can do 

say n number of tests and from there, if it satisfies or it passes so many tests, then what 

you can say is that within these tests, you have not been able to figure out that this is a 

weak generator. However, it does not nowhere mean that there can be another test for 

which this particular sequence will fail. Therefore, at best, what you can say is that using 

so many tests, I have not been able to distinguish this output from a true random 

generator’s output. This is a typical example, which says that for example, x n equal to 

ax n minus 1 plus b mod m. It is a simple linear recurrence. 

You see that if you keep the values of a, b and m secret, then you can start with a value 

of x 0, which I called as seed and you can keep on generating such sequences. Therefore, 

you will see that if you obtain a fairly large number of outputs, that is, x n values, then 

you can actually try to solve them and obtain the values of a, b and m. Once you are able 

solve the values of a, b and m, this sequence generator becomes quite predictable. 

Therefore, in this sequence generator, for all the tests that we will see will pass those 

tests. Therefore, it will pass the standard random tests. However, you still see that it is 

not an unpredictable random generator. Therefore, such types of recurrence relations are 

not very much liked in the cryptography community because they are quite predictable. 

Another example, which we have already seen is the linear feedback shift registers. This 

belongs to the same class. Therefore, we will try to understand what are the randomized 

tests and what are the extra requirements. 
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In order to start that what are tests? We will be talking about polynomial statistical tests. 

That is, we will try to understand that a pseudorandom bit generator is pseudorandom 

when a polynomial time statistical tests or polynomial time algorithm works on the 

sequence. Therefore, given a pseudorandom bit generator, it produces a sequence say s. 

The polynomial time algorithm will now act upon s and try to say that whether this is a 

pseudorandom sequence or not. 

We say that a pseudorandom bit generator is said to pass all polynomial time statistical 

tests if no polynomial time algorithm can correctly distinguish between an output 

sequence of the generator from that of a true random sequence of the same length. For 

example, if I just tell you to distinguish this from this, (Refer Slide Time: 11:59) what is 

the probability if you are not given any information? It is half. So, if you are able to do 

this with a probability significantly greater than half, then it means that this output 

sequence generator is really not a pseudorandom bit generator. Therefore, if you are able 

to distinguish correctly with a probability, which is significantly greater than half, then 

you will say that this pseudorandom bit generator is not a good pseudorandom bit 

generator. Therefore, it should be close to half. Even if it is 0, it is bad. So, it should be 

close to half; that is the idea. The idea is similar to the idea of bias that we have. So, you 

see that all these three are related. 
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There is a test, which is called the next bit test, which is as follows. It says that a 

pseudorandom bit generator is said to pass the next bit test if there is no polynomial time 

algorithm, which on input of the first l sequence values. If I ask you to predict the l plus 

first, then the probability should also be close to half; it should not be significantly 

greater than half. That means that if I give you l number of values, from there you have 

to guess the next bit. The probability of this particular guessing should also be close to 

half. So, this particular test is known as next bit test. 

Why we talk about the next bit test in particular is because it is a universal test. We can 

prove that it is a universal test. However, we will not prove that in this class. We have 

another semester course for this to discuss proofs of this type, but in this class, we will 

assume this fact that this next bit test is a universal test. 
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The idea is that a pseudorandom bit generator passes the next bit test if and only if it 

passes all polynomial time statistical tests. So, a pseudorandom bit generator that passes 

the next bit test, possibly under some may be unproven, but well known mathematical 

assumptions is called cryptographically secure pseudorandom bit generator. Therefore, 

the universality means that if a particular pseudorandom bit generator passes a next bit 

test, then it is equivalent to saying that it passes all polynomial time tests. So, if you are 

able to prove this, then you can show that also. 

However, the fact is that when you show that a pseudorandom bit generator passes the 

next bit test, it is typically under certain assumptions. These assumptions are some very 

well established. It is not really proved, but these assumptions have stood for long 

periods of time. One example is factorization of integers into its prime numbers. So, if 

you take two very large numbers p and q, you multiply them and obtain the value n; the 

question is that you have to factor n into its prime numbers p and q. This problem has not 

been shown to have any efficient algorithm till now. So, there are lots of other examples 

of this nature. These assumptions are being used to prove that a pseudorandom bit 

generator passes a next bit test. There are quite theoretical constructions using these 

ideas, but this is the basic notion behind it. 
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We will go into pseudorandom bit generator, but before that, for some time let us talk on 

random bit generators. Let us see some examples in hardware, where you can actually 

generate random bits. For example, the elapsed time between emission of particles 

during radioactive decay; the thermal noise from a resistor or a diode; the sounds from a 

microphone; gate delays in circuits. These are some type of phenomenon, which are used 

to generate true random bits. The main idea is that they should not be deterministic. They 

should be something like which is unpredictable. 

(Refer Slide Time: 16:32) 

 



In software also, there are certain things like for example, the system clock; like 

suddenly if I look into my system clock, it is something like a random number. The 

elapsed time between keystrokes or mouse movements; when I am moving the mouse 

when the keystrokes. The user input; the system load in computers; the network 

statistics. These are some examples in software for true random bit generators. However, 

these outputs are not often really unbiased or not often really uncorrelated. So, it may 

happen that there is a finite correlation, distinct correlation, distinct bias; bias means that 

the probability of a 0 being occurring is not exactly half; it is some value p, which is not 

equal to half. 
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Then, there are certain extra steps that you have to do. In order to obtain a true random 

bit output, you do some De-skewing kind of operations. What is De-skewing? De-

skewing is an idea that suppose there is a natural source of random bits and it is 

defective. Defective means that suppose it results in a probability of 0 being occurring is 

some value of say p and p is not equal to half. Also, it may be correlated. Correlated 

means a particular bit depends upon the previous bit. Then, you have to engage certain 

techniques, which are called De-skewing techniques. That will take these defective bits 

and will give a good sequence, which is unbiased and uncorrelated. 
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I am giving one possible example on this. Suppose there is a generator, which produces 

uncorrelated but biased bits. Uncorrelated means you know that the particular value does 

not depend upon the previous value; they are all independent. Suppose the probability of 

1 is p; in that case, the probability of 0 is 1 minus p and p is not half. p is unknown, but it 

is fixed. Therefore, suppose I do not know the value of p, but p is fixed; that is an 

assumption. 

What you can do is that you can group the output sequences into pairs of bits. Then, 

whenever the output is 0 1, you replace that with 0; when the output is 1 0, you replace 

that with 1. You throw rest of the cases; discard those bits. So, what is the probability of 

this event? It is p into 1 minus p; assuming that they are uncorrelated. What is the 

probability of this? (Refer Slide Time: 19:24) It is also p into 1 minus p. So, now you see 

that probability of 0 and 1 are equal. That way you can correct and generate good 

sequences. Therefore, now you have made them unbiased and also they are uncorrelated. 

Sir, does it not mean that p into 1 minus p equal to half? 

P into 1 minus p is equal to half. 

So, we have a fixed logic of p. 

Yes, p is fixed. p is unknown, but it is fixed. 



No, but if this is p into 1 minus p equal to half, then the value of p is known. 

Yes. 

[Noise – not audible] (Refer Slide Time: 20:00) 

However, here there is a catch because there are certain values, which you have already 

discarded; which you have thrown. Therefore, p into 1 minus p is not equal to half 

because there are certain events. If you would think of the universal threat, then there are 

certain events like 0 being occurring, 1 being occurring, and nothing being occurring. 

Therefore, it is a very good question, which he has asked. That is, what if p into 1 minus 

p is equal to half? There is a fixed value of p, but because of this particular event, it is 

not exactly equal to half. Therefore, p into 1 minus p is a constant. That is the main idea. 

The main idea is that the probability of 0 occurring and 1 occurring are the same; that is 

the main thing. 
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There are some examples, which we can learn from literature. These are very old 

examples. However, I think we should study them a little bit because they are quite 

standard bit generator techniques. FIPS is a body. FIPS is something which is called a 

Federal Information Processing Standard body. Therefore, this body gives you lot of 

block cipher standards, sort of pseudorandom bit generation standards, and things like 



that. Therefore, this is a very old example of how a pseudorandom bit generation 

worked. 

What they used in the underlying algorithm is the 3-DES algorithm. Do you know what a 

3-DES algorithm is? It is encryption, decryption, encryption. Therefore, you can use this 

particular algorithm to generate pseudorandom bit sequences. How do you do that? As 

an input, you take a random secret 64-bit seed s, integer m, and 3-DES key k. Therefore, 

these are the inputs to the algorithm. Outputs are m pseudorandom 64 bit strings from x 1 

to x m. Therefore, what you do is that you start like this; (Refer Slide Time: 22:29) you 

take the date and time of the current event, then apply the encryption algorithm E k, and 

obtain a value I. Then, what you do is that you take an XOR of I with the starting value 

of s and again apply the E k algorithm. So, E k is the 3-DES algorithm; obtain a value of 

x i, which is the next sequence value. 

Then, you need to modify the value of s. So, what you do is that you take x I; XOR that 

with I. Then, apply E k and obtain the next value of s. You keep on repeating this for m 

times. Each time, whatever value of x i you obtain, you are returning that sequence. 

Therefore, you can generalize this idea. This E k algorithm uses something which is 

called a one-way function. What is a one-way function? One way functions are those 

kind of functions, which are easy to compute, but hard to invert. Therefore, in this case, 

if you know the value of k, computing E k is quite easy. However, if you do not know 

the value of k, then the assumption is that computing the inverse of this output is a 

difficult problem. Therefore, somehow you generate sequence values like s 1, s 2, and so 

on. Whatever value you get for s each time, you apply the one-way function and obtain a 

sequence value. That way you can export various bits. For example, here you take s, 

(Refer Slide Time: 24:10) you are modifying s in the next iteration, applying the one-

way function, and obtaining the next sequence value. So, this is the idea. 

You can generalize these using other one-way functions also which are there in the 

literature. However, this algorithm is quite central; it gives you the basic idea. 

Sir, means are we [Noise] (Refer Slide Time: 24:33) one string from the random 

sequence and then using it to create a seed for another sequence? 

I did not follow; can you come again? 



We have the sequence x 1 to x m. 

We have got the sequence x 1 to x m. 

The output is m pseudorandom 64-bit string. 

Yes, the output is x 1 to x m. 

Right. Now, in the fourth point, we are producing x i from the sequence. 

We are producing x i from seed s here. 

In the next step, we are getting another seed s totally say… 

You are getting s for the next seed; next iteration. 

Yes. So, all these x 1 to x m are produced from different seeds or from one seed itself? 

No, they are produced from different seeds, but the starting point of the seed is s. After 

that, you are modifying the seed value and generating subsequent values. Does that 

clear? 

(Refer Slide Time: 25:29) 

 

There are some tests, which will see. There are five basic tests, which a sequence is 

supposed to pass in order to give a guarantee that whether it is a probable candidate for a 

good pseudorandom bit generator. 



What you do is that you take s. Suppose s is equal to s 0, s 1 and so on till s m; it is a 

binary sequence. Now, you have to give some statistical tests to determine whether the 

binary sequence possesses specific characteristics that a truly random sequence is likely 

to have. 
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There are some tests; I will quickly go into these tests because they are quite simple tests. 

One of them is called a frequency or a monobit test. Monobit test means that you 

determine the number of 0’s and 1’s; they should be approximately the same. These are 

some attributes for random bit generations. Also, the pseudorandom bit generation output 

should closely match them; otherwise, any polynomial term algorithm will just be able to 

count 0’s and 1’s. If they are different, it will say that it is not a random sequence. It is 

not a good pseudorandom sequences output. So, it will be able to distinguish it from a 

random sequence. That is the idea. Therefore, this is a simple example. 
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In the next case, what you do is that you take a serial test, where you take two bits like 

00, 01, 10, and 11. You count how many times these things occur. They should also be 

same as that for a random sequence. So, this is something which is called a serial test or 

a 2-bit test. 

(Refer Slide Time: 27:08) 

 

Then, you have got something which is called a poker test. What you do is that you take 

the sequence s and you start dividing them into k non-overlapping parts; each of them is 

of length m. 



Now, you start counting that in a random sequence; each of them is of length m. So, how 

many possible values of each sequence are there? 

2 to the power of m. 

There are 2 to the power of m. If you take m-bit values, there are 2 to the power of m 

possibilities. 

Now, you see that in a random sequence, what is the expected number of values of each 

m-bit sequence? You see that whether you get close to that in the output of the probable 

pseudorandom bit generator. That way you can distinguish from a random sequence. So, 

you just see that whether you can distinguish the sequence from a random sequence. 

Therefore, the poker test determines whether the number of times of occurrence of each 

possible 2 to the power of m subsequence is the same as that in a random sequence. This 

is a simple extension of the previous test. 
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Then, there is something which is called a runs test. What is a run? Run means like this - 

suppose you have got a sequence like 0 0 and so on 0. Then, you have got 1 1 1 1 1 1; 

there are some values, which are being held constant for a lot of times and before that 

and after that, that particular thing has never occurred. So, that is the idea behind a run. 

Therefore, a run of s is a subsequence of s consisting of consecutive 0’s and 1’s, which is 

neither preceded nor succeeded by the same symbol. 



A run of 0 is something which is called a gap. A run of 1 is called a block. What does the 

runs test do? Runs test also determines whether the number of runs of various lengths in 

the sequence s is as expected as that in a random sequence. So, they do some expected 

calculations for random sequences and tests whether the number of times the runs 

occurred is close to that of a random sequence. 

The tests have built upon some expected attributes on the random sequences. Then, they 

check whether the pseudorandom bit sequence also satisfy those attributes. That is the 

basic idea. 

Sir, how do you have to compute their expecting for a random sequence? 

That I have not told. For that you need to understand that you have to do a simple 

combinatorial analysis. There are some equations for that, but I have not gone into this. 

You have to just assume that a 0 occurring is half and a 1 occurring is half. Based upon 

that, you can do the enumerations. However, these can be simple problems, which you 

can expect in your examination. So, you can prepare. 
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Autocorrelation test is also very simple. The autocorrelation test is the test checks for 

correlation between the sequence s and non-cyclic shifted versions of it. We have already 

seen an autocorrelation. So, autocorrelation means test the sequence s, consider the shifts 

of that particular sequence, and you see that how many times they match. 



We have seen this in our correlation attack test also. It is something similar. Only 

autocorrelation means with the same sequence; with itself. How many times there are 

coincidences? So, again you calculate the same quantity for a random sequence and you 

see that whether it matches with your pseudorandom bit sequence. That is the idea of 

autocorrelation tests. 

However, all these tests are done using some idea, which is there in probability or 

statistics, which is called hypothesis test. For example, the number of 0’s and 1’s will not 

be exactly equal. So, how much do you allow the tolerance? Therefore, you have to use 

principles of something which is called probability density functions or PDFs; how they 

are being used to calculate something which is called hypothesis test. Therefore, you 

make certain hypothesis and then you test whether this hypothesis hold or not. 

For that, you have to make certain assumption; that is, given a random sequence, what 

distribution do they follow? In statistics, there are certain very standard distributions like 

for example, there is something which is called a normal distribution, chi square 

distribution, and things like that. Therefore, you will assume that a random sequence 

follows a normal distribution. Then, based upon that, you will make certain hypothesis 

and check whether the computed values for a particular sequence are satisfying that, 

which is a suit for a normal distribution. 

(Refer Slide Time: 32:27) 

 



For example, let as consider a normal distribution; I think many of us know what a 

normal distribution is, but this is roughly the idea. A random variable X has a normal 

distribution with mean mu and variance sigma square if the probability density function 

follows this equation. 

I hope that all of us know what the probability density function is. So, I will briefly say 

that in case of distinct probability computations, each event has got a probability. 

However, in a probability density function, there is a function associated. So, every event 

does not have a probability, but intervals have probabilities. Therefore, you do not do a 

sigma, but you do integration. Therefore, this function should be an integral function. 

Therefore, the idea is that in the case of a normal distribution, you can enumerate each 

value of effects by this simple looking equation. Then, we can obtain what is called a 

normal distribution with mean mu and variance sigma square. You can actually 

normalize this (Refer Slide Time: 33:29) and obtain something, which is called N(0,1). 
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Normal distribution will look typically like this. You see that there are certain values, 

which are being specified here like for example, alpha being equal to 0.1, 0.05 and so on. 

Then, you have got certain x associated. So, what is the idea? The idea is that - let us 

take this; for example, it means that whenever x is greater than 1.6449, the probability 

that how many value we have got beyond that range is 5 percent. Therefore, out of all 

these values, only 5 percent of values are lying outside this range; that is, they are greater 



than 1.6449. Therefore, why are these values useful? The values are useful because of 

this fact, that is, suppose for a particular sequence, if I say that I expect the value of a 

particular thing, which I am counting for example; suppose I want to compute the 

number of 0’s and 1’s and I want to compute the difference of numbers of 0’s and 1’s. 

Then, the idea is that the number of 0’s and 1’s should be very small. So, they should not 

lie beyond a region. So, what region? 

Suppose I say that they should not be more than 1.6449. That means for 5 percent of the 

cases, there is an expectation that a good value, which is still following the normal 

distribution are actually discarded by this test. However, the thing is that whether this 5 

percent is tolerable or not depends upon the requirements. If I say that it is not tolerable, 

then I will say that 2.5 percent. In that case, I will look for values, which are beyond 

1.966. However, there are issues for example; I will come to them in detail. So, this is 

the basic idea of normal distribution. 

(Refer Slide Time: 35:35) 

 

Similarly, you have something which is called a chi square distribution also. Chi square 

distribution looks like this. You do not require to commute these equations and things 

like that, but the main idea is important. Therefore, try to understand the basic principle. 
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In case of chi square distribution, a random variable x has a chi square distribution if the 

probability density function is defined like this (Refer Slide Time: 35:58). I am not going 

to the details, but the thing is that there are… I do not think that is visible very much. 

Therefore, I have read these values, for example, if I read one of the rows, then you have 

got values like this (Refer Slide Time: 36:10). Suppose v is equal to 5 and v is an integer. 

Then, like the normal distribution, we have values like alpha equal to 0.025 and x alpha 

is equal to 12.8325. So, it means that if the probability of x is greater than x alpha, then 

that value is equal to alpha. Therefore, there is a chance that in 2.5 percent of the cases, x 

is greater than x alpha. 

What I can do is that I compute the value of x, which is the intended value and that is 

sometimes called a statistic. So, I compute the value of x and I check that whether x is 

greater than x alpha. If x is greater than x alpha, then I discard that value. I say that is the 

bad value, but there is a problem. You see that there can be an error because in 2.5 

percent of the cases, there is a probability that is actually good. However, I am still 

discarding that. These kinds of errors are called type 1 errors. If you see type 1 errors, 

immediately you can think that there is something which is called a type 2 error; we say 

that I accept something and it is bad. 
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These are common techniques we have been used for hypothesis testing. Therefore, in 

general, hypothesis is an assertion about a distribution of one or more random variables. 

In our case, we will make a hypothesis like for example, I say that a given pseudorandom 

bit sequence generator output is a good pseudorandom bit generator; that is the 

hypothesis. Therefore, you see that this is not a very deterministic way of testing; it is a 

probabilistic way of testing, which means the testing principle can fail. So, there are 

errors. The value of alpha that we said is quite important because it determines whether 

the priority is given to type 1 error or type 2 error. 

(Refer Slide Time: 38:13) 

 



Just try to understand the basic principle. The reason why I said is that we should 

understand the basic principle, but the formula and equation we can always follow; we 

can always see them. However, try to understand the basic principle of how a random 

test works. 

As I told you, a statistic is a function of the elements of a random sample, for example, 

the number of 0’s in a sequence. Suppose I am given a sequence of length n, I am 

starting to compute the number of 0’s. In that case, this gives me the value of x that I was 

talking in context to the distributions. So, that x is the statistic. Note that it is not 

statistics; it statistic only. Therefore, there is a slight distinction between normal statistics 

and this particular statistic word. 

It is assumed that a random distribution is either a normal or chi-square for a value of v. 

Then, what we do is that a significance level alpha is chosen and a value of x alpha is 

fixed. Then, you compute the value of the statistic, for example, the number of 0’s. 
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Suppose there are two cases. Statistic expected to take on smaller values; this can happen 

like for example, the difference of number of 0’s and 1’s. That statistic was supposed to 

take a small value. In that case, if the statistic X s for example; that is the computed 

value of the statistic; if that is greater than X alpha, then I reject it. So, this is sometimes 

called a one-sided test. 



However, there can be some examples, where the statistic is expected to take 

intermediate values; that is, neither very high nor very low. In that case, I will check 

whether X s is greater than X alpha or X s is less than minus X alpha; in both the cases, I 

reject. These are called two-sided test. Can you give an example of this among the five 

tests that I told? You can go back and see what are the five tests. 
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You had frequency test, serial test, poker test, runs test, autocorrelation test; that is it. 

These are the five tests that you had. Which of them you think should have an 

intermediate value? Autocorrelation test. If you compute the autocorrelation, it should 

not be very much correlated or totally uncorrelated. Totally uncorrelated means you can 

flip and still obtain the same thing. 

Suppose there is a 1 0 sequence and in all the cases there is a mismatch. Then, you see 

that is also not very much decidable. Therefore, you would like an intermediate value for 

that. So, that is the basic idea. 
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Now, we will just conclude our talk with this. Let us see one example. All the five tests 

have got a corresponding statistic, which I have not told you. However, for example, for 

the frequency test, the statistic that is generally used is this equation - n 0 minus n 1 

whole squared by n, where n 0 and n 1 are the number of 0’s and number of 1’s; n is the 

total size of the sequence. 

The expected value of this statistic should be low. Therefore, what type of test you do? 

You do a one-sided test. You see that whether x s is greater than x alpha for a given 

choice of alpha. If it is so, then you discard that sequence. That is how all the tests are 

also being defined. 
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However, I do not want to go into this. However, I will conclude with two 

pseudorandom bit generators. One of them is called the RSA bit pseudorandom bit 

generator. I think we will not be able to appreciate at this point because we have not 

studied RSA. However, let us see the running of the algorithm. What you do is that you 

generate two large prime numbers p and q. Then, you compute something which is called 

N equal to p into q and compute something which is called phi. I think we have seen phi. 

So, what is phi? 

N mod times p into q 

Yes, but what is that name? It is called the Euler’s totient function. 

Phi is equal to p minus 1 into q minus 1. Then, what you do is that you select a random 

integer e such that e is co-prime to phi. Then, what you do is that you select a random 

integer x naught in the closed interval 1 to n minus 1 and then you repeat this procedure 

(Refer Slide Time: 42:47). So, what is the procedure? You start with a value of x i; you 

compute when you raise it to the power of e and then you take a modulo n. Each time, 

you export the LSB of x i. That way you can create one sequence. So, these are 

commonly used pseudorandom bit generators. The assumption is that this is a good 

pseudorandom bit sequence generator if solving the RSA problem is hard. So, you can 

show the equivalence. This is the basic idea. So, the basic idea is that you take a value of 

seed, you raise it to the power of say e, and then you take a modulo n operation; 



whatever value you are getting each time, you are exporting the least significant bit of 

them. So, that way you can generate. 
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There is another example, which has got a quite funny name. It is called the Blum Blum 

Shub Generator. It is also a very popular generator, which is called the BBS generator. 

It says that you generate two large secret random and distinct prime values p and q, each 

congruent to 3 mod 4. Then, what you do is that you compute N equal to p into q. In the 

previous case, you were computing the powers of e, but in this case you start squaring. 

So, you take x i; x zero for example; you make the square, you get x 1’s. Then, each 

time, you are exporting the LSB. So, this is also based upon the problem that if 

factorization of N is a hard problem, then this should be a good pseudorandom bit 

generator. So, that is the idea. 

You see that these classes of generators are based upon the fact that certain problems in 

mathematics are hard. We have not seen such kind of problems in depth. However, when 

we go into RSA and when we go ahead, that is, when we go to asymmetric cryptography, 

we will discuss these in detail. 

Sir, what do you mean by it is hard? [Not audible] (Refer Slide Time: 44:55) because we 

can observe with over time. 



Of course; as I told you, when I talk about efficiency, I am talking about a polynomial 

time algorithm. 

The polynomial equivalent is 1. 

Polynomial time in is input size. Suppose I tell you that whether a number is prime or 

not. Although, now, there is a polynomial time algorithm to determine whether a number 

is prime or not, in typical case what we will do? We will start taking its factor; till square 

root of N, we will just keep on dividing and check whether it is a factor or not. So, what 

is the runtime of the algorithm? It is O root N. However, in this case, this N is not the 

input to the problem. I think you are doing algorithms course. Therefore, in this case, 

what is the input to the problem? The input is the bit size. 

In terms of the bit size, this problem is an exponential problem because for example, if 

the bit size is small n, then the number is 2 to the power of n. Therefore, it is an 

exponential algorithm in terms of the bit size. Therefore, in general, factorization should 

be a hard problem. That is the assumption, but there is no proof why it is a hard problem. 

So, whenever we say that a problem is hard, it mean with respect to its input size. That is 

most important. 

When we are talking about sorting n numbers, it is the number of integers that you are 

sorting. That is the input to your problem. However, when you are factoring a number, 

then it is a… When you are saying that whether a number is prime or not, bit size is the 

input to your problem. So, you have to first of all understand what the input size of the 

problem is and according to that you will talk about its complexity. 
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You can ponder out on certain points like we have discussed about the Feistel structure. 

Then, you can think that whether 1 round of this structure or 2 rounds of this structure is 

pseudorandom or not. It is actually not pseudorandom. There are quite involved proofs, 

which say that 4 rounds of Feistel structures are good pseudorandom bit generators. 

There is a proof, which is based on something which is called the Luby-Rackoff 

construction. However, we will not go into those in this class. However, we can think on 

these problems. This is quite simple; you can easily figure out why. 
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This is the book that I have followed; by Menezes. You can go through this book. 
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Next day, we will start with a topic on Cryptographic Hash Functions. 


