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Stream Ciphers (Contd.) 

We will continue with Stream Ciphers. In the last day’s class, we had discussed about 

berlekampmassey algorithm and the reason why we discussed, was to point out the fact 

that a single LFSR system or a single LFSR based stream cipher is not adequate to 

prevent attacks of the type. For example, known plaintext attack or chosen plaintext 

attack from the streams you are able to generate back the input seed of your LFSR based 

system and from there, the stream pattern is quite predictable in that fashion. 

So although LFSR based stream ciphers where quite good, because they were amenable 

to easy efficient hardware implementations they had good proper statistical properties, 

the sequence had good statistical properties but, the patterns where quite predictable. 

(Refer Slide Time: 01:09) 

 



We need need to do something different and in that pursuit in today’s class, we will see: 

Non-linear feedback shift registers, and stream ciphers. Using more than one LFSRs that 

is using multi LFSRs system. Under that topic, we will discuss about non-linear 

combination, I mean non-linear combination generators, non-linear filter generator 

something which is called as clock controlled generator and we will also point out that 

there are some other stream ciphers which are actually not LFSR based therefore, there 

are modern proposals which are not based on LFSRs and they are also being quite 

followed, studied. 

(Refer Slide Time: 01:51) 

  

First of all, let us start with non-linear feedback shift registers. As the diagram says that, 

it is exactly the same as that of feedback shift register which we have already seen but, 

only the difference is, in this case your feedback is non-linear. 

In an LFSR, our feedback was a linear algebraic equation. If you remember, this 

particular thing that is suppose you have got else pages in your LFSR or in your shift 

register then, the contents of each of the delay elements are being taken as an input to 

your feedback polynomial. But, in case of a non-linear feedback shift register this 

particular polynomial or this particular equation is non-linear. We know what the 

definition of a linear and non-linear is. It follows exactly if I write this or describe this in 

the algebraic normal form or ANF form then, that means that this particular expression 

would encompass terms which are end terms. 



They are not only based on ex-ors but, there are certain terms which are also end based 

terms. Feedback shift register (FSR) is called a non-singular feedback shift register if and 

only if, for whatever be the initial states of your FSR the sequence is, which this 

generates are periodic in nature which means, that there is a definite periodicity in the 

sequences which are being generated. In that case, (Refer Slide Time: 01:51) we say this 

particular polynomial is a non-singular feedback shift register. As we have studied, we 

need periodicity but, the thing is that we also need to maintain or ensure that your 

periodicity is quite high because small LFS, small periodicity is not like because of 

possible attacks. 

(Refer Slide Time: 01:51) Therefore, we also need to ensure that although we are 

replacing this, we on one hand in order to prevent the berlekampmassey algorithm to 

work we require our feedback polynomial to a non-linear equation but, at the same time 

because of this non-linearity the easy analysis of the LFSRs are stopped. We cannot 

predict that, it is periodic and things like that therefore, even if we allow non-linear terms 

into my feedback polynomial, I must also give guarantees of this periodicity that is, 

periodicity should be at least for example, greater than so and so.  

So we have to produce guarantees of that nature therefore, we need to be little bit more 

careful because, the analysis becomes harder compared to LFSRs which are called easy 

to analyze. 

(Refer Slide Time: 04:37) 

 



There is something which is called as de bruijn sequence. It is defined as follows, an 

FSR whose feedback function that is fsj minus, which operates as, sj minus 1 to j minus 

l. It is non-singular so, what is meant by non-singularity? It means the sequences which 

are being generated are periodic, for whatever be the input seeds of your FSR. 

It is periodic. It is non-singular if and only if, f is of this particular form so, what is the 

form sf is equal to sj minus l xored with whatever, be some for any boolean function g 

which operates on the remaining values. You see that s runs from, j runs from, I mean 

the index of the inputs of g runs from sj minus 1 to sj minus l plus L. This is a non-

singular, we can assume this particular fact and the period of a non-singular FSR with 

length L is at most 2 power L. 

The period of a non-singular FSR with length L is at most two power L therefore, the 

idea is for example, if you have a 3 bit FSR which is of this nature then the period can be 

at most 2 power 3 because, there are 8 possible steps but, for those particular generators 

for which the period is always equal to 2 power L is the initial state of your FSR are 

known as de bruijn generators. That means a de bruijn generator, generates all the states 

or all the possible state values in its cycle so, if you just compute the cyclic states then, 

all the possible 2 power L states ly in the cycle therefore, (Refer Slide Time: 04:37) this 

is the definition of a de bruijn FSR and the sequence is which it generates are known as 

de bruijn sequences. 

I think, we saw one example of de bruijn sequences. if you have really pointed upon the 

point which I have told you to ask is that, if you remember that maximal length LFSR 

had generated for example, a 4 bit maximal length LFSR had generated all 2 power 4 

minus 1 non 0 values in 1 cycle, only thing which was not in that cycle was the 4 0 state 

that is all 0 state. 

If you remember that this particular sequence which is generated, we have seen that the 

feedback polynomial in case of an LFSR, was a maximal polynomial was a primitive 

polynomial. The sequences, which it generated where actually something which was 

defined as m sequences so, if you remember that I had given you one question to think 

upon how can you modify that particular LFSR structure, so that the all 0 state is also 

included in the cycle. If you do that, it becomes a de bruijn generator. 



You can actually take an maximal length LFSR and if you can solve that exercise then 

you can modify that and produce something which is called a de bruijn generator. 

(Refer Slide Time: 08:20) 

 

This is how you can do it but, before that let us consider one example of a de bruijn 

generator. It says that; consider this particular polynomial or equation which is called fx 

1 x 2 and x 3. It operates upon x 1 x 2 and x 3, it is equal to1 xored with x 2 xored with x 

3 xored with x 1 x 2 so, these are very simple feedback polynomial which is been 

considered. If you start from 3 zeros for example, you can work out this exercise and you 

can see that this 0 will get shifted here, this 0 will get shifted here and this is 1, you can 

easily understand why it is 1. You can just feed these values, all these are 0s and only 1 

remains therefore, this becomes 1. 

What about the next stage; this 1 gets shifted here, this 0 gets shifted here, and what is 

the feedback that you get so, you see that the feedback here can be obtained by 

computing this particular value and in this case, I am trying to compute x 2 is equal to 0, 

x 3 is equal to 0, x 1 x 2 is equal to 0, you get back 1. 

Similarly, you can see that it will be 1 xored with x 2 which is 1 xored with 1 is 0 so 

xored with 0 is again 0, and xored with x 1 x 2 ,you can work out this example, can you 

just find out, what is the feedback value? this will be 1 xored with x 2 is 1 xored with 1 is 

0 xored with 0 and so x 1, x 2 is 1, you get back 1 so similarly, you can work out the 



remaining things also and you will find that all the eight states are actually lying in one 

cycle. 

So therefore, this is an example of a de bruijn generator so, the idea that next we will 

considered is that given a say a three bit maximal length LFSR, how to produce a three 

bit maximal length LFSR because in that case I just need my feedback polynomial to be 

primitive. 

(Refer Slide Time: 11:01) 

 

In that case, I know how to produce a three bit maximal length LFSR? How can I modify 

to obtain a such a de bruijn generators, this is how you can do it and its quite simple to 

follow. In order to convert, say that let R 1 be a maximal length LFSR of length L with 

linear feedback function fsj minus 1 sj minus 2 and so on till sj minus L therefore, this is 

an maximal length LFSR.  

What is the meaning of that, the polynomial f should be a primitive polynomial and what 

field it has to be primitive then, the FSR that is R 2 with feedback function of g which 

operates upon the same input variables and if you define g to be in this fashion. It is 

nothing but, f xored with the naught of sj minus 1 anded with this is not comma this is 

and anded with sj minus 2 anded with so on, sj minus L plus 1. If you just leave the last 

one out and you just take this and and you xore then, what do you obtain is a de bruijn 

FSR. 



Can you understand why? You note just one fact, I leave it to you that to think and rest 

of things just work out a small example and check that if all the values. When does this 

xore come into play, except for all the 0 value that is all these values are 0 this is nothing 

but, the same feedback. Therefore, you get back f only when this all all of them becomes 

equal to 0 then you are essentially forcing back 1, if you remember, in case of a maximal 

length LFSR our problem was that all the 0 state essentially, was feeding back 0 but, in 

this case you can observe, that it will feedback a 1 and it will get back into the other 

thing. 

This is nothing but simple, you can state state or pose this problem as a simple switching 

theory problem. Therefore, it is just how to how to get out of the wrong state so we have 

done simple examples like that previously also, but, this particular problem if you solve, 

what you obtain is a de bruijn FSR, because all the 2 power L values are now lying in 

one cycle and what is the difference from a maximal length LFSR this particular 

polynomial or this particular feedback equation is no more linear. It is actually a non-

linear thing. 

So, you have solved the non-linearity problem at the same time we have ensured their 

periodicity is also quite high. You can just take one small example and work it out. 

(Refer Slide Time: 13:52) 

 

Now, we will consider stream ciphers which are based on LFSRs. The last one, the last 

example that we considered was not actually based on LFSR. It was a feedback shift 



register which was not linear but, now we will consider stream ciphers which are based 

on LFSRs. Why do we like LFSRs, because they are well suited for hardware 

implementations? They have got large period, they have got good statistical properties 

and however the key stream is quite predictable. We have seen the connection 

polynomial of an LFSR with linear complexity L can efficiently be computed from a 

sub-sequence of length 2 L or more. 

If you give a sub-sequence of length 2 L then, you can actually compute the 

corresponding connection polynomial. We can also compute the linear complexity L by 

using the algorithm berlekampmassey algorithm the complexity of the algorithm is 

quadratic. 

(Refer Slide Time: 13:52) The subsequence, we thought of this point that the sub-

sequence therefore, in order to recover we require the sub-sequence and how can you 

obtain the sub-sequence you can ascertain that by a known plain-text kind of attack. If 

you know the plain-text, if you know the corresponding cipher stream then you can just 

xore them and you can obtain the keys stream and if you obtain I mean say at least 2 L 

number of key stream values from there you can regenerate or reconstruct the LFSR. 

(Refer Slide Time: 15:31) 

 

We require more than one LFSR systems stream ciphers and this is how you will just 

consider three types of such cases, we will consider using a non-linear combining 

function on the outputs of several LFSRs suppose, there is not one LFSR but, there are 



more than one LFSRs and all of them are producing a key stream so, what we will try to 

do is that, we will try to combine them using a non-linear combining function. This is 

one example, one possible way, the other thing what we can do is, we can use a non-

linear filtering function on the contents of a single LFSR so I will explain more details of 

this and also what we can use is that we use the output of one or more LFSR to control 

the clock of one or more LFSR. I will explain these possible constructions. 

(Refer Slide Time: 16:19) 

 

Let us consider this; suppose there are n LFSRs and all these LFSRs are producing a key 

stream. What we do next is that we take a function f and we combine all of them and 

produce a key stream note, that here f is a non-linear combining function, suppose there 

is a result which states like this, that n maximal length LFSRs all of them are maximal 

length LFSRs and then lengths of all of them are say L 1, L 2, and so on till L n where, L 

1 to L n are all mutually co-prime. 

What does mutually co-prime, mean and also they are pair wise distinct. You can follow 

from there, and if they are greater than two that means if if you consider fairly large 

LFSRs for example, then you can actually predict if the corresponding non-linear 

function f has got ANF form, ANF form means an algebraic normal form. Suppose the 

form of f is f x 1 f x 2 and so on till x n so this is the ANF form. Then you can predict the 

corresponding linear complexity of this particular key stream. What you do is that you 

take this L 1 to L n and you feed in this function f and what you do is that you replace all 



the xores by simple integer additions. If you do that you can actually compute the 

corresponding linear complexity of the key stream. 

(Refer Slide Time: 18:02) 

 

Let us, consider one simple example this is something which is called the geffe 

generator. There are three LFSRs here and this is producing one output, this is producing 

one output, this is producing one output and this is the key stream therefore, you can see 

that this is particular if, I box this one then this is my f and what is the form of f? You 

take x 1 you take x 2 add them so it is x 1 x two xored with x 3 x 2 bar. 

(Refer Slide Time: 18:43) 

 



The form would have been like this, you take x 1, x 2 and you xore that with x 2 bar, x 3. 

This would have been my form. Therefore, this is my f x 1, x 2 and x 3 so I can write x 1, 

x 2 and I can write xore and I can write 1 xored x 2, x 3 and this is equal to x 1, x 2 xored 

with x 2, x 3 xored with x 3 so this is expressed in which form in ANF form.  

Now, if the linear complexity of your LFSR 1 is L 1 that of 2 is L 2 and that of 3 is L 3 

and if all of them are not equal to each other. They are greater than two, then the 

corresponding linear complexity of the corresponding geffe generator stream would have 

been L equal to L 1, L 2 plus L 2, L 3 plus L 3 here, you note that these plus are integer 

additions and you are doing this operations over integers and the periodicity of this 

particular geffe generator also would have been equal to 2 to the power of L 1 minus 1 

multiplied by 2 to the power of L 2 minus 1 into 2 to the power of L 3 minus 1. So these 

are guarantees that we can actually produce. 

(Refer Slide Time: 20:30) 

 

This geffe generator is actually weak, why it is weak? Well, you see that all though it has 

got a good linear complexity and at the same time it has also got a reasonably good 

periodicity. I mean high value of periodicity but still it is weak, because of something 

which is called correlation attacks.  

Why correlation attacks? Let us try to understand that, if you remember in your equation, 

your equation was x 1, x 2 xored with x 2, x 3 and xored with x 3 so, you see that the 

geffe generator is actually cryptographically weak, because there is an information 



leakage of the output stream which is being generated and the value of LFSR 1 for 

example, LFSR 1 generates the stream which had note by x 1 and the output stream is 

suppose z, zt means at t th instance suppose z is being generated. Now let us consider, 

the probability or compute the probability that zt is actually equal to x 1 t. 

(Refer Slide Time: 21:52) 

 

This you can follow from the equation you see that, if x 2 is equal to 1 this is always 

true. In your equation if x 2 is equal to 1 then, it is always true because, you get x 1 

xored with x 1 xored with x 3 xored with x 3 so you see that x 3 and x 3 gets cancelled 

and you have x 1 but, what if your x 1 is x 2 is equal to 0, if x 2 is equal to 0 then, this 

vanishes, this vanishes and only x 3 remains. 

(Refer Slide Time: 20:30) 

Therefore, you get the internal result if x 3 is equal to x 1, you can write this equation 

that is probability z t is equal to x 1 t is equal to probability that x 2 is equal to 1, and if x 

2 is equal to 0 then x 3 t is equal to x 1 and what is the probability of this? if you assume 

that, your inputs are independently and randomly chosen then, your x 2 is equal to 1 has 

a probability of half, x 2 equal to 0 has a probability of half, and x 3 t equal to x 1 t is 

also half therefore, this probability works out to 3 by 4. 



Similarly, you can show that z t is equal to x 3 t is also equal to 3 by 4. If you really want 

to generate a very strong cipher an ideal value of this should have been equal to half but, 

here it shows that there is a deviation from half that is, it is half plus 1 by 4. 

(Refer Slide Time: 20:30) This deviation can be exploited by certain type of attacks 

which are called correlation attacks so, how does correlation attacks work? what you do 

is that, you assume for example, if you just considered this single 3 LFSR system; what 

you do is that, you assume the input value of; for example, LFSR 1 and then you 

consider the corresponding, you know the key stream which is being produced by the 

geffe generator and then we assume these particular seed and compute the output of your 

LFSR 1, you find the number of co-incidences between this value and the corresponding 

key stream then check whether, it matches with the probability of 3 by 4 then, instead of 

taking the corresponding output of the LFSR 1, you consider a shift of that, may be a 

shift of one step. Now check the co-incidences. 

How many possible shifts are possible, that depends upon its periodicity. If its 

periodicity is 2 power L minus L 1, you can half at most 2 power of L 1 such attempts, 

out of at least one you will get, where this particular thing holds. You can repeat these 

effort for the other LFSRs also. So, if you engage an effort of 2 power L 1 minus 1 plus 2 

power of L 2 minus 1 plus 2 power of L 3 minus 1 because, all of them are actually 

independent. Then, you should be able to recover the corresponding seed but, what was 

your ideal size of the seed for this geffe generator. It was actually equal to 2 to the power 

of L 1 minus 1 multiplied by 2 to the power of L 2 minus 1 into 2 to the power L 3 minus 

1, so you see that all though you have got a very large key size expected, you can 

actually reduce that to a much smaller value and therefore, this geffe generator is actually 

not a very strong stream cipher. 



(Refer Slide Time: 25:44) 

 

If you consider this example, this is generalization so if you consider that n maximal 

LFSRs are there R 1 to R n and all of them have got lengths say L 1 to L n then, a 

number of keys should be actually 2 to the power of L 1 minus 1 multiplied by 2 to the 

power of L 2 minus 1 so onto 2 to the power of L 1, L n minus 1 but, suppose you have 

got a correlation between the keystream and suppose the output of R 1 with the 

probability of p which is significantly greater than half. 

What you do is that, you guess the initial state of R 1, compute the number of 

coincidences between the keystream and all possible shifts of the output sequence of R 1 

until, you find that your probability is more than p therefore, number of trials required 

would be at most 2 power of L 1 minus 1, and since the initial states of the LFSRs can be 

known independently, total number of such trials will be sigma of 2 to the power of L i 

minus 1, where i runs for all the LFSRs. This particular value is significantly smaller 

than this product term and you have an attack therefore, what we would like is to make 

the boolean function something, which is called correlation immune and that gives you 

the definition of correlation immunity. 



(Refer Slide Time: 27:08) 

 

What is correlation immunity? Correlation immunity is again a criteria like, we have 

seen non-linearity, we have seen some other things like balanceness degree. Now, we 

have another parameter which we also need to keep in mind and it is called correlation 

immunity. Correlation immunity says; if suppose, you have got X 1 to X n as your 

independent binary variables. Consider for example, about three LFSRs system, how 

many inputs are there for your f function there are three inputs. There are three LFSRs all 

of them are producing some output. 

If you understand that why the attack worked? The attack worked because, the output of 

the LFSR 1 was actually leaking some information into the output stream so, if I want a 

correlation immunity. What I would like to do is, the mutual information between the 

output of the LFSR 1 and the output stream should be actually 0 that is the objective and 

how we can do that? If you understand, (Refer Slide Time: 27:08) first of all let us study 

the definition, It says that let X 1 to X n be independent binary variables each taking 

values say 0 or 1 with probability of half then, a boolean function f is actually called m th 

order correlation immune. If for each subset of m random variables that is X i1, X i2 to 

X im, the random variable which you obtain Z is actually statistically independent of the 

random vector X i1 to X im. 

This is what I intend to do therefore, I can state this in fact, that the mutual information 

of this vector and the corresponding Z random variable should be equal to 0. If you 



remember, the definition of mutual information which we have done in our shannon’s 

theory class, then you can understand how to do that. 

(Refer Slide Time: 27:08) One way of doing this is or one way of ensuring this is, if you 

take any boolean function f and out of them X i1 to X im are some random variables so 

what I would like to do is, I have to give a proof that if I want an m th order correlation 

immunity for f then, I have to give a proof that if I fix X i1 to X im to some constant 

value then, the remaining function which are obtained as f should still be balanced. If it 

is balanced then, it is not leaking any information and if it is not balanced then, it is 

leaking some information. 

(Refer Slide Time: 30:28) 

 

If you remember your boolean equation, x 1 x 2 xored x 2 x 3 xored x 3 which we had. 

In that case, if you follow that is; if in the equation say x 1 x 2 xored with x 2 x 3 xored 

with x 3. In this equation we had held the value of say x 1 to a constant value then, what 

is the remaining thing I get. If for example, I will make x 1 equal to 1 or if I make x 2 is 

equal to 1. I get f x 1 x 2 and x 3 is equal to x 1. 

You see that x 1 is a balanced equation. Why balanced? Because, if I obtain a truth table 

then, there are half number of equal number of zeros and ones. Now you see that actually 

you have to do this process for all possible things therefore, all possible subsets we have 

considered only x 2 being equal to 1, what if x 2 is equal to 0, you see that x 2 is equal to 

0. We have considered x 2 is equal to 0 this was for x 2 is equal to 0. What if x 2 is equal 



to 1? You obtain f of x 1 x 2 and x 3 is equal to, if x 2 is 1, you obtain x 3. It is still 

balanced.  

Now, you consider that if for example, x 1 is equal to 1 so, if your f is; if I consider that x 

1 is equal to 1 then, what do you obtain? You obtain x 2 xored with x 2, x 3 xored with x 

3. Consider other cases also x 1 equal to 0. What you get if x 1 is equal to 0? You get x 1 

equal to 0, x 2, x 3 xored with x 3. What about this, you can write this as x 3, x 2 bar. 

This is no more a balanced function. This was the balanced function or was it? I do not 

think, this one was also not balanced. So, having only one and term does not mean that it 

will be actually unbalanced. (Refer Slide Time: 30:28) For example, if you consider the 

function of this type that is x 1 xored with x 2, x 3 then, this is actually a balanced 

function. In this particular definition, it is actually an unbalanced function. Since, this is 

an unbalanced function you see that this particular function f is not correlation immune 

of one. 

 (Refer Slide Time: 33:40) 

 

If you consider a simple example or simpler example: that is f x 1 x 2 x 3 is equal to x 1 

xored x 2 xored with x 3 then, this is actually correlation immune of order two why 

because, if you hold any two values here, you will find that you will obtain a balanced 

equation. See for example, you fix x 1 you fix x 2, you have got x 3. You fix x 3 and fix 

x 1 you obtain x 2. 



If you have a linear equation of n variables then, it is actually correlation immune of n 

minus 1, order n minus 1 but, for non-linear equations; it is not so simple. You have to 

do that thing therefore, you see that if you really want that your function f should be able 

to protect against correlation immunity I mean, correlation attacks then, you have to 

guarantee that function f is actually correlation immune for order m, this guarantee you 

have to produce. 

(Refer Slide Time: 34:42) 

 

This is an example that, we will follow of something which is called as Summation 

Generator. Though, this is an example I mean real life example, you see that there are n 

LFSRs and what you do is that these streams that you obtain, you obtain a simple integer 

sum therefore, the integer sum will essentially produce a vector value of all these. If you 

add all these values, all of them are ones and zeros so, you just do an integer addition and 

the lower value you produce as a keystream. So, this is the LSB of your sum and the 

remaining things you essentially feedback to your carry, and this carry serves as a 

memory to your generator. In your next stage you also add this carry along with input 

you start with 0 and after that you keep on feeding back values into the carry. 

There are rules which says that, if the lengths L 1 to L n of the n LFSRs are actually 

pairwise prime then, your period of the keystream will be product of 2 power L i minus 1 

and its linear complexity will also be close to this number. 



This is an example and therefore, there are more intricacies. We can go more deep into 

this but, I am not going to this. I just produce, I gave you as an example, and there are 

some weakness also but, I will not go into them. This essentially derives or is based upon 

the fact that your carry, when you are doing an integer addition your carry is actually a 

highly non-linear term. 

(Refer Slide Time: 34:42) You can take this as an exercise that, for your I th stage of 

your integer addition, your carry is actually a boolean function of 2 L variables, and 

these 2 L variables you can just try to see that, what is the non-linearity? and what is the 

correlation immunity of the function? 

(Refer Slide Time: 36:43) 

 

Now, we go into second class of generators based on LFSRs we have got n LFSRs and 

you see that this is nothing but, a simple LFSR that we have seen. This output of LFSRs 

is the L stage LFSR and this outputs are being combined by a boolean function f and it 

produces a given keystream. In this case this f is non-linear but, your LFSR, that 

corresponding shift register is still based on a linear feedback. You are taking all these 

intermediate values and you are combining them by a function f, this is one way of 

solving this problem. 



(Refer Slide Time: 37:27) 

 

We will rather a little bit concentrate upon something, which is quite interesting, called 

as Clock controlled generators. There are two types of clock controlled generators, one: 

which is called an Alternating Step Generator. What is the construction principle? There 

are essentially three LFSRs here, say control LFSR R 1 is used to selectively step two 

other LFSRs, R 2 and R 3. 

(Refer Slide Time: 38:03) 

 

Output sequence is the xore of R 2 and R 3. What you do is as follows, you take your 

register R 1 therefore, this a diagram, just consider around this diagram you take the 



register R 1 and you clock this. If this register R 1 produces a 1 then, you take the output 

of register R 2 therefore, you see that this register R 2 is clocked. If this produces 0 then, 

you are not clocking this register. What it produces here, is the previous output value and 

taking an xore of these two and producing in the producing output. If this value is 0 then, 

this one is not clocked but, this particular LFSR is clocked and when this is not clocked 

this gives you the previous value and you are taking the xore and you are producing the 

output. 

This is the principle of something, which is called an Alternating clock generator and 

there are results which says that, if this particular R 1 produces a de bruijn sequence. 

You know, what is the de bruijn sequence therefore, if this R 1 produce a de bruijn 

sequence then, the alternating step generator satisfies good properties, that means it has 

got high period, it has got goodlinear complexity and it is supposedly a very good stream 

cipher generator, key generator. 

(Refer Slide Time: 39:21) 

 

Let us consider, a concrete example of R 1 being equal to 3, 1 plus therefore, you know 

this nomenclature; this way of denoting this, is the length and this is the feedback 

polynomial. It is 1 plus D square plus D cube and similarly, R 2 and R 3 are as follows. 

You should note that, R 2 and R 5, R 3. We have kept the feedback polynomial to be 

primitive so, in that case this producess R 2 is essentially a four bit LFSR. A maximal 

four bit LFSR means, there should be 15 periodicity therefore, you see that R 2 produces 



a periodicity of 15, R 1 produces a periodicity of 7. So, R 1 a de bruijn generator? No, it 

is a simply a maximal length LFSR and how can I produce, how can I obtain the output 

keys? This you can just concentrate or just think or reflect on this that, if this is the 

keystream which is being produced by a three bit maximal LFSR, how can I obtain the 

output of a three bit de bruijn generator? 

I am not going into that therefore, you just think on this follows from the previous 

definition of de bruijn generator that we have discussed. If you take R 1 and if you take 

R 2 and you know that you can also take R 3 then, this is how you obtain Z therefore, 

you see that if R 1 produces a 1 then, what you are supposed to do is that, you are 

supposed to take R 2 and R 3 is initialized to 0. So, 1 xored with 0 will give you a 1, next 

you see that there is a 0, if you get a 0 then you clock this one and you keep this 1 same. 

This was initially 1 and you have got a 1 here. 1 xored with 1 is 0, so you obtain a 0 here 

similarly, you can obtain the keystream and you see that you have got a fairly large 

periodicity of the value. So, till now you do not see a periodicity here. This is a sequence 

being generated with a significantly large period 
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Another class of generator of this class is something, which is called a Shrinking 

generator therefore, how it works is as follows you take a control LFSR R 1. 
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Again you consider this diagram, you take R 1 and you take R 2 and suppose that R 1 

produces a 1, if R 1 produces a 1 then, you take the output of R 2 into the sequence if R 1 

produces a 0, you drop this sequence. do you follow; if R 1 produces a 1 you take this 

sequence, the output of we take bi into your output, if R 1 produces a 0, then you drop 

the value of bi that means, you do not take it therefore, you have to consider the next 

value of R 1 so you see that immediately the output sequence of bi is being shrinked 

because, there are some values which you are dropping. 

You can state this, in a different way that is; if you consider LFSR 2 and ensure that 

suppose R 2 is the maximal length LFSR, you arbitrarily drop some values from R 

depending upon the output of another LFSR therefore, sometimes you drop and 

sometimes you do not drop and therefore, this is how the construction of a shrinking 

generator works. If there are results which says that if L 1 and L 2 are mutually co-prime 

and if the connection polynomials are unknown then, the security level is actually 

roughly equal to 2 power 2 L. If you ensure that L is equal 64 then, this shrinking 

generator should be quite strong because, you know that it should give you a guarantee 

of 128 bits and 2 power 128 is still quite high. We are not giving guarantees of 

unconditional security remember that we are giving guarantees of computational security 

only.  
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This is another example, it says that R 1 is equal to 3, 1 plus D plus D cube, R 2 is this 

initial states are so on so, you can obtain this. Let us workout this example, you see that 

if R 1 produces a 0 here, then you know that, what if R 1 produces a 0 then, you are 

dropping this file. Next, you again obtain a 0 you are not taking anything, you get a 1 

then, you are taking this therefore, this 1 comes in the output next, what you obtain is 

again a 1. You are taking this 0, this 0 is coming to the output. Next, you again obtain a 

one, you see that 1 comes this is a 0 so again 0 comes hereafter, that you again obtain a 

0, which means you are dropping this value, next value and again you obtain a 1 so you 

are taking a next value into the output which is still 0 so, this is the way how you can 

obtain the output of a shrinking generator. 
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I will just conclude with this slide, it says; that modern stream ciphers, for modern 

stream ciphers can actually based on LFSR systems, non LFSR systems also and there 

are several proposals that is actually a contest running on now a days which is 

supposedly trying to standardize some stream ciphers like, we have AES for block 

ciphers. There is a contest going on and there is something which is called an Estream 

Website and there are hardware and software candidates which are mentioned in the 

estream website. The search for standard stream ciphers continues while new attacks are 

also being developed, there are some attacks which are of called algebraic attacks, there 

are some attacks called cube attacks, which are quite powerful to analyze stream ciphers. 

There are some new tests also which are been evolved something which is called de 

monomial test and so on they are quite hard, enquire intricate to protect against and 

stream cipher designs have become all the more challenging. 
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So people are still searching for standard stream ciphers you can just ponder upon this 

point. There is something which is called as self-shrinking generator or SSG. What it 

does is as follows, it uses only one maximal length LFSR R, the output sequence of R is 

now partitioned into pairs of bits therefore, consider 1 single LFSR R and the output 

keystream you are partitioning into pairs depending upon whether, your pair is 1 0 or 

pair is 1 1, you are producing 0 or 1. If the pair is 0 0 and 0 1 then, you are dropping it. 

This SSG can actually be implemented as a shrinking generator and vice-versa that is, a 

self-shrinking generator you can implement using two LFSRs in the shrinking generator 

topology and also vice-versa. You can just try to work it out whether you can do it. 
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I have followed the menezes bookmenezes and oorschot and vanstone book on handbook 

of applied cryptography. It is available online, you can just go through this chapter and 

also chapter six so next day’s topic will be pseudorandomness. 

 


