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Few other Cryptanalytic Techniques 

Today’s class will be on some other cryptanalytic techniques or we shall be discussing 

about something more developed kind of attacks against block ciphers. So, we have been 

discussing about block - I mean, block cipher cryptanalysis. We discussed about 2 major 

cryptanalytic techniques: one is called linear attacks and other one is called differential 

cryptanalysis. 
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We will now see something which is more advanced and something which is more 

developed compared to them. and actually some I mean it is about. You have got a set of 

tools and you have to apply a tool to a given class of ciphers, right. Therefore, you do not 

know the cipher will succumb against which kind of attack which means that have to be 

knowledgeable about all possible techniques to cryptanalyze and the moment you 

propose a block cipher, you have to certify that the block cipher actually passes through 

so many such number of tests. But these tests are not very strictly formulated. Therefore, 

it will vary depending upon the properties of the cipher. So, we study the properties of 



the cipher and know how the attack works and then we have to design or rather tailor the 

attack according to the given cipher. 
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So it is a therefore, that is the whole so in In today’s class, we will discuss about 2 major 

classes of attacks. One is called boomerang attack and other one is called square attack. 

Now, why we have chosen these 2 attacks, I will come to that very shortly. 
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But before we go into these 2 attacks, this is an overview of some common cryptanalytic 

techniques. We can say that there is a whole lot of repository. We have been discussing 



about linear and differential cryptanalysis. We also have differential-linear cryptanalysis 

and then there is something called impossible differential attacks and there is something 

called truncated differential attacks, higher order differential attacks, probabilistic higher 

order differential attacks and something which is called integral attacks. 
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Then there is boomerang attack, rectangle attack, slide attack, interpolation attack, square 

attack and we also have something, which is called side channel or fault attack. 

Therefore, these are not very conventional kind of cryptanalytic methods, but rather 

exploit the implementation weaknesses. Side channel attack falls into that class and fault 

attacks are those, I mean in the cipher there is sudden fusion of or rather either due to 

intentional intentionally the fault is induced or accidently the fault can be induced. When 

we study the faulty cipher text and fault free cipher text, from that you try to deduce the 

key.  

Fault is also a very important issue nowadays because the moment, you are going into 

smaller and smaller technologies like nano scales and things like that, faults become 

more obvious. So, that amount of study is also done and there is some class of attacks 

called correlation attacks or statistical attacks also. This is actually something like you 

study various kinds of properties; this is something which we have done previously also. 

We have seen in case of classical ciphers, we have been doing various kinds of statistical 



techniques, evaluating various like the [cususky] test, the mutual index coincidence test; 

all of them were essentially statistical tests. 

So there is something which is called correlation. I mean it is very hard to draw line 

between one attack and the other attack. Actually, you can see the differential attacks and 

correlation attacks are vastly connected. Then there is more advanced kind of attacks 

called algebraic attacks. What it does is that, it studies the boolean functions of each 

obvious ciphers and tries to see whether your boolean functions can be [expanded] in 

some technique or can be solved essentially. 

Therefore, you form an algebraic set of equations and try to solve those system of 

equations and there was quite a very significant progress in algebraic attacks and lot of 

stream ciphers were shown to essentially succumb against algebraic attacks. It was 

supposed to pose a threat against AES also at some point of time, but it has really not 

sustained and AES is probably got strong against algebraic attacks. 
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So, that is a debatable issue, but in today’s class, we will essentially discuss more about 2 

classes of attacks, but why are we discussing about boomerang attacks? First, I will try to 

stress on that point. So, we have been seeing in our previous discussions on differential 

attacks that our objective was to eliminate high probability differentials. Therefore, the 

idea was that if we can eliminate high probability differentials, then we should guarantee 

security. 



So, for example, we can show that if the upper bound of any possible differential is a p 

that means all differentials are having a probability which is less than p. So, then thumb 

rule is that if you try for say 1 by p number of texts, then you can break the cipher. So, 

what does it mean? If I am able to if I am If I would like to increase the security then I 

would try to reduce the value of p. 

So, differential cryptanalysis gives us this sort of idea that if I am able to reduce the 

probability p of any differential of the complete cipher, if the cipher has got R rounds 

and if I am able to reduce this probability for say, R minus 1 rounds, that was the idea of 

differential attacks, then we should be able to guarantee more security. 
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We will see actually this folk theorem is wrong. Therefore, there are 2 classes of attacks 

which exploit the incorrectness of these assumptions. One is called impossible 

differential attacks. Although, we will not be discussing on this attack, it mainly shows 

that if there is a differential whose probability is actually sufficiently low, then also, you 

can exploit that for your attack. Therefore, it says that if you can show that certain 

probability, certain differentials will never occur then also, you can use that as a pruning 

methodology. 

Therefore, again you guess the key and again see that whether a particular differential 

holds or not. So, in that case, it is just the opposite of a differential attack, kind of. 

Therefore, certain differential can never occur; that is the idea, but the boomerang 



analysis is more interesting because what it says is that even if no                                                                                                                                                                                                            

differentials for the whole cipher has got either high or low probability, then also you can 

break the cipher using a differential style technique. So, that is more alarming. Therefore, 

it shows that actually, although your total cipher or complete cipher is quite secure in the 

sense of differential attacks or that means if an even in a sense of impossible differential 

attacks because that means that it has neither high differential nor very low differential, 

but even then you can try to mount a differential kind of attack to break the system. 
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So therefore, we will be discussing about this attack which is called the boomerang 

attack. Therefore, the boomerang attack basics are essentially upon I mean in In case of 

differential, you are considering 2 such plaintexts but in this case, we will consider 4 

plaintexts. So, we will be considering P, P dash, Q and Q dash and we will say that P, P 

dash, Q and Q dash form something which is called as a Quartet. So, the attacker what he 

does is that he essentially chooses first of all P and P dash and does a decryption and 

then what he does is that he obtains Q and Q dash by decrypting 2 corresponding cipher 

texts. Therefore, the idea is as follows. 
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So, what you do is that you take P and P dash. These are essentially 2 plaintexts and then 

what you do is that you apply the encryption function and I denote that by E and then 

you obtain 2 cipher texts. So, you obtain say for example, C and C star or C and C dash 

and from here, you do certain thing and arrive at another 2 cipher texts. I call them D and 

D dash and then you decrypt D by E inverse which is the decryption function and you 

also decrypt D dash and you obtain 2 plaintexts and I call them Q and Q dash. Here, this 

P, P dash and Q and Q dash form something, which I call as a Quartet. 

( )… 

No, you don’t know. 

Then how do we get the quartet? ( )… 

So, you know that we have been discussing about various models of attacks. There are 

some models of attacks, which are called like chosen plaintext attacks, known plaintext 

attacks. In those cases, what we do assume that we can essentially encrypt or decrypt 

even if I do not know the key and if you remember that I am giving you certain practical 

scenario where that is possible as well. So, these are various models of attacks. In linear 

attacks and differential attacks also, we have assumed that we know the plaintext and 

cipher texts. How? Because that belongs to certain model like known plaintext attack or 

a chosen plaintext attack. Therefore, in this case, it is also an example of chosen plaintext 



cipher text attack because in this case, we are not only choosing the plaintext, but we are 

choosing the cipher text also. 
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Therefore, this P, P dash, Q and Q dash form something which I called as a quartet. 

Now, coming back to your slide, you see that there are 4 queries that we have done. You 

are doing 2 encryption queries for P and P dash and you are doing 2 decryption queries 

for D and D dash. Therefore, how many queries you are doing? You are doing 4 queries. 

(Refer Slide Time: 10:28) 

 



Therefore, now you can actually In our diagram, we have seen that we had the cipher E. 

What we can do is that we can think that this E is composed of 2 smaller ciphers. I call 

one of them as E naught; the other one as E 1. So, E naught is the first half of the cipher 

and E 1 is the second half of the cipher. Half does not mean exactly half; half just means 

portion - the first portion and the second portion. So, what you do is that you do 

differential characteristics for the half ciphers. What do you say? You take E 0 and you 

give that so before What you do is that you obtain differential characteristics for half of 

the ciphers. Even if you are not able to obtain good differential characteristics for the 

entire cipher, suppose you are able to obtain differential characteristics for half the 

cipher. 

What you do is that you obtain characteristics for E 0; you obtain the characteristics for 

E 1 inverse. So, the characteristics for E 0 is denoted by this particular characteristic that 

is, you give delta and you obtain delta star and for E 1 inverse, you give lambda and you 

obtain lambda star. These are your individual half characteristics for half the cipher that 

you have done again by observation and suppose that these particular characteristics 

have got reasonably high probability. Although, you do not have good differential 

characteristics for the total cipher, but there are reasonably high probability for the half 

ciphers. Is this portion clear? 
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What you do after this is that you start observing something like this. Therefore, the 

same diagram you can observe by splitting up into 2 parts - E 0 and E 1 and also that for 

the entire quartet. Now, you come to this diagram and I will show you with What you do 

is this. Now, the same diagram what you do is that you see that P and P dash and you 

observe by breaking up the cipher E into 2 components; one of them is E 0 and the 

second component is E 1 and you obtain the corresponding cipher; that corresponding 

cipher is denoted by C. 

The same thing you have done for P dash also. P dash also has You operate E naught and 

you operate E 1 and you obtain C dash. Now, you assume that this P and P dash maintain 

a constant differential, delta. In that case, if I assume that E 0 passes a differential say, 

delta to delta star that means that at this point, we have an expected differential of say, 

delta star. 

Now, what you do is that you have obtained C and C dash, you apply an ex-or function 

you take the cipher text and you apply an ex-or function of say lamda and you obtain 2 

ciphers texts called D and D dash and then what you do is that you start the opposite 

operation; that is you start the decryption. So, you take this and you apply the decryption 

function which means you apply E 1 inverse and also, apply E 0 inverse. Same thing you 

do for this also. We apply E 1 inverse; we apply and obtain E 0 inverse and then you 

obtain, what do you obtain here? Q 1 and Q dash. Now, you see that for E 1 inverse, you 



have basically given a differential of lamda and therefore, what you would have expected 

here is that the differential here is lamda star and same for here also. In that case, what is 

the corresponding differential existing at this point between these 2 things? What is the 

corresponding differential? It is the same as the delta star. Therefore, you obtain delta 

star here also. 

Now, since we know that delta gives delta star; by symmetry, we know that delta star 

will also give delta. So, what you obtain is that you are expecting here a differential of 

delta again. So, it is something like a boomerang. You see that you are throwing a 

differential of delta and you are expecting back differential of delta. So, the idea is you 

know it is similar to a what you like a boomerang. Therefore, you throw something and 

you obtain back something. 
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So, this is the entire basic principle behind the operation of boomerang attacks. You see 

that this same thing is being denoted here by some equations, but what is the idea is that 

at this point like E 0 Q and E 0 Q dash, I am expecting here a differential of delta star 

because if I know that here the differential is delta star - we discussed why it is delta star, 

then it implies that here, I am expecting a differential of delta. 

So, note this characteristic is same as inverse of E 0. Therefore, it is same as that of 

therefore, this we discussed already that I mean if you have characteristic for E 0, we 

have the similar characteristics for E 0 inverse also. Thus the difference in the plaintexts 



in Q and Q dash is the same as that in P and P dash and hence the name boomerang. 

Therefore, you are throwing a differential and you are obtaining back the differential; 

you are getting back the differential. 
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So we will study one cipher to understand how the boomerang attack works. The name 

of the cipher is called COCONUT98 and it was given by S Vaudenay and I will just give 

the reference for this particular work and it was given with the idea that they essentially 

give a theory which will always protect against differential cryptanalysis. So, it was very 

nice theory; it was known as the decorrelation theory and using a decorrelation theory 

they proved that actually you cannot obtain any good differential characteristics for the 

entire cipher. 

But then people again tried, I mean, found out this boomerang attack and showed that 

although you are not able to do a differential cryptanalysis, but you can still do an attack 

because half of the cipher was not so strong. The full cipher was quite strong, but half of 

the cipher was not really strong. So, this attack was given by a pro from UC Berkeley; 

his name is David Wagner. So, I will give a reference for that also. If you are interested, 

you can download and study that paper also. Therefore, what is the idea? The idea is that 

we are essentially using a 256 bit key in this coconut cipher and this is essentially a 64 

bit block cipher. It is something like a feistal cipher which we have studied. 



So, this is roughly speaking. It is not so important for us, but just observe that there are 

The idea of a COCONUT 98 cipher was that it had 3 components. It got 2 feistel layers 

and in between, there was some M layer. I call M layer; actually, it is a decorrelation 

layer, but for our simplicity, let us call it an M layer. You know that if there are 4 For 

each feistel layers, there are 4 rounds. So, there are 4 rounds at the beginning and 4 

rounds at the end. How many keys are required - round keys? I required 8 round keys. 

This is the very simple key scheduling algorithm which says how you are generating 

those 8 round keys. You take k 1; Suppose 256 bit key, you can decompose into 8 

components, each of them of size 32 bits, right. Therefore, you take k 1 of 32 bits and 

that suppose that is that gives you the first round key, for second round key, you can just 

x-or that with k 3 and you can obtain the second round key, for third round key you x-or 

that with k 4 and you obtain this and for fourth round key, you x-or these with k 3. You 

see that x-oring with k 3 and k 4 alternatively. 

Therefore, you can actually implement this quite easily in hardware or any other 

implementation. So, you take k 2, you x-or this with k 3; you take k 2, x-or k 3, x-or with 

k 4 and again you take k 2, x-or k 3, x-or k 4, you x-or that with k 3 and you obtain the 

fourth 8 round key. 
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So, it is a very simple technique to generate all the round keys. This is how the coconut 

cipher looks like. The details are in this case again elaborate, but broadly this means, it 



looks like this. It is a 64 bit block cipher. So, that means that these 2 components are 

each of 32 bits and you see that this network just looks like a crystal cipher; it looks like 

DES. Therefore, there are 3 parts. There is a M layer between 4 feistel rounds. There are 

4 feistel rounds here, 4 feistel rounds at the end, in-between there is a layer, which we 

call as M layer. 
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So, let us look into the feistel rounds. The feistel round just remembers us of DES. You 

see there are 2 parts - left and the right part. You take the right part and bring it to the 

left. So, that forms your left part and in order to obtain the right part, you take y and pass 

that through a function, x-or that with x and obtain the corresponding output. Here, you 

see that you have first of all done a round key and after that you have done a certain 

sequence of operations and there is something which is a constant c also. 

What is the operation size here? The operation size is 32 bits because this part is only of 

32 bits. You see that there are some components here. One is called phi, one is called 

Roll 11 and then there is an integer addition and then, there again is an application of the 

function phi. What is Roll 11? Roll 11 means you are doing a 11 bits circular shift to the 

left. It just means you take the value, I mean the entire output and you just do the circular 

shift to the left by 11 steps. 
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Let us see, what is the function phi? The phi function is this. That is, you take x. What is 

the size of x? 32 bits. So, you do an x mod 256. What does it mean? Again x mod 256 

means you are taking only 8 bits. You are taking all the 8 bits and you are basically 

neglecting the other part and that you are passing through the SBox which actually takes 

8 bits and produces a 24 bit output. So, this is the example of an expansion SBox. You 

take this S-box and you obtain 24 bits here and then you multiply that with the constant 

called 256 and then, that you add by the integer addition with x. What is the size of x? 32 

bits. You add this and you do modular 2 power 32 addition and you obtain the 

corresponding output. So, this is the basic idea behind the function phi. Is this clear? 
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Then what we do is that we see what M layer is. The M layer is as follows. You take xy. 

What is the size of the xy? 64 bits. Then you use the components K 5, K 6, K 7 and K 8 

of the key and what you do is that you take xy, x-or that with K 5 K 6 and multiply that 

with K 7 K 8. Note that this multiplication is in the Galay Field 2 power 64 and this is 

the reduction polynomial which they have used. Anyway this is just the details. So, this 

M layer is actually designed based on something, which we call as the decorrelation 

theory and the idea is as follows. That you see one particular you can. If you do a 

differential analysis of this layer, then what do you observe? If you do a differential 

analysis of this particular layer then K 5 K 6 gets cancelled. You see that because you are 

doing an x-or here. All of you see that. 

You take xy and you also take another x dash y dash and you know that x dash y dash x-

ored with K 5 K 6, multiplied with K 7 K 8 and you take an x-or between them, what 

you get is this particular K 5 K 6 cancels with other K 5 K 6 and what you obtain is the 

differential, but the differential is multiplied with K 7 K 8. Therefore, what does it mean 

is that if K 7 and K 8 are unknown, then the probability that a non-zero input differential 

will produce an output differential is actually 1 by 2 power 64 minus 1 because if I keep 

on changing the values of K 7 K 8 and how many choices of K 7 K 8 are there? There 

are 2 power 64 choices and I know that the 0 value can never occur. 



So that excludes that 0 value. There are totally 2 power 64 minus 1 non-zero differential 

that are expected and out of them, I am interested in only one case. So, the probability is 

one by 2 power 64 minus one, if the values of K 7 and K 8 are unknown, but if the values 

are K 7 and K 8 are known, then automatically, the differential gets fixed. But for a fixed 

key, the output differential does not depend on the input value. That is the main idea, but 

it depends only on the input differential. So, if I fix the key, the output differential 

actually does not depend upon the input value, but it depends only on the input 

differential. 
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If I do not know the value of K 7, K 8 then it is very hard to predict the differential. All 

the differentials have got uniform probability. Therefore, you see where is the problem? 

If I do a differential - normal standard differential attack here, analysis here. You see that 

I have got M xy; this is equal to xy x-ored with K 5 K 6 and multiplied with K 7 K 8; 

forget the modulo at this point. So, I take again M x dash y dash. I call that x y dash; that 

is some other text basically. 

What you do is that you take x y. I call that x y dash. You x-or that with K 5 K 6 and 

multiply that with K 7 K 8; so, this is the other pair. Now, if we do a differential of these 

2 things then what is the expected differential at the output? This will depend upon xy x-

ored with x y dash, but this differential is multiplied with K 7 K 8. That means that if I 

am doing a differential analysis then what I am trying to do is that I am trying to force a 



differential at the input of your M layer. So, we call that M layer. I am trying to force the 

differential here and I am trying to compute what is the probability distribution of the 

differentials here. 

So, here you see that if I do not know the value of this corresponding key called K 7 and 

K 8, then I do not have any preference of any key. I mean for every key, you essentially 

see that if I change this value then automatically, if I change this delta here then I get a 

different delta here. I change this K 7 K 8 to another value, I obtain another delta. 

Therefore, if I do a similar kind of differential distribution table then I will see that the 

probabilities are called uniform. For every key, you will get that I mean for every choice 

of key, the probability is 1 by 264 minus one because the 0 differential will not occur. 

That is the idea. 
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So, what you see that using this particular technique, the designers were able to impose a 

uniform distribution among the differentials. Therefore, doing a standard differential 

attack at this point is quite hard because of this. Because now, we have been able to 

develop certain technique through which you can have a uniform distribution of the 

differentials. So, that is the basic idea of the decorrelation theory. 
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Now, we will do a differential analysis of the phi function also. What it says is that you 

suppose you know This is how the phi function was looking like. Only so Let us do one 

thing; let us subject it towards a certain differential. So, we take e j. What is e j? The e j 

is an input differential, a 32 bit differential in which j th bit is flipped. So, it flips only 

one particular bit. You see that j is from 8 to 31. Then what is the differential here? It is 

actually 0 because here we are taking only the last 8 bits and has not varied those bits. 

Therefore, here you are obtaining the same input. S-box also does not compute on the 

same values and it really does not matter what goes inside. What about this part? Again 

you see that e j is transferred here. Now, you see that you are basically doing an integer 

modular 2 power 32 addition, where one of the components is flipped by 1 bit and the 

other part is held fixed. 

Then the probability that in the output you will find that the j th bit is flipped is actually 

half. Why? Because it depends upon whether your carrying bit at that point is 1 or 0; 

because here we are doing integer addition. So, integer addition means that there is an 

input carry also. If your input carry is 0, then automatically it means that the j th bit of 

the output is also flipped. So, therefore, if we do a little bit of analysis, you will see that 

this probability, if you study the carry bit, it is actually close to half; for this class, you 

just assume this fact. 

[But where is this carry bit occur] 



Here, you are doing an integer addition, you know, normal addition. So, you are taking 

this and you are taking this; so, this is a normal integer addition. Although I am saying at 

this point the differential is 0, but the actual value is not 0. You are processing on 2 

inputs, but the idea is that for both the cases - that is, for both the differential pairs, you 

are essentially processing on the same input at this point, but where is this part of the 

input. Here only the j th bit is flipped and what is the probability that in the output also 

the j th bit is flipped. That depends upon your carry and how you are able to control the 

carry bits. 

You can actually show that the probability is very much close to half. so this point So, 

actually, the carry bits follow very neat probability distribution. That is, I mean not an 

objective of our class, but we can actually see at this probably I mean you can actually 

prove theoretically what is the probability that a particular carry bit will be 0 and 

obviously, when it is 1. It is actually half plus half to the power of I plus 1 where I is 

your bit location; we can actually theoretically prove that also. 
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Anyway that is not important. What is important is that you are able to get a differential 

in your file layer with a probability of half. So, the ROL 11 was the circular shift by 11 

bits. Therefore, what it will do is that it will take the e j input. (Refer Slide Time: 30:54) 

You see that here what you have obtained is, if you are given an input differential of e j, 

you are able to obtain an input differential here also of e j with a probability of half, but 



what are the subsequent operations? (Refer Slide Time: 31:06) Here, the subsequent 

operations are that after a phi layer, we are doing a Roll 11 and then again do an integer 

addition and again followed by a phi function. 

So, you see that in this phi function that is one integer addition. When you are adding 

with c, that is one integer addition and when you are doing phi function that is another 

integer addition. Therefore, now what is the probability that so If I do a e j here, I should 

be able to obtain the e j here also and the probability of that is half; that we have seen. 

Therefore, due to this rotate 11, this j bit gets shifted to j plus 11th location; it gets 

shifted to the left. 

But what about this plus function? If I would still like to maintain the differential at the j 

plus 11th location, then also I need to control these carry bits and similarly, also for the 

phi function. Therefore, we may think that what we have obtained for one integer 

addition, we may have to multiply the probability for the 3 successive integer additions 

but, actually, it is not so because these 3 integer additions I can squeeze them and write 

as 1 integer addition. 

Therefore, the idea is because of this property that you know that if I do x plus a mod 2 

power 32 and then add b mod 2 32, this I can write as x plus c mod 2 power 32 which 

means, although you have to control 3 integer carries, 3 integer additions, we actually 

can squeeze them into one single integer addition. Therefore, the probability that this 

input differential of e j will actually yield an output differential of e j plus 11 is actually 

plus 2 half and not half into half into half. 

Similarly, you can obtain other such kind of differential also. For example, you take e j 

and you x-or that with e k, the probability that this will yield e j plus 11 x-ored e k plus 

11 is actually 1 by 4. Why? Because you take half and you take another half. So, you 

multiply them because they are independent. So, you get 1 by 4 assume them to be 

independent. 
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We will study one good characteristics propagation for this 4 round. It is quite 

interesting. You see that suppose I subject this feistel network to e 19 and I subject this 

part to e 18 x-ored with e 8. so what is the corresponding Because of the feistel network, 

this gets transferred here. So, you obtain e 18 x-ored with e 8 here. Therefore, what is the 

expected differential of the corresponding feistel function here? 

(Refer Slide Time: 33:49) So, you see that we have studied is that if I take e j x-ored with 

e k, it gets transformed to e j plus 11 x-ored with e k plus 11. So, here we take e 18 and e 

8 and add 11 to this index and add 11 to this index also and remember that when we are 

doing this addition on the indices, then we are doing a mod 32. So, what is 18 plus 11? 

29. So, you obtain 29 here and what is 8 plus 11? It is 19. 

Now, you obtain a differential here, which is equal to e 29 x-ored with e 9, right. If I take 

an x-or between these two, you see that e 19 gets cancelled; so you have only e 29. So, 

this e 29 now gets to the right side and you obtain e 18 x-ored e 8 here. What is the 

expected differential here? Now, at this point, it is e 29 plus 11. What is 29 plus 11? 40. 

So, you take 32, it is 8. 

Therefore, e 8 gets cancelled and we have only e 18. So, you see e 18 comes to right and 

to the left what comes? e 29 comes. So, if you take e 18 here, then add 11 to 18, what do 

you get? You get 29. So, that cancels this one. Actually, you should get 0 here. I have 

written this wrong; actually, this will be e 0. So, this is 0 and you have obtained here e 



18. Therefore, if you see that if you throw a differential of e 19 and e 18 x-ored e 8, then 

the probability that you will get here e 18 and 0 is actually, approximately equal to half 

into half into half into half. So, that means, it is actually equal to 2 power minus 4. 

So, this is a standard differential analysis. Therefore, if I obtain a differential in this 

nature, by symmetry, we can also do the same thing for the backward thing also. Like, if 

I throw e 18 and e 8 here or rather e 18 and 0 here, we should obtain back e 19 and e 18 

xored e 9 or e 8 with the probability also of 2 power minus 4 or close to 2 power minus 

4. 

Therefore, I obtain a differential for the forward transformation; I also obtain the 

differential for the inverse transformation. Now, what is my setting? The setting is that I 

have obtained differential for half of the cipher - one part of the cipher and similarly, I 

try to obtain the differential for the we have obtained that for the other half of the cipher 

also. Now, see that you can relate it to the boomerang attack. What you can do is that 

you can call this as e 0 and you can call this part as e 1. 
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So, you take or include the M layer into the e 1 cipher. What you can do is that you can 

write this in this form like you can take the cipher e and I assume that it is composed of 

psi 1 M and psi 0. So, psi 0 is the first part and the other part is psi 1 and M. Therefore, 

you apply M layer and the psi 1. What is psi 1 and psi 0? They are the feistel layers. So, 

you can basically break your cipher into 2 component ciphers. 
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So now you have obtain In order to obtain the full round characteristics, you see that you 

need to find some way to take advantage of these half round characteristics. You have 

obtained some half round characteristics and I would like to obtain some way some 

technique find out some way through which I can take advantage of these half round 

characteristics. The M layer creates problem for standard DC; we have discussed why. 

So, the boomerang attack helps us to control the effect of the M layer. What it does? The 

key idea is like this: that since M is affine, if I fix the value of the key and if you throw 

an input differential, then the output differential is actually expected with the probability 

of 1. 

So, that is the basic idea. Therefore, if I throw in a differential of lamda star, then your M 

inverse, that is, the inverse of your decorrelation of the M box or the M layer, then you 

are expecting a differential of M inverse of lamda star. What is the idea therefore, What 

is the probability of this? The probability of this is 1, if this key is fixed and the central 

idea behind boomerang attack is that I am not really interested in the value M inverse 

lambda star; in differential attacks, we were interesting in the value of a differential at 

the output of the R minus 1 th round 

But in boomerang attack, I am not interested in the value of the differential. What I am 

interested is in the fact that this particular differential M inverse lamda star exists. That 

is, there is a particular differential for which this actually holds. 
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So, coming back to this diagram, I mean, you can see this. That is, when we are throwing 

this differential here - that is delta here, I was not really bothered about what is the value 

of this delta star. What was important to us was the fact that actually you had some delta 

star. I am not really bothered about the value of the delta star. 

So then what I do is that I take some differ I mean some So, I obtain this and I apply 

some lamda here and some lamda here. I am again not bothering in the value of this 

lamda star. What I am bothered is that both the ciphers end up in having the same 

differential. Then again this property holds that I give delta and I get back delta as the 

differential; that is what I am more interested in. I am not really bothered in the values of 

the internal differential; so, that is the key. That is another fundamental difference 

between the idea of boomerang attacks and normal differential attacks. So, in that case, I 

am not really bothered about whether I throw in a differential of lamda and I obtain back 

differential of M inverse lamda and what is the value of the M inverse lamda. I know that 

there is an M inverse lambda which exists. 
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Therefore, what does it mean? It means that it does not matter that M inverse lambda star 

is unknown to the attacker. What is important is that it depends on the differential and 

not on the cipher text values. We define these 2 probabilities. That is the first probability 

is that on the psi 0 layer that is the on the first part, we have a probability and I designate 

that as if we throw in delta, you get back some delta star. So, I denote that by some p 

delta star and similarly, for the inverse transformation, we throw in lamda, you get back 

lamda star. So, it is the inverse feistel ciphers notation and I denote that probability by 

say Q lambda star. 

In this case, you can see that your success probability is actually square of this and 

square of this and a sigma over this. Why? Because there are four - there are 2 

differentials of this nature and there are differentials of this nature. I am really not 

bothered in the value of delta star or in the value of lambda star. I take a sigma over these 

2 things and you can see that these I mean this was worked out for an example delta 

lamda equal to e 10, e 31 and it was found out that this probability was around 1 by 

1900. That is some empirical value. You do an analysis and you find out and you can do 

a similar kind of analysis like we have seen for our half differentials. 

Now, you see that what you have done is that we have thrown in a differential of e 10, e 

31 and you are expecting that this differential should come back to your Q and Q dash. If 

I do not expect anything for this e 1 0 then what is the probability, and if I guess only on 



the half of the stuff then what is my probability? My probability doubles; my probability 

becomes equal 1 by 950. Therefore, now you should be able to understand the actual 

attack. 
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Therefore, the actual attack works like this. What he does is that he expects that ok, you 

throw in the differential of as I told you (Refer Slide Time: 42:10) So, you throw in a 

differential on P and P dash of these values, that is, e 10 and e 31 and we expect that 

because of the boomerang attack, you should get back Q x-ored with Q dash and that 

should be also be equal to e 10 and e 31, but let us not assume anything on the first part; 

let us just assume on the second part. Why? It is because the probability of that actually 

increases and I will have more number of cases, which satisfy this fact. So, my 

probability is around 1 by 950. 

So you know that Therefore, how many queries you are doing for one boomerang effort? 

You are doing actually 4 queries. Therefore, if you do inverse of this, that is, to obtain 

950 quartets, then for obtaining these quartets, you have to do 4 encryption or decryption 

queries. Four, I mean chosen plaintext or cipher text queries. So, totally you do 950 into 

4 - that is, around 3800 chosen plaintext or cipher text queries. 

This should give you one useful quartet; that is the idea. This follows from the fact that if 

there is an experiment whose probability is p then we can actually prove that you repeat 

that experiment for say 1 by p number of times, then you obtain success. You can 



actually prove this fact. Therefore, there is an experiment whose probability is p and if 

you keep on repeating that experiment for say 1 by p number of times then you should 

get at least one success. The expected number of trials to get one success it actually 1 by 

p. 

So therefore, here if my probability is 1 by 950, I should repeat this for how many times 

- 950 times and in each of those trials, there are actually 4 queries. So, in total there are 

950 to 4 queries. If I do so many queries, I should get one useful quartet. Useful quartet 

means what? I get back the desired differential for Q and Q dash. It satisfies this relation; 

that is the success of my experiment. 

So, thus with around sixteen into so, if I repeat this I will I mean this is just the empirical 

value. If I repeat this for 16, I will explain why 16, that is if I repeat this experiment for 

16 into 3800 queries then you should get back 16 useful quartets because through this 

you have obtained one useful quartet. If you repeat this for say, 16 times, you will obtain 

again 16 such quartets. So, 16 useful quartets are expected and why 16? Any idea, why 

16? 
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So, this should be clear, if we observe what I am trying to obtain. First, let us try to 

obtain the k 1 key. So, what you do is this, that is, you take one useful quartet, 

concentrate on one useful quartet and you guess the value of k 1. So, we have the fact 

that if P, P dash, Q, Q dash forms a useful quartet, then after one round of encryption, the 



exact difference must be e 31 comma 0. That you can see again using similar techniques 

as I told you, doing that plus 11, we can actually prove that this will be equal to e 31 

comma 0, for both P, P dash pairs and Q, Q dash pairs. 

(Refer Slide Time: 45:41) So, maybe you can observe, if you study this. That is, what 

you are doing here is that you are taking a differential of e 10 and e 31. If you take e 10 

and e 31 here and if you apply e 10 and e 31 here, what do you expect here? 31 plus 11. 

If you take mod 31, how much did you get? You get back 10. So e 10 cancels with e 1. 

You obtain here 0 and this particular e 31 comes to the left. So, you are expecting after 

one round, e 31 comma 0, if it is a useful quartet. 

So, therefore, that is what we have written here particularly. You are expecting after one 

round, e 31 comma 0 for both P, P dash and similarly, you can show it for Q, Q dash 

here as well. For wrong keys, actually half of the points, it will hold and half of the 

points, it will not hold. What does it mean but, For the actual key, large number of cases 

you will find that actually, I mean it will always get satisfied for the actual key. 

What does it mean? It means that you have got something, some event with the 

probability of half. Which means what? That is, information is equivalent to one bit. I am 

trying to estimate how many trials I require. You see that if I tell you that there is a 

particular coin tossing experiment and you know that probability for unbiased coin; the 

probability of head is half. So, what does it mean? The fact that the head falls, carries 

one bit of information. Now, what I am saying is that for a random key guess, you have 

got half probability that this particular event will hold and not hold. 

The fact that you are able to obtain rather I tell you that this particular thing holds carries 

a half probability. That means it carries one bit of information. Therefore, you should be 

able to get 1 bit of k 1 through this information. That means how many keys do you 

have? Now, you have P, P dash, Q, Q dash each of them reveals 1 bit of information -

equivalent to 1 bit of information; that is, 2 bits of information and how many bits are 

there in k 1? There are 32 bits. Therefore, how many trials do you required to do? You 

are required to do 16 trials. 
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Therefore, if you do 16 trials, you should be able to obtain the entire 32 bit keys. So, this 

is the statistical idea, statistical guess. Therefore, the idea is that if you do 16 useful 

quartets, you should be able to obtain the entire key k 1; that is the idea. Similarly, you 

can obtain the entire key that is the entire 128 bit key and the complexity of this attack. 

Let us not going into the details, but this is the idea and let us try to at least understand 

that why boomerang attack works whereas, normal differential attacks fail. The 

complexity of this attack was around 2 power 16 because you are guessing the sixteen I 

mean you are guessing the k 1. So, it is actually not 2 power 16, it is actually 2 power 32 

because you are guessing k 1. So, what is the size of k 1? 32, therefore, this should be 

actually 2 power 32. 
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I will just conclude our talk with another kind of interesting property. I mean we can 

actually study this. We will again come back to AES. We have talked about feistel 

ciphers and we will just again conclude with AES. What was the idea of AES? Let us try 

to see how disturbance works in AES. I think I have already told you once in a class; that 

is, let us disturb one particular byte of AES. If I disturb one byte of AES, how many such 

cipher text can I obtain 256 ciphers how many plaintexts can I obtain? 256 plaintexts. 

So therefore, if I call this as an sort of Therefore, I can keep on disturbing these bytes 

and I can obtain say P 1 to P 256 corresponding values of plaintext. I call this set as 



something which I call as an active set. So, I call this as an active set. These are various 

inputs that you have taken. 

(Refer Slide Time: 50:16) Therefore, coming back to the definition, you see that let this 

be an active set of 256 states that are all different in some of the state bytes and are all 

equal in the other state bytes. So, I call such kind of set as active sets. It means that 

certain byte locations are active and certain byte locations are not active. So, active 

means for all them you are essentially, they are different, but for the other locations they 

are same. So, again like in our diagram you have seen that for these locations, all of these 

things have got the same values, but these values are all distinct. So, all of them are 

distinct values. 

So, what is the property of this active set? If you add them, you get 0. You get 0 because 

these are all same, but what about this? This takes all possible values. If you add them, 

you will get back 0. You can see that this property in AES remains invariant till 3 

rounds. I mean, if I impose or rather give plaintext of this nature, then this property does 

not get disturbed for 3 rounds of AES. 
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So, that is the basic idea behind an attack which was called as square attacks. So, you 

have an invariance that if you add them, you get 0; that does not change for 3 rounds of 

AES. So, if you take x-or of these things, you would get 0, for all possible values of i and 

j. So, that is the basic idea, which does not change. 
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Let us see the invariance, why the invariance? I mean, it is quite easy actually. What you 

can do is that you consider this set in which only one byte is active and then what you do 

is that you observe the propagation of the active set through 3 AES rounds. 
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What is the first layer? The first layer is sub byte. What you do in a sub byte? You are 

basically considering a one to one map. Therefore, if you observe sub byte, you take one 

particular byte value here and all of these values are distinct; all these values are distinct. 

Therefore, if you do a sub byte operation after this or an add round key operation here, 

then essentially, we will find a one to one map for every byte location. Therefore, in the 

output of this also, you will get all possible values. So, the property does not change 

because of the sub byte or the add round key. 

What about the shift row? The shift row will just transpose this; it will not change. What 

about the next column? You see that in the next column, if in one particular column, 

there is one disturbed byte, then in the output of the next column, all the 4 bytes get 

disturbed. Therefore, you again obtain an active set, but only thing is that the disturbed 

byte propagates to all the 4 rows of one particular column. 

(Refer Slide Time: 53:26) 

 

So, that is the idea. Therefore, now if you come if you see this if you see that the column 

in which there is Therefore, this is what would be the justification why it does not change 

and why it remains in invariance. For the second round, the second round add round key 

and a sub bytes also does not alter the property of 4 active bytes. In the second round, the 

shift row transposes one active byte to each column and the mix column converts each 

column to have 4 active bytes. So, this is if you have solved the example of diffusion, 

which I told you to study for AES, this should become quite obvious. 
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What about the third round key? You will see that in the third round, you essentially 

have the same property which holds, but now you essentially have the entire state matrix 

which is disturbed. Therefore, all the i, j locations are active now. Therefore, now I 

mean, predicting beyond this, that is the third round mix column becomes hard. That is a 

little bit tricky, but you will see that this also follows, if you observe the matrix of mix 

column. 



So this you can see. Although it does not remain an active set, still the property that if 

you sum, then you get 0 still holds. That means you do what you are doing that x-oring 

the column of a i j and remember that the mix-column was a linear transformation. 

Therefore, you can now bring out this in this fashion. and you can show that actually So, 

these are all x-ors. This is not 02 x-ored with a i j, it means 02 multiplied with x-or of all 

a i js. Maybe, I could have written the bracket here, rather than written here. Similarly, 

for this also, this 03 multiplied with x-or of a i plus 1 j and here also; this is simple. 
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Therefore, you x-or them to get back 0. Therefore, this property does I mean if you add 

all the byte locations, the fact that you get back 0 does not change because of the third 

round mix column also, but the sub byte will change it actually. You know that in the last 

round, if you consider a 4 round AES for example, then you know in the last round, there 

is no mix column. Just consider a very simple, smaller portion or smaller variant of the 

AES, where the last round does not have the mix column. What you do is that you just 

guess the key, you go back to the sub byte layer and you check whether the input of the 

sub byte layer if you add all of them, whether you get 0 for all the i j locations. 
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If it is a correct key then it should hold; if it is a wrong key it should not hold. The 

probability of this fact is 1 by 256. Again, you know that if you repeat this for 256 

number of trials, you should able to identify the key. That is the basic idea behind this 

attack, but you can just ponder upon certain points. What we have discussed in this 

basically is a square attack on 4 round of AES. What you can just think is whether the 

square attack will work for 5 rounds, will it back for 6 rounds of the AES and will the 

same attack work for AES 192 or an AES 256. 
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So you can just think on these problems. The references that I have followed are 

“Provable security for block ciphers” by S Vaudenay. These are freely downloadable; 

you can download them. The boomerang attack by FSE, published by FSE 99 by David 

Wagner and also, this book is not really available. You can follow this particular work, 

the block cipher. 

So this was written by Daemen Knudsen and Rijmen. This is also freely available. This 

SQUARE cipher was actually an ancestor of the AES; somewhat similar kind of idea 

exists there also. The designers themselves gave this attack and therefore, the name 

square attack actually. This was originally proposed for square, but it works for AES as 

well. 

(Refer Slide Time: 57:11) 

 

So, the next day’s topic we will discuss. You see that it is quite difficult to design a block 

cipher. It is not so easy to make it secure and the center idea is on the S-boxes. So, we 

will again concentrate on the overview of S-box design principles and discuss on that. 


