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Overview on S-Box Design Principles 
 

So, in today’s class we shall be discussing about the principles of designing an S-Box. 

So, you have seen that the S-Box plays a very key role to the security of the block 

ciphers; I am talking in terms of linear and differential cryptanalysis. So, today’s class, 

the objective will be to understand some of the design criteria that the S-Box must 

satisfy. 

So, what we have seen essentially till now, is that S-Box is a table with elements, which 

have been filled by entries, which look to be quite random; so, arbid values, but actually 

they are not random and there is actually quite deep science involved behind the design. 

So, we will try to understand how the S-Box is designed or rather, at least see some of 

the features or which the S-Box should satisfy some of the properties, which the S-Box 

should satisfy. 
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So, first of all, we will go straight to the question that - what is an S-Box? What is an S-

Box? So, the S-Box we have already seen essentially till now, it is a mapping, it is a 

Boolean mapping from m bits to n bits; so, therefore, it takes a m bit input and it 

produces  an n bit output; so we can also call it a m cross n mapping. 

So, therefore, essentially, you can imagine that all the n outputs that you produce 

essentially are individual Boolean functions. So, they operate upon n Boolean inputs and 

each of these components functions essentially is a map from m bits to 1 bit. 

So, in other words, each component function is a Boolean function in m Boolean 

variables. So, Boolean variables, means, the values can be 0 and 1. So, therefore, you see 

that each of the output each of the n component output bits can be either 0 or can be 1. 

So, therefore, we have to understand that how essentially these Boolean functions are 

designed. 
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So, we will try to address these issues in today’s class; so that is the objective. So, let us 

little bit go back into what we know about Boolean functions and we know that Boolean 

function is essentially means what? So, if there are m input bits, I would like to obtain 

one corresponding output bit. So, in a Boolean function, you know, you can represent 

that in the form of a truth table. So, the truth table was a canonical representation, which 

means, that it was a unique kind of representation of a given Boolean function. So, once 

given a Boolean function, I can always know that, we know that by using, we can 



express it, express it using either min terms or max terms. So, basically, we know that we 

are quite familiar with representation, which is known as AND, OR representation. So, 

means, I am expressing something - a Boolean function using AND, OR as my logic 

operations. 

So, when we talk about cryptography and actually cryptographic Boolean functions, then 

another representation is commonly used, it is known as the AND, XOR form, or the 

AND, XORed expression. So, it is called the ANF form or the Algebraic Normal Form. 

So, how does an algebraic normal form look like? It looks like this, so, therefore, it is 

quite, I mean - if you observe in this way so, for this plus. In this case, actually, this plus 

does not mean OR, it means an XOR. So, all these operations are XOR operations and 

we have got XOR’s and we have we have also got ANDs  like you see x 1 AND x 2. 

So, similarly, you have got the final term as x 1 AND x 2 and so on, till x n. So, all these 

coefficients, like coefficients running from a 0, a 1 till a n, then you have got a 1,2 a 1,3 

and similarly, like you go on till, a n minus 1,n and then finally, for the final term like, x 

1 to x n you have got an a 1, 2 and so on till n. Therefore, all these coefficients can take 

two values, it can either be 0 or it can either be 1.So, how many such Boolean functions 

are possible? We can easily enumerate from this, because you know that there are how 

many possible Boolean functions, 2 to the power of n. 

So, therefore, you see that these Boolean functions essentially comprise of what will, we 

can actually represent all possible Boolean functions using this form, and also, this form 

is a normal form. So, what does it mean? It means that if I represent them in this I mean, 

if I would like to represent, I can obtain a unique representation just like my truth table, 

this is an equivalent representation and actually, there are algorithms, quite easy 

algorithms, which  takes a given truth table and can represent them in this particular 

form. 

So, I am not going to those conversions, but you can easily do that. So, maybe you can 

take it just as homework exercise and you can just try to find out some algorithms for 

doing that. 

This just represents coefficients; so, therefore, this can be values of this so, this is just 

how the notation has been denoted. So, when you are considering the term x 1 into x 2 

then the corresponding coefficient is, a 1,2. Similarly, when we are considering the 



coefficient of, say, x n minus 1 and x n, then I represent that by, a n minus 1,n. So, that is 

only a notation, one thing, therefore, these values can either be 0s and 1s. 

So, you note one thing that, essentially, we will be addressing linear functions and non-

linear functions and also another function, which is known as affine functions. So, what 

is affine function? We have already seen how an affine function looks like. So, you see 

that in this particular from of the equation, if you substitute all these values which have 

got AND terms as 0s, I mean to say, the coefficients corresponding to this AND terms 

are 0s, then you have got, a 0 XORed with a 1, x 1 and so on, till a n x n. So, apart from 

these, all the other terms go to 0. So, what is the corresponding? for this particular, for 

this equation which is remaining, is actually an affine equation. So, if this a 0 value, that 

is a constant value also goes to 0, then you have got only these terms, then it actually 

becomes a linear equation a linear function. 

So, therefore, apart from this, all other functions are non-linear and, you know, why it is 

non-linear? It is non-linear with respect to the XOR operation; so, we have to address 

this in context to linear cryptanalysis, you know, what is a linear function and why is 

called linear and if it is non-linear, why it is non-linear? It is always with respect to a 

particular operation. 
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So in this operation, our case is XOR. So, how many possible linear functions are 

possible? We can also enumerate from this particular expression, this description so, you 



can work out how many linear functions are possible, how many non-linear functions are 

possible, and so on. So, I can give you a simple example. So, it is good to see some 

example like, suppose you have got x 1 and x 2 as two variables and let us consider the 

simple function of x 1 OR x 2. So, how  the truth table will look like, 0 0 0 1 1 0 and 1 1, 

so, apart from this, all the other terms will be 1s; so, this is simple OR function. So, this 

particular thing you would like to express using ANF form. So, let us just try how we can 

represent this. So, I call this function as y and just see that y is equal to x 1 XORed x 2 

XORed with x 1 x 2, does it work? 

So, you see what is, x 1 XORed x 2 XORed with x 1 x 2, does it  match? So, you see that 

I can actually represent this as this particular notation or this particular representation is 

known as the ANF representation. So, therefore, there are actually algorithms, you can 

easily express them. I mean, given AND OR form, you can actually convert that into 

AND XOR form and vice versa also.  
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So, therefore, we have understood what is an ANF form? So, why is an ANF form is so 

important? The ANF form is important for various reasons: so, one of the important 

reasons is that you can easily obtain the degree of a particular Boolean equation. So 

anyway, we will be going to this various properties, which the Boolean function, or 

cryptographic Boolean function should satisfy one after the other. So, consider a Boolean 

function which is a mapping from m bits to one particular bit. So, let f essentially, which 

takes in a n bit number and convert that into a 0 1 bit, be a Boolean function.So, 

therefore this is a simple example of a Boolean function and then we define something 

which is known as the binary sequence. 



(Refer Slide Time: 11:30) 

 

So, binary sequence essentially means I would  like to represent them in the form of f 

alpha 0, f alpha 1, and so on till f alpha 2 power n minus 1. So, therefore, this particular 

notation, we know commonly as the truth table. So, what does it mean?  I will take every 

possible assignments of my input and find out what is the corresponding output, if the 

input is been sensitized by that particular value. Like for example, if this Boolean 

function f, if I give an input of alpha 0, the corresponding output is f alpha 0 and how 

many such possible inputs can I give? I can give 2 power n possible inputs and I stored 

them, I store all the outputs in a table which is commonly known as the truth table; so 

that is the definition of a truth table. 

So,there is some there is another quite closely stated term which is called the sequence of 

a Boolean function. So, what is the sequence? So, the sequence is quite simple I mean 

quite similar to the truth table, only thing is that each element is represented by minus 1 

to the power of that particular element like, minus 1 to the power of f alpha 0, minus 1 to 

the power of f alpha 1 and so on till minus alpha to the power of minus 1 to the power of 

f alpha 2 to the power of n minus 1. So, what you do is that, you take the truth table 

elements and you raise each element to the power of minus 1. So, therefore, what will be 

the sequence in this particular example? So, for example, if the truth table elements are 0 

1 1 1, then what will be my sequence? It will be minus 1 to the power of 0, minus 1 to 

the power of 1, minus 1 to the power of 1, and minus 1 to the power of 1, so, therefore, I 

will write this as 1, minus 1, minus 1 and minus 1. 



So, therefore in a sequence, each of the elements can be either plus 1 or minus 1; so, that 

is how a sequence of a truth tableis defined truth table of a sequence of a truth table for a 

given Boolean function is defined. 
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So, then we will see certain criteria which a good Boolean function should satisfy. See, 

as I told you that for all attacks, the main objective was to find distinguishers, 

distinguishers from random matrix. So, we know that, if you take a random function, 

then what you expect is the number of zeros and ones should be essentially equal - right? 

So, one of the criteria, which a Boolean function should satisfy and which is called 

obvious also is that, the number of zeros and ones should be same and that is called the 

balanceness of a function. So, a balanced function is a Boolean function if its truth table 

has got equal number of zeros and ones. 



(Refer Slide Time: 13:17) 

 

So, therefore, we also note this note this know this term, called hamming weight. So, 

therefore, if I have got a binary sequence, so the hamming weight of the binary sequence 

is the number of ones. So, therefore, you know that the number of ones and number of 

zeros for a given particulartruth table should essentially be identical; so, therefore, if you 

have got an n bit Boolean functions, then how many number of ones are expected? 

2 to the power of n by 2; so that is 2 power of n minus 1 that is the expected number of 

ones. So then, we define something which is called as scalar product of two sequences. 

So, what is a scalar product of two sequences? We have defined what is a sequence, 

therefore, given a Boolean function f and g, we can define the sequences by these two 

symbols; so, one of them I call eta and the other one is say, epsilon. 

So, now, we define, so, therefore, if you take the scalar product, so you know what is the 

scalar product defined as. So, therefore, this is the notation of the scalar product, then 

you can see this is equal to the number of cases when f and g are equal minus number of 

cases when f and g are not equal. So, all of these here therefore, this is the dot product or 

the scalar product of the two sequences. So whenever you see that f and g are both same, 

then that will add up to this particular product and when f and g are not the same, then  

actually subtract minus 1 from that. 

Because you note that your sequence has got only two elements, it has got either plus 1 

or it has got minus 1. So when they are not equal, then you have got 1 in one case and 



minus 1 in the other case, and when both of them are same then you have either got 1 1 

or minus 1 minus 1; so in both the both the cases, the product computes to plus 1. So, 

therefore, you have got either, therefore, this you can enumerate by the number of cases 

when f and g match, minus number of cases when f and g do not match. Do you follow? 
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So, therefore, using this particular notation, we will define something which is called a 

non-linearity. So, all this time we have been talking about non-linearity but we have not 

really quantized what non-linearity means. So, I will take an example to atleast address 



you what is non-linearity. I think, after that, this particular slide will make better sense. 

So, take this example like x 1 x 2, and so, we know that there are possible values like 0 1 

1 0 and 1 1 and take the same example x 1 OR x 2 and we will try to find out what is the 

corresponding non-linearity of this Boolean function. So, what is the truth table? We 

have seen 0 1 1 and 1; so the idea is that you find out all possible linear functions in 

these two variables x 1 and x 2. So, what are the possible linear functions possible? One 

of them is 0, like, all of them is 0. So, the other possible linear function could be x 1 

itself, x2 itself, and x 1XORed with x 2; so they are considering linearity with respect to 

the XOR operation .So, what are the corresponding truth table for this, 0 0 0 0, for x 1 it 

is equal to 0 0 1 1, for x 2 it is 0 1 0 1, and for x 1XORed x 2 it is 0 1 1 and 0. So these 

are my possible enumerations of the possible linear functions. 

(Refer Time Slide: 16:53). Next, what I do is that I take this particular truth table and I 

take all the linear functions or linear possible linear functions and I find out what is the 

hamming distance of these truth tables with this hamming with this truth table; so, that is 

why, I defined the term - hamming distance. So, what is the corresponding hamming 

distance of these truth tables? How many cases do they differ - that is the thing, right?. 

So, how many cases do they differ? They differ in three cases. So that is d 1, I call them 

as 3.how many casesso how do I mean what is thisHow many cases that these value 

differ from this particular column? It differs in one case. How many cases this differs? 

So, it differs in 1 case. How many case does these differ? Yeah, it is 1. 

So, non-linearity is defined as the minimum of d 1, okay, so, we call them d 1, d 2, d 3 

and say, d 4; d 1, d 2, d 3, d 4, so in this case that is equal to 1.So, that is the definition of 

non-linearity; so, which means that now, we can generalize this. Therefore, if you have 

got n variable Boolean function, then you obtained all possible linear approximations, 

enumerate their truth tables and find out the distances. And out of them, the minimum 

distance corresponds to the non-linearity of the Boolean function. So, you can note 

certain interesting things, like for example, if you take two linear functions, how many 

cases do they differ? It is always half the possible number of cases so, you see that there 

are four 0s and there are two differences. Like so, in two cases they differ. Similarly, if 

you take these two linear functions, how many cases do they differ? It also differs in two 

cases; you take these two things, it also differs in 1 case here and 1 case here, so 2 cases. 

So, all possible linear functions it will differ in 2 power n minus 1cases. 



So, actually you will find that a linear function and a non-linear function will the 

distance I mean the So, what we have essentially considered is about the distance. So, 

you will find that the distance is never equal to 2 power n minus 1 but it is always less 

than 2 power n minus 1. So, only 2 linear functions differ in 2 power n minus 1 cases, 

but a non-linear function, can actually differed in less than. So, it is assumed you can just 

assume as if the linear functions forms a space so forms various access, and non-linear 

functions comes somewhere in between; therefore, designing a non-linear function is 

quite tricky. So, if you make it fall away from one particular linear function, it may fall 

close to the other linear function, but what you have to ensure is that the non-linear 

functions maintains quite a safe distance from all possible linear functions. 
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So, therefore, our idea will be essentially or rather, our objective will be to maximize this 

non-linearity. So, we have to maximize this particular metric called non-linearity. So, 

how do you do that? But before we go into that, let us define generally what non-

linearity means. So, the non-linearity of a Boolean function can be defined as the 

distance between the function and the set of all affine functions, but actually, it is a 

minimum distance. So, therefore you take f and you find out all possible affine functions 

and I denote them by, say g, and then you find out the distances  corresponding between 

them. You denote the minimum of them, assign minimum of them to a non-linearity. So, 

non-linearity is defined in this way - so you see that N f is equal to minimum of the from 

f comma g, where g belongs to n, where A n is the set of all affine functions over sigma 



n. Sigma n means somewhat over n,therefore, it is an alphabet which is formed using n 

particular letters, n particular symbols; forget the notation, but the idea is simple as that. 

So, now, you can try to understand why your d f,g is equal. So, what we are essentially 

concerned with the distance of f with g. So, your distance with f,g will be equal to 2 

power n minus 1 minus half of eta, epsilon. So, that follows from the eta definition of 

this particular dot product. 

So, I leave to you as an exercise to think - why? Then it follows straight away from the 

definition. Therefore, if you know this, then defining non-linearity becomes quite simple, 

because in that case, non-linearity becomes equal to 2 power n minus 1 minus half of this 

distance, and what we are interested is, making this distance minimum. So, what we will 

so if you make the distance minimum, then we will make this particular scalar product as 

maximum; therefore we write here maximum and that is how it is defined. 

So, therefore, you see that what we absorbed intuitively, but the non-linearity is always 

less than 2 power n minus 1. It is minus half of something, so, therefore, this term is 

actually a positive term. So, we will find that this non-linearity is always less than 2 

power n minus 1. 

So, therefore, you can just give a thought that why it works. Any idea why it is correct or 

shall I show it to you? So, I will just give a hint and leave the complete the entire thing to 

if leak the entire completing the proof to you. 
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So, how was it defined? This was defined as number of cases when f is equal to g minus 

number of cases when f is not equal to g. Now, what we are interested is, the number of 

cases when f is not equal to g. So, how can you write, express these in terms of this? It is 

equal to 2 power n minus number of cases when f is not equal to g. So, you know, you 

have also got minus number of cases when f is not equal to g;  so, you have basically got 

2 power n minus 2 times number of cases when f is not equal to g. Now, you can actually 

rearrange this, because this is what you are interested in, right? You are interested in the 

distance between f and g; so you are interested in the distance means, you are interested 

in finding out these values. Now, you can just rearrange this and you will obtain the 

corresponding expression. 
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So, now, there is actually just we will address this, that there is a very nice commutarial 

tool called Hadamard Matrix, through which you can actually enumerate or compactly 

represent all possible linear functions. Therefore, if you see the definition of Hadamard 

Matrixes, if you see the definition of Hadamard Matrixes, you will see that the definition 

of Hadamard Matrixes works like this. You take H0 equal to 1 and your H2 or rather H1, 

is defined as H1 H1 H1 and minus H1. So, what does it mean? It means,1 1 1 and minus 

1; similarly, you can also write H2. So, what will be H2 equal to? 1 1 1 minus 1 1 1 1 



minus 1 1 1 1 minus 1 and you take the negative of this minus 1 minus 1 minus 1 and 

plus 1. 

So, why are we doing all these things? So you see that Hadamard Matrix has got a nice 

property. The property is that, each of the rows, so, if you take each of the rows, then 

they denote the sequence of a So, if you are considering for example H1, then each of the 

rows will denote the sequence of a one variable Boolean function. So, what is the one 

variable Boolean function? Possible, it can be either 0 or say x. 

So, what is the corresponding sequence for 0? So, if you consider  one variable Boolean 

function, so what are the possible Boolean functions, what are the linear functions 

possible? It is either 0 or x. So, what are the sequences possible? What are the possible 

sequences? It is either 1 1 or it is 0 1; so, what is the corresponding sequence for 0 1? 

It is minus 1, 1 minus 1. So, 1 minus 1. So, you see that precisely that is what your 

Hadamard Matrix gives. It gives you 1 1 and 1 minus 1. Similarly, you see that, you see 

that for you can extend that to H2 also; first one represents all possible.So, therefore, you 

see 1 1 1 1, so that represents the linear function 0. So, next one is 1 minus 1, 1 minus 1 

so, that is, x 1 for example,  what about this, 1 1 minus 1 minus 1? So that is another 

variable say, x 2 What about this 1 minus 1 minus 1 1? That is x 1 XORed with x 2. So, 

you see that you can form all two variable functions, two variable linear functions in this 

fashion. 

So, therefore, if I am able to find out -  recursively express H n, in terms of H n minus 1, 

then essentially, each of the rows of the matrix H n denote linear functions of n variables, 

the sequence of the linear functions of n variables. So, what you have to do is essentially 

, if you have to obtain the corresponding. So, therefore, this is a very compact expression 

so, if I want the corresponding linear expression for a given row, then what I have to do 

is that, I have to take the corresponding binary representation of this, so, therefore, if I 

know that for example, 1 minus 1 1 minus 1 is my sequence, then I can obtain the binary 

sequence from this and the binary sequence would have been 0 1 0 and 1 and then, I have 

got my variable list as, say. So, I have got my corresponding variable list so, therefore, 

what is the variable list? It is Therefore, if I take the dot product of this with the 

corresponding Boolean function, then I can obtain from this, that is, my Boolean 

function is equal to x 1. 
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Similarly, I could have obtained  for this particular row, it is equal to x 2 and for this one, 

it is equal to x 1 XORed x 2. So, given the Hadamard Matrix, from there I can obtain all 

possible linear functions. So, therefore, if you  told to generate all possible linear 

functions, then that is a nice recursive. We have doing that using this commutarial tool. 

Now, we are addressing the issue of non-linearity. So, you see that, if there is, so there 

are some properties which we will just address, but will leave the proof butut, it just for 

this, just of timing, just try to understand that it works. Try to basically understand the 

insight, so it says, that if a Boolean function f x is balanced, then so is f x B XORed with 

A, so A is an n bit vector and B is an n cross n 0-1 invertible matrix. So, it means that  if 

you have got f function who has got a certain amount of non-linearity, then doing an 

affine mapping in the inputs does not really make any change to the non-linearity. 
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So, if you do an affine mapping to the inputs, this the input variables x using a invertible 

matrix, that is, if this particular matrix, B is invertible and if you take this and if you do 

this operation, still then, the non-linearity does not change. Therefore, what you say is 

that non-linearity of f and g are the same. So, therefore, non-linearity really does not 

change to operations like this, but our S-Box should also satisfy other very important 

criteria, which is known as the strict avalanche criteria, but I think I have told  

somewhere what is mean by avalanche effect. So, it means that, if I change only 1 bit of 

the input, half of the output gets changed, but the thing is that formally, we will try to 

define. 

So, what he says is that, if there is a Boolean function f x, and you define a vector called 

alpha, whose weight is one, so what does it is mean? That only 1 bit is changed. So, if 

you take  x XOR alpha, so if its weight is weight of alpha is 1 means, it is basically a 

binary string in which only one of them is 1, the rest are 0s. So, if you take x XOR alpha, 

so you see that, in x XOR alpha in x, how many bits are changed? Only 1 bit is flipped; 

so, this particular function, that is, f x XOR, f x XOR alpha is actually a balanced 

function;  so, that is the criteria of strict avalanche criteria. 
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So, it says that, if there is a function, say for example, f x and there is a function called f 

x XOR alpha. So, let us try to understand, why only 1 bit is changed. So, you check, for 

example x, as say, x 1, x 2 and x 3, and here alpha as say, 0 1 0. So, what does x XOR 

alpha represent as? It is equal to x 1, x 2 XORed with 1, and x 3. So, you know for the 

properties of XOR that x 2 XORed 1 means what? Complement of x 2. So, you can 

represent this as x 1, x 2 complement, x 3. So, you see that, from this x between this x 

and this x XORed alpha, that is only 1 bit which has been changed. And essentially, the 

idea is that f x XORed with f x XORed with alpha should be a balanced function.  

So, essentially, should be still balanced; and what we say is that, there is also another 

way of representing this, so we call this as strict avalanche criteria or often referred as 

SAC. When we also say that it satisfies propagation criteria, something which is called 

propagation criteria of order one, order one why? Because the rate of alpha was equal to 

1; so, the rate of alpha was equal to 1 in this case. 

So, similarly, you can understand since I have said propagation criteria of order one, I 

can also have propagation criteria for order two. So, what does it mean? I will just make 

the rate of alpha to be two and check for a similar property. 
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So, idea is that we are always trying to find out distinguishers from a random mapping. 

So in a random mapping, if you change one bit of the input, you are expect to get half of 

the output bits to get changed. So, this idea, what we are trying to do as a designer is try 

to maintain that all the property looks meaningly random; trying various kinds of test and 

ensuring that really the function  looks like random. So, you see that when we define 

something which is called f x f x XOR alpha and say that weight of alpha is 1, we say 

that the S-Box or the Boolean function satisfy what is we know as the strict avalanche 

criteria, but higher order SACs are also possible when more than one input bits change. 

So, both the SAC and the higher order SACs together make what something which is 

called as the propagation criteria. So, you see that can you Can you see that where these 

propagation criteria can be useful in terms of linear and differential crypt analysis? 

Immediately you can see that if you maintain all these things, then you essentially get a 

good differential property. 

Because what you doing here is basically subjecting the input to a differential, various 

kind of differentials; so, remember your different distribution table. So, what do you do 

in your difference distribution table? You are subjecting the input to differential, means 

what? You are considering various cases where you have given a differential to the input 

and you are checking that what is the possible output differential. So, basically, what you 

are doing is that taking one instance of the cipher or the S-Box and applying an input and 

checking its output and maintaining a differential, say alpha, and giving an input, say x 



XOR alpha, and again obtaining the output, and then you are obtaining what is the 

corresponding differential between f x and f x XOR alpha. If you can show that half of 

the cases, I mean, if it is a uniform distribution, then you are not then you will get a 

distribution table, which is seemingly quite strong; which is I mean which you really 

cannot  exploit so much for doing a differential attack. So, if you see that the previous 

study of non-linearity was helping  something to welcome linear crypt analysis, whereas 

this particular study is helping to somewhat protect against differential crypt analysis. 

(Refer Slide Time: 35:03) 

 

So, therefore, given any Boolean function, we can actually make certain transformations 

and make it satisfy SAC. So, what it says here is, consider a Boolean function f x and 

consider a non-linear singular matrix, say 0,1 matrix of dimension n cross n. So, what it 

says that for each way of the matrix A, if this property satisfies, that is, f x XORed with f 

x XORed with gamma is balanced, where gamma is the row of the matrix A, then 

actually g x, which is equal to f x A satisfies the SAC. So, do you see that why it is true? 

So, also, it is called trivial if you follow the definition of SAC. 
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So, let us see what  it says - that g x is equal to f x A satisfies SAC. So, we have we have 

to try to understand why it does so - right? So, if you say, if you claim that g x satisfies 

SAC, then what is the property that g x should satisfy? Given any alpha, given any alpha 

such that weight of alpha is equal to 1, g x XORed with g x XOR alpha should be 

balanced. So, what is g x? This means that f x A XORed with XORed with alpha A 

should be balanced. Instead of x, we have written x XOR alpha. So, you see that what it 

means is, f x A XORed with f x A XORed with alpha A should be balanced; and what is 

the property that you have? First of all, what is this x A XORed with alpha A? What is 

alpha A? So, give any matrix A, I define that A ,suppose A has got various rows like 

gamma 1, so suppose A is a matrix, you have got gamma 2, and similarly, you have got 

say, some gamma n rows, so what does alpha A represent? So, remember that alpha has 

got weight of only 1, so what does it represent? What does alpha mean? Column or row? 

It means so for example, you can just imagine that alpha is equal to 1 0 and so on 0. So, 

what does alpha A represent? First row? You are you are you are you are you are having 

alpha at the beginning and then A - right?. So, you have got the first row, so you have 

got gamma 1 here, only one row which is gamma 1. So, what you are basically saying, is 

that f x A XORed with f x A XORed with gamma 1 is balanced,  and what was my 

design criteria? Design criteria was the f x XORed with f x XORed gamma is balanced. 

Another thing is important here, is that, this non-singularity property of the matrix - 

why? Because, what we have showed here is that f x A XORed with f x A XORed 



gamma 1 is balanced; and in order to ensure that this particular function f x A, if this 

therefore, if this matrix A is a non-singular matrix, then this this function will look 

exactly like the f x XORed gamma function. 
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So, if this function A is a non-singular matrix, then f x A and f x will be in the identical 

way, there will be one to one relation between the both between both. Therefore, what 

you see that, if the condition is that there is a non-singular matrix of dimension n cross n, 

and such that, if each row of the matrix A, if f x XORed f x XORed gamma is balanced, 

then g x equal to f x A, satisfies the strict avalanche criteria. 



(Refer Slide Time: 39:34) 

 

So, we will just see one example in order to understand. So, consider like x 1 into x 2 

XORed with x 3, which does not satisfy SAC - why? Just consider this example, say 

alpha is equal to 0 0 1, so if you address this, if you obtain f x and I would like to obtain f 

x XORed with alpha, then what does it mean? I am not actually flipping x 1 x 2, but only 

flipping x 3; so what does it become? It becomes x 1 x 2 XORed x 3 XORed with 1. 
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So, if I now take the XOR between these two are obtain one, and which is not a balanced 

function. Do you see this? Therefore, what am saying is that f x is equal to x 1 x 2 



XORed with x 3. So consider alpha is equal to 0 0 and 1. So, what is f x XORed with 

alpha? What is x XOR alpha first of all? It is equal to x 1, x 2, x 3 bar, right? So, 

therefore, that means, that f x XOR alpha is x 1 x 2 XORed with x 3 bar, so what does it 

mean? It is equal to x 1 x 2 XORed with x 3 XORed with 1, I can write in this fashion. 

So, now, if you take f x XORed with f x XOR alpha then what do you obtain? You 

obtain only 1, because this part and this part gets cancelled. 
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So, now is this function a balanced function? No, because everything is 1, therefore, it 

does not satisfy the strict avalanche criteria. So, we will see how we can make it satisfy 

strict avalanche criteria. So, which means that we have to find out that particular matrix 

A; and here is an example so, without going  how to find, we will see that it works like 

you take A, where A is equal to 1 0 0 0 1 0 1 1 1. So, what you have to do is that you 

have to find out e 1, e 2, and e 3 such that, f x XORed with f x XORed e 1 is balanced, f 

x XORed f x XORed e 2 is balanced, and f x XORed f x XORed with e 3 is also 

balanced. So, therefore, here also, some example e 1, e 2, and e 3, and you note that all 

these rows or rather all these vector are also linearly independent. Why is that important? 

Because we would also make the matrix A as a non-singular matrix. It should be an 

invertible matrix, it should have full rank. 

So, this matrix A, essentially will look like this, and now you can check actually that g x 

and defined is like f x A will actually satisfy the strict avalanche criteria, which means,  



if you make this transformation of the input variable say x, using this particular function, 

or rather using this matrix transformation, then this composed function or transformed 

function will actually follow the strict avalanche criteria. 

So, which means, that if there is a particular Boolean function which does not satisfy the 

strict avalanche criteria, you can actually make it satisfy the strict avalanche criteria; and 

not another thing, that what you have done, is that you have just taken x and multiplied 

that with an invertible matrix. 

So, therefore  by my previous discussion, the non-linearity function of the f x and f x A 

are actually the same; so, therefore, this particular transformation f x a does not disturb 

the non-linearity of f x. So, therefore, without disturbing the non-linearity of f x you can 

actually satisfy the strict avalanche criteria also. Therefore, if you know how to make 

good non-linear function, which does not satisfy the strict avalanche criteria; after that 

you can actually make, satisfy strict avalanche criteria without disturbing the non-

linearity. Do you follow that? 
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So, therefore these are some things which you can just keep in your mind  that for any n 

variable Boolean function actually, there is an upper bound to what the non-linearity can 

be. So, we will not prove this, but actually, you can show non-linearity of any n variable 

Boolean function is actually lesser than 2 power n minus 1 minus 2 power n by 2 minus 



1; and this works when n is even. So, you see that n by 2 must be an integer; and these 

functions are sometimes refers to something which is called Bent function. 

So, these are called Bent functions and actually, they  can be shown that they satisfy the 

propagation criteria for all value of alpha for all orders, but there is a problem with bent 

functions also. The problem is that, it is actually an unbalanced function; so what does it 

mean? The number of zeros and ones are not the same, can you say why? So, therefore, 

this Bent function has got a non-linearity of maximal value. So, the non-linearity of the 

Bent function is actually equal to 2 power n minus 1 minus 2 power n by 2 minus 1; for 

all of that cases, it is lesser than that. So, therefore, the non-linearity of the Bent function 

is actually equal to 2 power n minus 1 minus 1 power n by 2 minus 1. 
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So, now, can we relate to the fact that why it is an unbalanced function? So, we will just 

give a second to it, I will come back to it. Therefore, this is an example of a Bent 

function. You can take like x, There are four variables x 1, x 2, x 3, and x 4, you just take 

f x is equal to x 1 x 2XORed with x 3 x 4; so this is an example of a Bent function with 

four variables. So, if it is a Bent function, what do you expect the non-linearity of this to 

be equal to? 2 power of 4 minus 1 minus 2 power 4 by 2 minus 1. So what is that equal 

to, how much does it work to? To 6. So, we can check that all four variable Boolean 

functions, actually they have a non-linearity which is not a bent function, you have a 

non-linearity which is less than that. So, there are some affine properties like, if you take 



an f, which is a Bent function then, so is f XORed with affine function so, if I take this 

and I XOR that with x 1 XORed x 2, or something like that, then still the non-linearity 

does not change. Similarly, you can also see for any non-singular binary matrix A and if 

you do a similar kind of transformation to your inputs, then it still remains Bent, the Bent 

is does not changed. 

So, now, I again come back to the problem that again why Bent functions are not 

balanced? So, you can see that, since Bent functions maintain a non-linearity of at least 2 

power of 2 power n minus 1 minus 2 power n by 2 minus 1.So, therefore, if I consider 

the distance from the non-zero function, still then the distance should be 2 to the power n 

minus 1 plus I mean plus 22 n by 2 minus 1. So, therefore, the number of zeros in a 

balanced function is how much? 2 power n minus 1. So, therefore, you see that the 

number of ones is  actually more than 2 power n minus 1 plus 2 by n by n by 2 minus 1. 

So, why I have written minus also here? Because, actually, what am considering is that 

all one functions also. If you maintain that, if you look for both the functions then 

actually you can ensure that you are not anyway, you are not able to obtain that number; 

you are not able to maintain the number of zeros or number of ones to equal to 2 power n 

minus 1. So, therefore, that is not possible. So, Bent functions are not balanced, that is, 

the idea, although it maintains high amount of non-linearity, but they are not balanced. 
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So, therefore, this is the idea which I have already told you. So, actually, what you can 

do is that you can actually create balanced non-linear functions. So, therefore, I am not 

really going to this, what it just says is that you can take some linear functions and you 

start concatenating them. 
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So, you can just see this and you will obtain that if you take so, 2 power n minus k k-

variable linear function, where k is greater than n by 2, and start concatenating linear 

truth-tables then you will obtain a n cross k-mapping which is non-linear. Therefore, you 

can just take it as an extra and try to work out. I mean, you can just also prove that the 

non-linearity of this will be actually greater than 2 power n minus 1 minus 2 power k 

minus 1, it is also be balanced and it can be made to satisfy strict avalanche criteria also. 

So, therefore, the question is the S-Box which you design is good against linear crypt 

analysis and differential crypt analysis. So, not only the component is good, but they 

have to satisfy high non-linearity like satisfy propagation, etcetera. But also the problem 

is that their non-zero linear combinations also should satisfy these properties. So, 

therefore, it is a quite challenging problem to design a good S-Box. 
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So, I will just conclude with this that S-Box designing is quite complex. Although you 

have to satisfy so many things and then also finally what you can ensure, you can end up, 

is that this leaks informations in the form of some side channels and things like that. So, 

therefore, it can happen. Although you do so much mathematics, you can actually break 

these ciphers in minutes even after all the hard work. 
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So, then the other classes of attacks or algebraic attacks, which are not really touched 

into. So, actually it is quite hard to design a good S-Box, so therefore, I just conclude 



with this, these are the properties which would satisfy balanceness, non-linearity and also 

strict avalanche criteria; and also high algebraic degree, that is, number of and products 

in your algebraic normal form should also be high. 
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So, you can take this an exercise, that is, you can enumerate 8 distinct linear functions in 

5 variables, x 1, x 2, x 3, x 4, and x 5.So,you can see you can just choose 8 distinct linear 

functions in 5 variables. So, you just take 5 variables and form 8 possible linear functions 

and then concatenate their truth tables to obtain an 8 input, 5 output function. So, you can 

see just that why it works? So, you can just take these functions, linear functions and you 

start concatenating their truth tables. So then, you store the resultant mapping as an 8 

cross 5 S-Box like, what we have seen for DES for example and other S-Boxes. So, 

question is that what is non-linearity of your S-Box and does it satisfy strict avalanche 

criteria? If not, then modify the function to do so. So, you can take this an exercise along 

with your previous submission, which is still pending like that DES S-Box. You also 

submit this as an exercise. 
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So, these are the some of the references that I followed. Seberry’s paper is quite 

interesting, you read that; and then, there is also Nyberg’s paper which you can read that. 

So, next day, we will talk about modes of operation of Block Ciphers. 


