
Cryptography and Network Security
Prof.D.Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Model No # 01

Lecture No # 20

Stream Ciphers

In today’s class, we will continue with stream ciphers. Yesterday, you have seen some

small examples to understand that stream. The problem was I was interested in

reconstructing the stream cipher that is given in the sequence. Can I again reconstruct the

corresponding LFSR? In today’s class, we can essentially talk about two topics - we will

discuss about linear complexity, I think I started with this and I am continue with this,

and mainly will concentrate on this algorithm, that is, Berlekamp Massey algorithm,

which is used to solve this problem. It is a very phenomenal and seminar paper. So, we

will discuss on this. And it is quite important.

(Refer Slide Time: 00:43)

(Refer Slide Time: 01:04)

I hope you understand why we are studying this? Because consider a very simple stream

cipher. Essentially have got a key stream k, for example, and suppose you are just taking

Mi and obtaining the corresponding cipher text Ci. In context models, like for example,

chosen plaintext or non-plaintext models, where the corresponding value of Mi and the

corresponding value of Ci, you know the value of K. But the point is that, given this

value of K, can you also know the corresponding initial secret key with which it is

started. This is the key stream, not the actual key. So, there is an internal algorithm here

and there is an input secret key, which is been provided as an input. Right? There is a

secret k or key, which is the actual secret of the cipher, therefore, the observer is

essentially observing at this point. From there, he is interested in constructing the LFSR

and also the key.

We are considering a single LFSR system and trying to understand that whether a single

LFSR system, which has got nice pseudorandom properties, can be reconstructed using

Berlekamp Massey algorithm. If you remember the problem, I can essentially decompose

or rather write all these key bits as linear combination of the internal secrets. How many

secret values are there? For N length LFSR, there are actually two N secrets. You do not

know the initial seat that gives you N bits. You also do not know the corresponding

connection polynomial. Another thing which you do not know is the length of the LFSR.

Therefore, you will find that can you actually write them as the system of linear

equations and solve them. But this is an unwilling process.

(Refer Slide Time: 03:13)

Berlekamp Massey algorithm gives a very simple and elegant technique in order to solve

this problem. With this motivation, we will study this problem. First of all, this is a recap

of at the LFSR structure, so you see that we have got Sj minus 1 to Sj minus L. Please

pay attention because there is certain amount of formalism required to understand the

basic principle of the algorithm. There is some amount of inverse mathematics.

Therefore, Sj minus 1, Sj minus 2 to Sj minus L plus 1 and Sj minus L. How many flops

are there? There are L flip flops or L storage element. So, the corresponding feedback Sj

you get as a linear combination of these points. But whether you are taking the feedback

or not depends upon a control bit. There are also L control bits here. You take this and

multiply with this corresponding feedback and you exhort that with the previous thing.

(Refer Slide Time: 04:26)

They were simple structure of the LFSR. The LFSR was said to generate a finite

sequence, say S0 S1 to SN-1. When this sequence coincides with the first N output digits

of the LFSR, then the sequence is being generated by the corresponding LFSR. Now,

you note that if L is greater than or equal to N, that is, if the length is quite larger

compared to the length or the sequence that you want to generate, then generating is

trivial. You can simply streaming the data and you can obtain the corresponding output.

But the problem becomes when L is smaller than N, that is, the sequence is a larger

sequence. We will be concentrating on this part of the problem, that is, when L is smaller

than N. It follows that LFSR generates the sequence, if and only if this is true. Why I

have started from j equal to L?

So you know what to read out this particular equation. It says that Sj is equal to the

sigma of Ci multiplied with Sj minus I, and your j starts from L. why? Because before

that you have just streaming the data, therefore, the feedback effect does not come before

this. j equal to L point. The problem starts when only when j is equal to L, and after that,

this has to be a linear combination of the previous L values. This is a very important

equation which we have to keep in mind, that is, Sj is equal to sigma i equal to one to L

Ci S of j minus I. To remember, it is just the coefficients multiplied with the previous L

values of the LFSR.

(Refer Slide Time: 06:04)

First of all, let us consider this theorem. It says that if some LFSR of length L generates

the sequence S0 to SN-1, but not the sequence S0 to SN-1 and SN, I have added one more

value to the sequence, then any LFSR that generates the later sequence, if it has got

length of L dash, then you can actually prove that L dash is greater than equal to N plus 1

minus L. If you remember the last day, we were doing a simple example, where we saw

that till some point, we are easily able to construct the LFSR. But the point starts when

you are going beyond that. For example, if I start with 0, if you remember the previous

day examples we started with 0 0, you can do with the 0 length LFSR. So, when you are

doing from 0 0 1, then immediately your length jumps to three. Then you require a three

stage LFSR. This is exactly the same thing. This was a trivial example where you see

that in the particular example your value of N is actually equal to…, N plus one is

actually equal to 3. Because N was equal to 2 and L was equal to 0. So, although I have

said you that L dash is greater than equal to N plus 1 minus L… First of all, let us try to

prove this result. That is, L dash is greater than equal to N plus one minus L. In order to

prove you observed that one thing from this theorem statement itself, that is, N minus L

plus 1. So, you can write this as N minus L plus 1. What happens when N is smaller than

l?

This is actually trivially true. Then, length has to be greater than equal to 0. But the

problem will be essentially therefore considering when N is actually greater than equal to

L. When N is greater than equal to L, it is the interesting problem. In that case, first of

all, we will start with contradiction. Let us contradict this statement. If I contradict this

statement, that means, L dash greater than equal to N plus 1 minus L is contradictory.

Therefore I am assuming that L dash be less than N plus 1 minus L. Therefore L dash is

less than equal to N minus L, so I can write this as L dash is less than equal to N minus

L.

(Refer Slide Time: 08:54)

This is by contradiction. We have just contradicted the statement of the theorem. And

what we will see that if this is true then we end up with something which is wrong, that

is, we are violating the initial starting point. What are the starting points? Let us see this.

This is the case 1, that is, L greater than equal to N. The theorem is trivially true for case

2. Let us consider two LFSR’s. The two LFSR’s has got, say for example, C1 to CL and

C1’ dash to CL dash. These are the corresponding coefficients of the two LFSR’s. We

have assumed that L dash is less than equal to N minus L, that is, by contradicting the

theorem statement. This is cleared that in this corresponding polynomial LFSR, the first

LFSR has generated the sequence till N minus one. Therefore, I can write this equality

but this is not equal to SN. Why? Because it is not generating the corresponding SN

value. That is the N plus one th value in the sequence. But this LFSR is generating all the

values, therefore, you start from L dash and continue till N. This equality holds,

therefore, these two equations are clear to us. This is a simple statement of where we

have started with, that is, the initial theorem statement basically. This LFSR is generating

till N minus 1 values but this one is generating till the nth point, that is, nth value. But

this one is not generating the nth value, therefore, this inequality. Is it okay?

(Refer Slide Time: 10:58)

Yes. Now, let us start considering this particular value.

(Refer Slide Time: 11:15)

What we will do is essentially this -- you start with first LFSR coefficients, that is,

consider sigma Ci SN-1. Therefore, I am calculating this particular value when j is equal

to N. I am trying to evaluate this and I will show that if this is true, then this is actually

equal to SN. Therefore that contradicts my initial starting point. You understand the idea?

So, how do I start to prove this? You can see that sigma if I just write sigma i equal to 1

to L C1 SN-i,

(Refer Slide Time: 12:23)

We can actually substitute this value. Why can we substitute this value? Do you

understand this? Because in order to substitute, you note one thing that this has to lie in

the range of j, otherwise this definition does not hold right. Therefore, you see that here

you consider this particular sequence. This says, the sigma i equal to1 to L Ci of SN-I and

we note one thing that what are the two extreme ends of this sequence? In that case, in

this corresponding sigma value, it starts with SN-1 and continues till SN-L. We have

assumed that N minus L is greater than equal to L dash.

(Refer Slide Time: 12:54)

(Refer Slide Time: 13:16)

N minus L is actually greater than equal to L dash, therefore, this particular sequence –

SN-1 to SN-L is actually a subset of SL dash to SL-1. Why? Because L dash is smaller than

N minus L. This is essentially a subset of this particular sequence.

If I consider this sequence from SL dash to SN-1, then L dash, because of contradicted L

dash, was less than equal to N minus L. Therefore, this is actually a smaller value as

compared to SN-L. Therefore, this is a bigger sequence as compared to this.

(Refer Slide Time: 14:36)

Therefore, this is a sub part of this. For all the values of SN-i, where i runs from 1 to L, I

can substitute the second equation. I can write them in terms of the coefficients of the

second LFSR. Therefore that is exactly what I do -- I take this SN-i and substitute by this

value. You see that this is equal to sigma, k equal to one to L dash CK dash SN-i-k.

Therefore, this follows straight away from this equation, so you see that if I am interested

in computing SN-i, then I will substitute here instead of j, I will write here N minus i.

Hence, this becomes equal to sigma Ck dash SN-i-k. Therefore, that is exactly you can

substitute here.

(Refer Slide Time: 14:59)

It becomes equal to Ck dash SN-1-k. Till this part, is it clear? Now, you can interchange

these two sigma values. So, you can bring this one here and bring this one here and again

you have got this. If you consider the next sigma, it is Ci SN-1-k. Here, I can use this

particular equation and instead of this, I can write SN-k. Note that you can again write this

because SN-L dash till SN-1 is a subset of SL to SN-1 as L dash is less than equal to N

minus L. Therefore, if you write this… Now, you see that what you have essentially

obtained here is nothing but equal to SN.

(Refer Slide Time: 16:06)

(Refer Slide Time: 16:40)

Therefore, what you had essentially contradicting is the initial starting point, that is, the

first LFSR cannot generate the SN digit. Where did we go wrong? We essentially

assumed this, which was wrong. Therefore, this proves the theorem, that is, L dash is

actually not less than equal to N minus L but it is actually greater than equal to N minus

L plus 1 or N plus 1 minus L. Did you understand the principle? I mean, you can always

go back and look at the proof in details but this is the idea that if there is a particular

LFSR, which is unable to generate sequences from S0 to SN, we generate the sequence

S0 to SN-1.

(Refer Slide Time: 17:19)

Then you need to add on to that length. Therefore, if you add on to that length and the

length becomes L dash, where the previous length was L, then there is an definite

relation between L dash and L, and that is what we have proved in this theorem. Now,

you can actually better understand the linear complexity problem. What is the linear

complexity problem? This is what I defined -- this is the minimum length of all the

LFSR’s from which we generated the sequence S0 to SN-1. So, clearly you can see that

LN(S) will be less than equal to N. Why?

(())

Yes. Therefore, if I am considering S0 to SN-1, any N bit LFSR can definitely generate it.

The problem is can I obtain lesser than that? Another thing you note that moreover LN(S)

must be monotonically decreasing. Actually this only monotonically non-decreasing, so

there is a mistake. It only monotonically non-decreasing with increasing value of N.

Moreover, LN(S) must be actually monotonically non-decreasing with increasing N.

Why it is true? Because you will straight away contradict the initial hypothesis. So, we

will start with certain conventions. The conventions are that the all 0 sequence is

generated by the LFSR, whose length is 0. We are trying to develop a recursive

contraction. There are always some initial starting points for any recursive algorithm.

These are the starting points, that is, all 0 sequence is generated by the LFSR, whose

length is L equal to 0. And if, S0 to SN-1 are all 0 and your SN is equal to 1, the length

which is required is actually equal to N plus 1.

(Refer Slide Time: 19:33)

This we saw for our example. If you remember 0 0 1, 0 0 could have been generated by a

0 length LFSR but 0 0 1 was generated by a three-stage LFSR. Therefore, this is what it

says exactly and you can actually… These are the conventions. Now let us consider

another lemma. So, lemma is if some LFSR of length L generates the sequence S0 to SN-

1 but not the sequence S0 to SN-1 SN, that is essentially you see that this SN is not being

generated, then you can actually show that a linear complexity for N plus one for this

sequence is actually greater than max of LN(S) or N plus 1 minus LN(S). This is actually

quite trivial. This follows from the previous idea that we know it is monotonic, and

therefore, LN LN+1(S) has to be greater than equal to LN(S). We also prove this result.

So, it has to be greater than the maximum of these two. Therefore, it is either greater than

equal to the maximum of this or whichever is the maximum value, it has to be greater

than that. So LN+1(S) is has to be actually greater than equal to maximum of LN(S), N

plus 1 minus LN(S). This is an interesting lemma, which will help us to recursively

compute the linear complexity.

(Refer Slide Time: 21:24)

So, you note one thing that when do you require an updating, I mean if N plus 1 minus

LN(S) is actually greater than LN(S), then you required to add on to the length. And

when this happen, it means that N plus 1 is greater than 2 LN(S). So, I can write this as N

is greater than equal to 2 LN(S). For rest of the cases, updating is not required. That is,

when it is less than 2 LN(S), then updating is actually not necessary.

(Refer Slide Time: 22:30)

So, the length gets updated only, depending upon certain cases. But whenever there is an

update, the update will happen only when N is actually greater than equal to 2 LN(S). Do

you understand why? Because of the monotonicity again. Yeah. Now, we are actually

more or less trying to understand the Berlekamp Massey algorithm. It is a recursive

algorithm which produces one of the LFSR’s of length LN(S), that is, minimum length.

LN(S) is minimum length, which generates the sequence. We generate the sequence S0

S1 to SN-1 for any integer value of N. For this again, I let us look back at the connection

polynomial.

(Refer Slide Time: 23:35)

So, you had C D equal to one plus C1 D plus, and so on till CL D power L. This was my

connection polynomial, which has degree at most L in the indeterminate. The

indeterminate in this case is D, in the variable D. So, the convention is that second areas

starting convention follows from the previous thing, that is, C D is equal to 1 for the

LFSR of length L equal to 0. If length L is equal to 0, then we will assume that C D is

equal to one. This is just convention. Therefore, for a given sequence S, I will write that

C and D is equal to 1 plus C1 N D plus, and so on, till CLN(S) N D to the power of LN(S).

This is just a rewriting of the previous connection polynomial. Only thing is that I have

specified that the length is actually equal to LN(S), and all these sequences if you note

carefully are actually denoted like C1 C2 and C 3 so on till CLN(S). But there at the top, I

have written mean values to indicate that this is a generated of the sequence till SN-1.

That is from S0 to SN SN-1. This LFSR essentially generates the sequence S0 S1, and so

on, till SN-1. So, what we are interested in calculating in that case? CN+1D. Why we are

interested in calculating the value of CN+1 D because CN+1 D will give us the

corresponding coefficients, which will generate the sequence S0 S1 to SN. Now, you see

that…

(Refer Slide Time: 24:55)

(Refer Slide Time: 25:00)

Before going into the next thing, we will try to understand certain things. That is, we will

try to prove a recursive constriction of this particular polynomial, that is, CN D, and at

the same time, we will also show that lemma one that we stated…. We essentially till

now proved an inequality, that is, LN+1 is was actually greater than equal to the

maximum of LN(S) or N plus 1 minus LN(S). Actually that greater than equal to should

be replaced by equality, that is, it will be equality instead of a greater than equal to. In

order to prove that, we will essentially develop a proof, this merges these two proofs. So,

we will prove that equality by induction and at the same time we will give you a proposal

for a polynomial, which will be a candidate for CN+1D.

(Refer Slide Time: 26:15)

(Refer Slide Time: 26:35)

This is a constructive way of proving. This is not an existential proof but a constructive

proof. So, we will not only prove the existence but we will also show you how it is

constructed. In order to do that, we will define something called discrepancy, which we

have already seen. Why? If you remember the previous example, we were able to

calculate the values till a particular point. For example, if you remember, we had 0 0 1 1,

that 0 0 1 can be quite trivially constructive. How? You can just take three-stage LFSR

and you can just write the feedback. The feedback polynomial could be simply a shift

register like this, so you can take 0 0 and 1 and you can stream out the value of 0 0 1.

What is the corresponding polynomial here? C D is equal to 1 plus D cube. But the

moment you see that you consider this particular 1, the next thing that if get feedback fed

back? it is actually a 0. Right? When you want a 1 here, you are actually getting a with

this particular LFSR, and you are getting back 0. That means, there is a discrepancy. This

is the idea of discrepancy. What are you actually getting back and what you want –exhort

between these two. The moment you see that you actually get back 1 and you want is 1,

you know that you have to make certain modifications in this structure. I will just do a

simple modification, I will introduce exhort here, and take this feedback.

In that case, this LFSR will generate the sequence 0 0 1 and 1. If you remember, the

previous thing what we did is we actually solve this and found this. So, you see that you

get 0 0 1, that is quite trivial, but the next thing is an exhort between 0 and 1, so you get

back 1. Till this point is it fine? What is the updated polynomial now? C D. If I write in

terms of C and D, this was C3 D but this is C4 D. What is C4 here? 1 plus D plus D cube.

Therefore, you see that you are able to construct the corresponding polynomial but when

you are doing this algorithm, you will take care of the fact that there is a discrepancy at

this point, and accordingly modify the polynomial. And when there is no discrepancy,

there is no modification required. You can just go ahead with the previous polynomial --

previous construction of the LFSR.

Yes.

(())

(Refer Slide Time: 29:4)

It will be 1 0 0. Yeah, I am streaming out from this point, so it will be 0 here, 0 here, and

1 here. But anyway the rest of the discussion holds. So, I am getting back first 0 0 and

then 1. Right? Therefore, you see that whenever there is a discrepancy introduced here,

you are only required to modify this polynomial. Now, you come to this particular

definition of discrepancy -- it says that lemma one is actually equality, and we have seen

this for the base case but we will prove it for for the further cases, using induction. Why I

have said it holds for the base case? Because, I have already proved you that for 0 0 1

sequence, that was exactly equal to 3, because you started with L equal to 0 and then it

was actually equal to N plus 1 minus 0. So, it was actually equal to N plus 1. For the base

case, the equality holds, for the rest of the cases, we will prove it by induction. Our

hypothesis would be that this holds for LN(S), and we will try to prove this for N L plus

1 S. Therefore, the corresponding polynomial in this case is C and D. This is the

phenomenon, which is according to when you need an update. When do you need an

update? When this Sj exhort with what you exactly obtain back, this is what you want

and this is what you obtain, if you take an exhort you get 0 for all the cases till N minus

but for j equal to N minus you get a non 0 value. So, you get 1 here. This D N is called

the next discrepancy and you need an update only when D N is equal to 1.

(Refer Slide Time: 31:32)

Therefore, you see that this is the discrepancy between Sn and N plus 1, first bit, which is

generated by the minimal length LFSR, which we have found to generate the first N bits

of S. You understand the idea behind discrepancy? This is the difference, that is, exhort

between what you actually obtain and what you wish to obtain. Therefore, when Dn is

equal to 0, then the LFSR also generates the first N plus 1 bit, and therefore there is

nothing to be done. So, N plus 1 S is equal to Ln(S), the linear complexity will remain

the same. C n plus 1 D also remains the same as that of C n D. Problem happens when

Dn is equal to 1. There, we need a correction of this discrepancy. So you note one thing

that in order to do that, we will consider the sequence length before the last. Therefore,

let m be the sequence length before the last length change in the minimal length register.

Before this, whichever was the last change when you did for the L f length, that is, I

mean, so m is a variable which is the sequence length before the last length change in the

minimal length register. Therefore, last time when you change the length, what was the

sequence length? That value is being held by the variable N. These are recursive

algorithm, so you are keeping on updating one after the other. You are modifying the

length sometimes, you are not modifying the length sometimes. Therefore, when was the

last time? Suppose, you are maintaining this as a form of a table, you go back and see

when is the last time when you changed the value of length and find out that what was

the corresponding sequence length.

(Refer Slide Time: 32:57)

That is suppose m, so immediately you can understand that these two things hold, that is,

Lm(S) is less than Ln(S) because of monotonicity. And Lm+1(S) is actually equal to Lm(S)

because you have updated your m value to satisfy this. So this was the last change. I

mean, m is the sequence but this is the length, so you have changed the length, which

means that you have gone from m to m plus 1. Therefore Ln(S) must be greater than Lm

because it was the last change. m is the greatest integer before the last change. I mean, m

is the sequence actually, so Lm(S) is the corresponding length of the LFSR, and Ln+1(S)

must be equal to Ln(S) because this is the length that we are talking about.

(Refer Slide Time: 34:07)

Therefore, since a length change was required, so you see that only at j equal to m. There

must be a discrepancy. But otherwise, this would have been held fine right. Therefore the

discrepancy was 0 in all these cases. Therefore since, the length change was required,

this LFSR, that is, Lm(S) and with the corresponding polynomial. This will be a capital.

So, Cm D, this could not generate the sequence from S0 to Sm. That is why you change

the length. So, what is the sequence length here? m plus 1. So, in order to generate the m

plus one th sequence length, you had made a change in the value of m.

Therefore, immediately, you can understand that the corresponding discrepancy for all

these values till m minus 1 was equal to 0, but when j was equal to m, the discrepancy

was a non-0 value. By induction hypothesis, you can understand that Lm+1(S) is equal to

Ln(S). This we have already discussed. By induction hypothesis, Ln(S) is actually equal

to max of Lm(S) and m plus 1 minus L l m S. You can apply this and note that Lm(S) is

actually less than Lm(S). Therefore, rather this, this q is something, which is generated

the software. So this is actually a since. Since Lm(S) is less than Ln(S), therefore Ln(S) is

actually equal to m plus one minus Lm(S). So, Ln(S) is actually m plus 1 minus Lm(S).

Now, please remember this value till this point, that is, Ln(S) was equal to m plus 1

minus Lm(S). So after this, we will give you a proposal for the next candidate. Till now,

we have assumed that we know C m D and we would like to find out C n plus 1 D,

which generates the sequence till Sn.

(Refer Slide Time: 36:27)

So, this the corresponding construction. The claim is that if you exhort C n D with C m

D, which is multiplied by D to the power of N minus m, this is the valid next choice for

C n minus one. So, you see that we have taken this and exhort with this. The idea of this

exhort is to correct the corresponding discrepancy value. At the point of your problem,

this gives you a discrepancy, this also gives you a discrepancy, and both these

discrepancies actually cancelled each other.

That is the idea. But let us see this more closely to understand this phenomenon. So,

what is the degree of C D? The degree of C D would be the maximum of this degree.

What is the degree of this? Ln(S). And, what is degree of this? Lm(S). But n minus m is

multiplied, so it is n minus m plus Lm(S). Note that n minus m plus Lm(S) can be

actually written equal to n plus 1 minus Ln(S). Why? Because of the previous equality

that we found out. If you remember, the previous equality Ln(S) was equal to m plus one

minus Lm(S). If you substitute this value here, you obtain this. Therefore C D is actually

an allowable connection polynomial because maximum length is inside this. Now, only

one thing remains to prove that C D does the connection. Because if C D does the

connection, then what you have proved is the that the length, that is the next length, that

is actually equal to maximum of Ln(S) and n plus 1 minus Ln(S).

So, you have proved that Ln+1(S) is actually equal to maximum of Ln(S), n plus 1 minus

Ln(S). And therefore the induction gets proved. We get the proof by induction. But till

now, we have actually not proved one thing -- C D actually does the correction.

Therefore, what we now need to prove is that C D does the correction, which means it

generates the sequence digit Sn, and at the same time does not disturb the previous

sequences. So, in order to understand this, let us observe the value of C n D.

(Refer Slide Time: 38:58)

What was C n D equal to? It was equal to one exhort with c1 n D. This was small c plus

and so on till CLn(S) n D to the power of Ln(S). And what was C m D equal to? One plus

Cm1 dash or you can write 1 plus C1 m, one plus C1 m D plus till CLm(S) m D to the

power of Lm(S). Now, if you multiply this with D power of n minus m C m D, then what

do you obtain? It is D to the power of N minus m plus C1 m. What does this D becomes?

N minus m plus 1 plus CLm(S) m D to the power of Lm(S) plus N minus m. So, you note

this equation and you note this equation. Your C D is an exhort between these two

polynomials. By my definition, C D was C n D exhort with D to the power of n minus m

C of m D. Now, I can enumerate all the corresponding coefficients for C D in terms of

these two coefficients.

How can I write? I mean the coefficient will be correspondingly C1, it will be equal to C1

n and so on till Cn-m. Cn-m will be Cn-m n exhort with 1 because you will have

correspondingly this particular term will give you a coefficient of 1 and so on. I mean

you can write Cn-m+1, this will be equal to Cn-m+1 an exhort with C1 m. So, subsequently

you have till this particular point, therefore, after a point there will be an exhort. Now,

note that if I need to find out the corresponding discrepancy value, I shall be interested in

computing this value -- Sj exhort with Ci Sj-1 sigma, where I runs from 1 L.

(Refer Slide Time: 42:00)

(Refer Slide Time: 42:28)

I need to ensure that this is actually equal to 0 for j running from L to n, for all the

values. So you note that I can now write this in two separate parts because if you

remember, the corresponding coefficient Ci, that is, these coefficients, I can write as an

exhort of this exhort with this. Therefore, this gives you the first part and this gives you

the second part. If I am interested in computing Sj exhort with Ci Sj-I, where I runs from

say, 1 to l. Then this will be equal to Sj exhort with sigma Ci n Sj-I. This is one part. and

the other part will be the corresponding part from Sj-n+m plus the other part of the sigma.

What is the other part of the sigma? I hope you have understood why I am writing j

minus n plus m. Because at this point I am writing out the corresponding coefficient for

Cn-m. Cn-m is this and the corresponding seed value will be j minus n plus j minus. I mean

j minus n minus m, so that is exactly this value. Therefore, the rest part of the sigma

comes in, and you have got Ci m and Sj-n+m+I. Note that this I will run from 1 to Lm(S)

and this will run from 1 to Ln(S). For all the previous values, that is, for j running from L

to n minus 1, this value will be 0, because this LFSR was properly generating all these

values. But what about this? The suffix here is j minus n plus m. When a j runs from L to

n minus 1, you substitute here n, n minus 1, then you get n minus 1, n minus 1 minus n

plus m. so that is n minus 1.

Therefore this sequence is actually generating the first m digits of the sequence of its

corresponding LFSR. Therefore, this was actually properly generating, this value is 0

value. This a 0 and this is a 0, so you get 0 for j running from L to n minus 1. And what

about when j equal to n? This will generate a 1 because of the discrepancy and this will

also generate a 1 because of the discrepancy, and both the discrepancies will get

cancelled out. Therefore we say that the corresponding coefficient C D actually generates

the entire sequence Sn+1. So, this is not so trivial proof, therefore, please go back and

look at the proof again and try to work with some small examples.

(Refer Slide Time: 45:53)

(Refer Slide Time: 46:29)

The conclusions are that the LFSR with length L and connection polynomial C D

generates the sequence S0 to Sn. Since L satisfies lemma 1 with equality, the induction

also gets proved. So, you saw that L was actually equal to Ln(S), maximum of Ln(S), n

plus 1 minus Ln(S). Therefore, we are proving the equality for n plus 1 S. I am not going

into the details of the algorithm, which you can follow from this discussion. You must

note one thing that what you are doing is that you are maintaining some temporary

variables like B(D) and m and things like that. m I have already defined, so B(D) is

another temporary variable and T(D) is another temporary variable, and you note that

whenever there is a D equal to 1, so you are calculating the discrepancy. Whenever this

D is equal to 1, you are doing certain operations and when do you require modifying to

the length?

(Refer Slide Time: 47:12)

(Refer Slide Time: 47:38)

When L is less than equal to n by 2. I described why it is so and only at that particular

time you require to update the value of L, otherwise the L is fine. You can work through

the details of this thing but I will give you some examples. I will tell you one thing that

until and unless you work with your hand you will not be so clear. Therefore, please go

back and work with some toy examples. Consider this sequence of periodicity 20,

therefore this is for example, a sequence. You can actually plot the variation of the linear

complexity with n by calculating this using Berlekamp Massey algorithm. And this is

actually called the linear profile, so you can actually plot them and it will look like this.

If this is line corresponding to L equal to n by 2, then whenever L is less than equal to n

by 2, the modification has taken place. Otherwise, when L is actually greater than n by 2,

the modification of L is not equal. You get the step function at those places. So, you can

little bit look in more closely

(Refer Slide Time: 48:04)

(Refer Slide Time: 48:20)

To obtain certain interesting properties, I will conclude with the example with which I

started. Therefore, this is the sequence. Yesterday we saw that a four-state LFSR was

unable to generate the sequence. So, in order to solve the problem, let us apply the

Berlekamp Massey algorithm. To do that, you will store that in the form of a table like

this. So you see that S n d T(D) C(D) L m B(D) and N are some variables up there, and

we will start operating this table. This is the sequence, which you wish to generate from

0 0 1 1 1 0 1 1. You start with a value of C(D) equal to 1, that was my convention, and

your L value was 0, and B(D), I mean, m is actually in this case you start with initialize

with minus 1, and B D is the corresponding polynomial which generates the sequence.

This was my C m D in my discussion in the analysis. So, n is equal to 0 means still now

you have generated till 0. That is, you have generated nothing till this point. This is just a

initialization of the algorithm. So what you do next is you get 0. What is the

discrepancy? It is 0, therefore, you do not require to do any other thing. Therefore, you

see that all the things are kept intact. Next what you get is again a 0, you have a

discrepancy of 0 and therefore you do not do anything. But the next thing you get is a 1.

The moment you get 1, your discrepancy is equal to 1, because you feeding back 0 and

you are getting what you want, that is, 1. Therefore, the exhort is 1. So, we require

updating the corresponding value of C(D). So you see that what you do is that you exhort

the previous value of C(D), that is, 1 with the corresponding value of B(D) but you

multiply with D to the power of N minus m.

What is your N here? Two. And your m value is minus 1, so minus 1 is 2 plus 1, 3, so

you get 1 plus D cube. You see that 1 plus D cube, which has the length of 3 should be

able to generate this particular sequence 0 0 1. And this we have already seen right with

our hand exercise. Therefore, what is the value of m? Equal to two. So, m is the previous

sequence before the length got changed. The length got changed here from 0 to 3 and

what you have generated previously was till 3 (2). Therefore, m is actually equal to the

previous value, therefore in this case, its 2, and the corresponding polynomial was 1.

Now, you have generated till 3, that is, the I mean 0 1 2 3. So, the next thing, which you

get is 1, and you again find that discrepancy here, which means that you need to change

the value 1 plus D plus, I mean, you need to change the value of C(D).

So what you do is that you take N and you see that this is m, therefore 3 minus 2 is 1. So,

you multiply this with 1 plus D cube and you also exhort the previous value of B(D) but

multiplying that with D. Therefore, you get 1 plus D plus D cube, so you get 1 plus D

plus D cube and your length… You see that you are not updating the length. Can you tell

me why? Yeah, because of that inequality. Therefore, in this case, you do not require to

update this value and therefore you go ahead with it. So, you have generated till this

point. Therefore, you see that it works fine here for these things because it generates the

discrepancy of 0. There is no other updating required for these stages. But at this point

we were unable to construct with a 3-bit LFSR. And you see that the discrepancy is in

this case is 1. Why? Because 1 plus D cube, so if you exhort the previous this value and

this value, that is the previous sequence values to get 1 on 1 exhort to actually feeding

back 0 but what you want is a 1. What is the discrepancy value? Its equal to one,

therefore, you need to modify the value of C(D). Therefore, you take 1 plus D plus D

cube and exhort that with the previous value of B(D). What is the previous value of B D?

It is equal to one multiplied with D to the power of 7 minus 2, that is, D to the power of

5. So, you take 1 plus D plus D cube plus D to the power of 5 and you get L equal to 5.

So, you see that you have modified the length again because 3 is actually smaller than 7

by 2. Therefore, you have modified the value of this to 5, and therefore you see that 5-

stage LFSR with this particular polynomial is able to generate the entire sequence.

(Refer Slide Time: 53:26)

Therefore, by using Berlekamp Massey algorithm, you are able to calculate the

corresponding minimal length of the LFSR, which will generate the sequence and also

find out the corresponding polynomial. And actually, you can see from the algorithm

statement the complexity of this algorithm is o N square. Therefore, this is a quadratic

algorithm to generate the corresponding sequence. This is quite efficient in that case. So,

references that I have followed are as follows. These are standard references but I will

suggest you to go back and read this paper. Its freely downloadable, it is got shift

registers synthesis and B C h decoding. Just concentrate on the first part of this paper.

This gives you a description but this actually tops in prime fields and I generalize this

proof for g f 2, I mean not generalize, many more specific. This is a classic paper, it

IEEE transactions on information theory paper but you understand… So, what you have

learnt from this example is that a single LFSR system is not good.

(Refer Slide Time: 54:25)

If you have a single LFSR-based stream cipher, then you can actually do a known

plaintext attack. You can obtain the key stream and from that, you can actually

reconstruct the LFSR. You can know everything about LFSR. Given two N bit sequence,

you can construct the entire thing, therefore, you need a multi LFSR system. In the future

classes, in the next day classes, we will still continue with stream ciphers and we will try

to understand more detailed, I mean, better constructions of stream ciphers using

LFSR’s, and also not LFSR’s.

