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Ok. So, in today’s class, we shall discuss about a particular cryptanalytic technique 

which is known as linear cryptanalysis. So, till now, we have seen the construction of 

block ciphers, but this is the first time when we will see how standard block ciphers, that 

is, modern block ciphers like d e s or a e s or any ciphers of these families or 

cryptanalyst. 
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So, linear cryptanalyst is a very powerful tool, and all the modern constructions of block 

ciphers are based upon this analysis, that is, first this analysis is done; the robustness is 

measured, and based upon that, we will decide at whether the given block cipher is able 

to protect against linear cryptanalysis or not, ok? 

So, the objectives of today’s class are as follows: first we will try to understand what is 

meant by linear approximations of non-linear Boolean functions, and then discuss about 

something which is called bias. So, what is the definition of bias that we will see, and 

then we will study a lemma which is known as piling up lemma to [und/understand] and 

that this lemma and these theory essentially was given by a paper by Matsui. So, all 

those who are interested can read that paper as well, ok? 
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So, the, after that, we will discuss about something which is called linear approximation 

tables, which is constructed for the s boxes, and follow that up with the actual 

performance of the attack, that is, how do we carry out the attack given all these previous 

things, like given linear approximation table, how do we really perform a linear attack, a 

linear cryptanalytic attack. So, this is a brief revision. So, we were discussing about 

product ciphers like d e s a e s as we discussed. Essentially all of them are product 

ciphers. So, most modern day ciphers are product ciphers, and essentially they [co/could] 

encompass a sequence of substitution and permutation, ok? 

So, these are also called iterated ciphers, and the description generally includes a round 

description, that is, that is the description of round. So, the rounds are applied one after 

the other, and that is also a description of the key scheduling algorithm, that is, how the 

round keys are derived from the given input key, ok? 
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So, consider that, so, essentially we can sort of define this as follows: that suppose the 

round function is denoted by the variable g. So, g takes two inputs. So, what are the two 

inputs? It takes the round key corresponding round key k r and it also takes the 

corresponding current state which is represented by w r minus one. 

So, therefore, this current state is the output of the previous round, and then g essentially 

acts upon these two variables, that is, w r minus 1 - that is the previous state, that is, the 

output of the previous round, and the corresponding round key and produces the output 

of these particular round, that is, the r th round, ok? 

So, w r is equal to g which is a function, which is acting upon w r minus one and k r. So, 

and, and, so, your input essentially that is the plain text can be denoted by w 0, right? 

Because w 0 is the input to your 0 th round. Where cipher text is w n r, where n r denotes 

the number of rounds of the cipher. Therefore, after n r number of operations of the 

rounds, the output that you get is the corresponding cipher text. The decryption therefore, 

you can easily understand that since g has to, I mean since we have to decrypt the 

corresponding cipher, therefore, g has to be an invertible mapping, ok? 

So, therefore, in order to do the decryption, we require the transformation g inverse; that 

is the inverse of g. So, these are very simple sort of you can say a mathematical way of 

stating or what we have studied as product ciphers, ok? 



So, the definition of substitution permutation networks, I mean in order to understand 

how linear cryptanalysis works, you will consider a very toy example; you consider a 

simple toy example; a simple construction of an s p n cipher. See imagine that the s p n 

cipher that we have you, this is [mo/more] generalized view of seeing an s p n cipher. So, 

when s p n cipher will generally will act upon a block length, right? So, therefore, it is a 

block cipher. Since it is a block cipher, so, imagine that suppose that the length of the 

block is equal to l into m, where both l and m are integers. So, and your substitution 

block or a substitution [bo/box] box acts upon l bit elements. 

So, therefore, it acts upon say zero one and I denote that by zero one l; which means the 

bit string of length l, and it produces also another bit string of length l. So, that means 

what is the total size; I mean this s box acts upon l bit value and produces an l bit value. 

Therefore, this is a, imagine this is a bijective mapping, ok? 

So therefore, this is, [comm/commonly] we have seen that this is commonly known as 

the s box. The p box or the permutation box is a permutation of l m bits therefore, it is a 

permutation of l m number of bits. So, therefore, it acts upon the entire block of the data 

and it permutes the bit; transposes the bit. So, therefore, this description should be quite 

clear, and, I, I think we can figure out how many s boxes do we have. How many s boxes 

do we have? 

(( )) 

m number of s boxes. Therefore, this is a repetition of the same s box and there are m s 

boxes. So, except the last round, all the rounds will perform m substitutions using s 

followed by a permutation. Why I have read, why I have return except the last round 

because the last round does not have the permutation step. So… 

(( ))  
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This is, this is not, this is a fiestal cipher and not an substitution. This is not a fiestel 

cipher; this is an s p n cipher. So, in case, when I am, when I am writing as an s p n 

cipher, then the substitution box that I am considering has to be bijective. 
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So, if you remember definition of s p n ciphers, all the transformations were invertible 

transformations, right? Therefore, the s boxes also invertible here. So, we can write this 

as an in an algorithm formal so. Therefore, the input essentially is at 0 1 stream of how 

many bits? l m bits. Your k 0 or rather the corresponding input k is also an l m bit key. 

So, the output that you produce is also another l m bit output; I mean l m bit sub strings. 

So, the key, and, and imagine that the key schedule generates all the round keys, that is, 

it generates k 0 k 1 to k n r, ok? 

So, how many round keys are generated? n r plus one. So, you can compare these 

algorithm or the way the algorithm has been stated with their corresponding description 

of the a e s algorithm. Even the, even the d e s, you can also, you can also represent in 

this format, ok? 

So, just imagine how you can write the d e s, for example, in this format. So, I leave it to 

you an exercise; you can do it. Even although the s box of your d e s algorithm was 

actually an non-invertible s box, but you can actually describe this in this format. You 

may be you can just think over it. 

So, therefore, in this case, you see the w 0 is equal to x. Therefore, you takes the, you 

take the plaintext text or the input x and assign it to the variable w 0, and after that, what 

you do is that you apply the corresponding rounds, ok? 



So, if we apply round 1 to round n r minus 1, so, what you do in the rounds? You take 

the state w r minus 1, you ex-or it with the corresponding key, right? You mix the key. 

So, you take k r minus 1 and you ex-or that. So, this symbol represents an ex-or 

operation, and then what you do is that for each of the s boxes and the m s boxes, you 

take the corresponding component and I denote that component or rather the, I denote the 

input to the s box by the variable u, and u r means the r th round and I means the, i th, i th 

block, the i th or rather the i th word. So, there are how many s boxes there? There are m 

s boxes, so there are m words. 

So, I take u i odd and I apply that on the, I mean pass it through the s box, am i obtain v i 

r. So, that is the output of the s box. I can do it for all the s boxes, that is, for, for all the 

m s boxes. Then the output that you get, which, which I represent as, for example, 

represent by or denote by the variable v, you take that and perform a permutation and a 

transposition. So, remember the transposition can be also denoted in this way. It is just a 

permutation of the bits, and there are how many bits? There are l m bits, right? 

So, you take this l m bits, and, and assume a permutation denoted by p and perform a 

permutation over the bits. So, therefore, this is a corresponding output. So, you keep on 

repeating this, and finally, when you you do an ex-oring with the n r minus 1 th key, and 

then, you remember the that in the last round, that is only the s box application, right? 

So, there is no permutation. So, you just do the s box; you just obtain the output of the s 

box in the last round, ok? 

So, in this case, the key whitening steps are two - this is the key whitening step and this 

is the key whitening step. (Refer Slide Time: 09:30) These two steps are commonly 

known as the key whitening step, ok? 
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This perform to do the next mixing perform to do mixing with the key. So, therefore, 

[pict/pictographic] I mean, I mean, I will see, so, therefore, if I represent this in a 

pictographic format, this would, this is how it will look like. So, you take a plaintext and 

this is the corresponding k 1; I mean you can imagine that is the, key, key layer. 

This is the another key layer; this is the another key layer and so on. (Refer Slide Time: 

10:01) There are some key layers and there are four s boxes. So, you can just imagine a 

very simple version of that cipher. So, there are four s boxes and each of the s boxes 



work on four bits. Therefore, it also produces another four bit output. Now, these outputs 

are being transposed by a permutation box, ok? 

So, therefore, this wiring represents a permutation transposition. So, you obtain next 

output, that is the next, and therefore, you again perform a key mixing, again apply an s 

box, again do a transpose and you keep on doing that, ok? 
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So, this is how you, I mean cryptographically would have represented the, [ci/cipher] the, 

the cipher, and I call as a g pig cipher, because it is a gini-pig cipher in our case. So, this, 

this cipher, essentially, essentially, so, if I write, I mean in terms of the variables l m 

which we have denoted, what is the value of l and m? All of them are equal to four and 

the number of rounds also equal to four. So, I am considering a four round cipher, ok? 

So, the plaintext is therefore 16 bits because that is l m bits. So, therefore, it acts up on a 

16 bit block and it is divide into 4 groups of 4 bits each. The s box works on each of the 

4 bits, and therefore, you can just take an example s box. So, this, have an, have an 

example s box could be like, ok? 

So, therefore, this is just a substitution table. You take all the 0, 1, 2 and so on. The 

elements will run till f, right? Because there are [six/sixteen] sixteen elements possible 

from zero to fifteen and imagine these are the corresponding outputs. 
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So, this is the, this is the substitution of that of the inputs. So, this is the s box table. So, 

you can represent the table in the form of an, I mean you can represent the s box in the 

form of a table, right? So, the permutation table also will look like this. So, permutation 

acts is the just transposition on the bits, and how many bits do you have? You have got 1 

to 16 bits, right? And therefore, you perform a transposition, and this is how… 

(( )) so, we will take 0 1 2 perform S-Box transposition. 

Yeah 

(( )) 
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No, see, I mean if you just see the table, observe the table. It should be a substitution of 

elements from 0 to 15, right? Your s box acts upon how, [ma/many] how many elements. 

I think this should be, this which are clear till now. So, we have an s box, right? So, your 

s box acts upon how many elements? Four, four bit elements and it produces another 4 

bit output. So, I am considering a bijective s box. So, what, what are the possible values 

of your input? The input can run from 0 to f; the output can also be 0 to f, but the only 

thing is that when I am considering a bijective mapping, it has to be a one to one 

mapping, right? 

(Refer Slide Time: 13:00)  
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So, therefore, you, now, if you see the table, it is exactly a one to one, one to one 

mapping. So, there are no repetitions. So, each, each, each o[f]- I mean this row and this 

row all of them are just permutations of the numbers from 0 to f, is it clear? So, this is 

your [sub/substitution] s box table and permutation table, ok. 
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So, therefore, the, bit, bit reflection that your examples of d e s and a e s. So, these are 

different s boxes have been used. So, there are, I mean if you modify or you vary this 

structures slightly, you can actually describe your d e s and also your a e s algorithms. 



So, [diff/different] in, in case of for example, d e s not only one s box are used but there 

are actually eight different s boxes, and may be in case of a e s, you do not have only one 

linear transformation but you have an additional invertible linear transformation. So, 

therefore, you know [than/that] a e s that are two linear transformation, right? One in the 

shift row and other one is a mix column. 

But the, [ques/question] the point is that you can actually represent the a e s and the d e s 

in such kind of, using such kind of structure. So, therefore, the question that we will 

address in today’s class is the gpig cipher secure. 
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So, we will try to find out a technique through which we can analyze the security of the 

gpig cipher. So, it is a toy example, no doubt, but we can probably scale; we can easily 

scale this approach, and the security of the cipher whether it is good or bad depends 

upon, how, how good it fairs again this attack. They are very important class of attack. 

So, [con/consider] so, another thing which is given to be told is that when I told about the 

cipher, I told about the round structure, but we have to also address the key scheduling, 

right? 

So, imagine that you have a thirty two bit key, it is too small but it is ok for a toy cipher. 

So, what you do is that as simple, you take a simple key schedule, and what you do is 

that, you, you know that k r is made of, [six/sixteen] is made by taking sixteen successive 

bit from the key starting at four r plus one bit position. So, what does it mean? Suppose 



this is your input key, right? Therefore, input keys are thirty two bits, so what you do is 

that you assign your k zero and you start from the 0, from the, from the first bit. So, you 

take this and you assign, see you assign sixteen bits. So, you have to assign this, this, this 

and this to your k 0. (Refer Slide Time: 15:18) For your k 1, you start from here, you 

take 1 0 1 0 and you start it again, you take four words. 

So, you take 1 0 1 0 1 0 0 1 0 1 0 0 and 1 1 0 1 and you assign that to your k 1. Similarly, 

for k 2, you start from, this, this point, this location. Therefore, you see that you are 

starting from four r plus 1, because when your round is 0, you are starting from one first 

bit. When your round is one, that is, r is equal to 1, you start from the fifth bit location. 

So, that is this point. Therefore, you start from the next word essentially. 

So, you can assign an, an, and you can do this and you can obtain all the round keys. You 

can, you can obtain k 0, k 1, k 2, k 3 and k 4. So, key scheduling is just that, right? 

Therefore, you just take the input, input key, and from there, somehow you have to 

create the round keys, ok? 
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This is very simple key scheduling algorithm but it is ok for our purpose. So, all of us 

follow the key scheduling algorithm. So, now, what is linear cryptanalysis? So, the 

[li/linear] objective of linear cryptanalysis is to obtain linear approximations relating the 

plaintext and the states of the cipher prior to the last round. So, for example, in our toy 

cipher, we have we have four rounds.  



So, what we will try to do is that we will try to create linear approximations. Why do I 

say linear approximations? Because the s box is non-linear, right? There are no linear. 

So, it is, if the s box is properly defined or properly designed, then there are no linear 

expressions which can actually, I mean linear expressions in terms of the input variables 

and the output variables of your s box, ok? 

You can only at best say that this linear approximation holds with so much probability 

but not with a probability of one, because if it holds with probability of one; it means 

your s box is linear, but as I told you in from the beginning that your s box is a non-linear 

component, right? 

So, therefore, our objective will be to take the inputs, that is, the plaintext and the states 

of the cipher prior to the last round and obtain a linear approximation. The probability of 

the approximation, so, there is a probability should be bounded away from half to be 

called a good approximation.  

So, therefore, if your probability is say p I, so in ideal case, for, from the point of view an 

attacker, the probability should be one, right? So, your, the, so a difference from a half is 

actually equal to half, so that is the maximum. Similarly, if there is an expression in 

which holds a linear expression, which holds with the probability of zero, what does it 

mean? The naught of that holds with the probability of one. Therefore, what we are 

interested is the is on the deviation from half, ok? 

So, the attacker has got a large number of plaintext and cipher text. So, therefore, the 

attacker [ob/obtains] obtains a large number of plaintext and cipher text and carries on, 

carries the, carries on the attack. So, what kind of attack module is this? This is the 

known plaintext attack. 

So, now, we start guessing the last round keys and decrypting the cipher text to obtain 

the state previous to the last round. So, what we do is that once we have got this 

approximation, we start to guess the last round key and, we, we decrypt the cipher text 

and see whether the, and we obtain the state of the last round, and see, now, since we 

have the plaintext and also the state [out/output] output of the last round, we see whether 

the expression that we have found out holds or not. If it holds, we keep it as a possible 

key or otherwise we throw away the key. So, this is our strategy, ok? 
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So, we will see more details on this. So, we check if the approximation is satisfied, we 

update a frequency table for all the candidate keys. The correct candidate key will have 

the largest tally if the experiment is perform for a large number of times. So, this is the 

statistical analysis. So, therefore, you know in statistics, we have to take large number of 

samples for something to hold, right? 

So, therefore, we have to keep on repeating this for large number of times. You note that 

the attacker would, the attack would not have worked if the cipher was a random 

function with all approximations having a probability of half, ok? 

So, you note that if your cipher was actually a random function, suppose random 

function is the same that from the input, it [provide/produce] it produce your random 

output. Then these approximations would have held with because what is the output of 

your linear, of, of your of your linear approximation? It is a, binary, binary expression, 

right? So, the output is either 0 or the output is either 1. 

So, in case of a random function, half of the times it will be 0 and half of the times it will 

be 1, right? Therefore, the probability that the attack, I mean the, that, that, if, if the 

cipher was modeling actual random function, the expression, the probability that an 

expression would be either 0 or 1 was actually equal to half, ok? 



So, what l c does a linear cryptanalysis does, is tries, it tries to distinguish the cipher 

from a random function and that is the underlying principle of all class of attacks. It tries 

to distinguish a given instance from a random function. So, a, [ran/random] say a random 

function is very hard to actually obtain, ok? 
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So, what we are trying to do is that we are trying to make it as look like random, right? 

and therefore, the objective or property or underlying principle of any attack is to find 

out that property which distinguishes the corresponding cipher from a random function 

and this is one way of doing it and very interesting way of doing it, but in order to do 

that, we require a lemma and we call that lemma as a piling up lemma. So, we will try to 

see what is the piling up, what is the statement of a piling up lemma, ok? 

So, you consider independent random variables. So, first of all consider two independent 

random variables, and I denote them by x 1 and x 2. So, so, imagine that suppose assume 

that the probability that x 1 is equal to 0, this random variable takes the values of 1 and 1. 

So, imagine that your probability that your x 1 is equal to 0 is equal to p 1. So, 

[there/therefore] therefore, the probability that x 1 is equal to 1 is automatically equal to 

1 minus p 1, right. So, also assume that your probability that your x 2 is equal to 0 is 

equal to p 2, and therefore, at the probability that x 2 is equal to 1 is equal to 1 minus p 2. 



So, what is the probability that x 1 ex-or with x 2 is equal to 0? It is equal to, so when 

can x 1 ex-or x to be equal 0? Both of them are 0 or both of them are 1. So, it is equal to 

p 1 multiplied with p 2 plus 1 minus p 1 multiplied with 1 minus p 2. 

So, if you rearrange this or rather if you substitute that epsilon 1, so, since we are interest 

in the deviation of the probability from half, so, you just substitute that epsilon 1 and 

make epsilon 1 equal to p 1 minus half and epsilon 2 is equal to p 2 minus half. 
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So, this deviation from half, we often referred to as the bias value. So, it is the bias of the 

random variable x 1 and this is the bias of the random variable x 2. So, therefore, if I, 

represented, represent now this expression in terms of epsilon 1 and epsilon 2, this is 

what I obtain - it is equal to two epsilon 1 into 2 epsilon 2; I mean it is equal to two 

epsilon 1 into epsilon 2. It is quite easy to understand. Do you see why? See, your p 1 is 

equal to epsilon one plus half and your p 2 is equal to epsilon 2 plus half, and what we 

had was p 1 p 2 plus 1 minus p 1 into 1 minus p 2. 

So, what is p one into p two? It is epsilon 1 plus half into epsilon 2 plus half, and what is 

1 minus p 1? 1 minus p 1 is equal to half minus epsilon 1, and what is one minus p 2? It 

is also equal to half minus epsilon two. 

So, you plug these values, it is half minus epsilon one into half minus epsilon two. So, 

what do you obtain? You see that epsilon 1 epsilon 2 states and actually it is equal to 



2epsilon 1 plus 2 epsilon 2 because you collect from here and here, and other thing 

which you get is equal to plus half, the other, other, terms cancel. 

So, now, what is the deviation of this corresponding output from half? It is equal to 2 

epsilon 1 2 epsilon 2, right? So, the output, that is, the bias of the expression x 1 ex-ored 

with x 2 the corresponding bias value is equal to 2 epsilon 1 into epsilon 2, right? So, if 

you repeat this, you can, you can apply mathematical induction and you can obtain it for 

x 1 ex-or x 2 ex-or three also, right? And you can continue in this fashion for n variables, 

right? 
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So, if you do that, this is what you obtain that the probability that x 1 ex-or x 2 ex-or x 3 

ex-or so until x n, this should be equal to half plus 2 to the power of n minus 1 into 

product of all the [bi/bias] individual bias values, ok? 

So, here bias, if you are considering say n number of n variables is actually equal to two 

to the power of n minus 1 into product of all the individual biases. So, you can just plug 

the value of n equal to 2 and check that. This is actually equal to the previous case, 

because n if I plug n equal to 2, this becomes equal to 2 and there are two product terms, 

ok? 

So, thus if x 1 x 2 and x n are linear approximations, then the bias of the linear 

approximation made out of these n equations is denoted by this formula. Now, imagine 



that all of these x random variables like x 1 x 2 and so on. Till x n and nothing but linear 

expressions, and what I am interested is, is, in computing the bias of the ex-or of this 

linear expressions. So, what is the corresponding bias value for that? So, in order to do 

that, what we do is that we compute the individual bias values of the expressions and 

then multiply the bias values, and then multiply that with two power of n minus one and 

that should give me the bias of the corresponding output, ok? 

Note that if one of the bias values is 0, then your corresponding bias becomes equal to 0. 

Therefore, what does bias being equal to 0 mean? 

(( )) 

Yeah. So, probability is half. So, probability equal to half means what? It is a linear 

expression, so you can imagine, you can just try with some examples and you will figure 

out that. So, that means if there is one single linear value and if you combine that, then 

you obtain again a linear expression. So, you just figure out that if one of the bias values 

is equal to 0, then the left hand side also computes to 0. 
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So, one reminder that we have to keep in mind is that the piling up lemma works only 

when the random variables are independent. So, we have, because we have multiplying 

the probabilities, right? So, see, in our case, we will assume this and go ahead, because 

essentially the idea is that since we are doing a key scheduling. If the key scheduling is 



proper, then all the round keys should be independent, and after I ex-or with the round 

keys, this state variables which I obtain, all of them are independent. So, they were is an 

assumption and this assumption works in practice. So, next we see how to obtain linear 

approximations of the s box. So, this is actually quite central to our discussion. So, please 

pay attention to this. 
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So, therefore, you can actually represent your s box as an m cross n table, right? So, what 

we do is that you can represent your input as [fro/from] running from x 1 to x m, and x 

i’s are the values which the corresponding random variable x i or capital x i take.  

Similarly, your output, you can represent, in, in the form of y 1 to y n and each of these y 

j’s are the values which the corresponding random variable denoted by capital y j take, 

right? So, your s boxes essentially a mapping from x to y, right? And these values, that 

is, random variables can take values 0’s and 1’s.  

So, note that the outputs are not independent among themselves or from the inputs; that 

means that if you fix the input, the output is decided, right? So, in, in the s box, if I fix 

the input, the output is automatically decided, right? 
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So, therefore, if I would like to compute the probability of this fact, that is, your x 1 or 

random variable x 1 is equal to the [va/value] value x 1. Similarly, x the random variable 

x m is equal to the value x m, and your y 1 is equal to y 1 and so on; y n is equal to y n. 

Now, I, I need to compute this particular probability. 

So, there are two cases - since I have fix the values of the input x the corresponding y 

that I am interested in may be a real output of the s box or, may, may not be the output of 

the s box, right? So, if it is actually I, if, if I fix this values in into the s box, if this output 

does not occur, then this probability computes to 0, right? This can never happen, and if 

this happens, that is, if, indeed if I fix the values of input to x one to x n, if the output is 

really y one to y n, then what is the probability? The probability is 2 to the power of 

minus m. You see, we are not doing two to the power of minus m plus n, why? Because 

these variables, that is, the y is are dependent upon these values of x, ok. 

Once we have fixed these values, these gets automatically decided, right? So, therefore, 

this probability is equal to either 0 or 2 power minus m depending upon whether your, 

[in/indeed] whether your, indeed, indeed fixing upon the x is gives you the 

corresponding wise.  
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So, let us consider a very simple example. So, the idea is that your inputs like x 1, x 2, x 

3, and x 4, and your corresponding inputs of the s box and your outputs are denoted by y 

one y 2, y 3, and y 4.  

So, this is the table, and I am highlighted certain portions of this table because you will 

be concentrating on these columns and rows. So, I am interested in computing an 

example of bias value, say x 1 ex-or with x 4 ex-or with y 2, ok? 

So, what is the bias value of this expression? What does it mean? It means I am 

interested in computing the number of cases when x 1 ex-or x 4 ex-or y 2 is equal to 0. 

So, you can observe that in this truth table, these yellow lines, that is, the yellow rows 

that that have drawn with, they are the cases that are interesting to be, ok? 

Why you can see that in all these cases, here x 1 is equal to 0; it is one over here, and it is 

one over here, right? So, if I take an ex-or, I obtain 0. What about this row? This is 0; 

this is 0, and this is 0; so, it is still zero, right? (Refer Slide Time: 31:27) Similarly, you 

can work it for the other rows also. 

So, let us do with this it is 0. This is 1 and this is 1. So, if I ex-or, I obtain 0, right? So, 

for all these yellow lines, and there are how many yellow lines? One, two, three, four, 

five, six, seven, eight; so, in this eight lines, these expressions is satisfied, but what about 

the other lines? The expression is not satisfied. 



So, we can see for example, the first [colu/column], the first row, it is 0 here; it is 0 here 

and it is 1 here; so, the expression is not satisfied, right? So, you see that this is our linear 

expression and your table although it is a non-linear mapping. There are some cases, for 

which, it will get satisfied, and for some cases, it does not get satisfied, ok? 

So, what is the probability that it get satisfied? It is actually equal to eight by sixteen that 

is equal to half. So, what is the bias value? The bias is 0. So, this, the [pro/probability], 

the bias of this linear expression is actually equal to 0. So, consider x 3 ex-or x 4 ex-or y 

1 ex-or y 4. 

So, this is another example which you can work, and I am, although I am not showing it 

actually, the bias in this case will turn out to be straightly more complicated. It is actually 

equal to minus three by eight. So, which means the probability is half minus three by 

eight, ok? 

So, you can just check whether it is or not. So, so, x 3 ex-or x 4 ex-or y 1 ex-or y 4, 

therefore, out of these two expressions, from the point of view of the attacker, these 

expression is more interesting to be than this expression, because the bias value of these 

expression is very small, whereas, the bias value of this expression is quite high, so, 

actually, equal to minus 3 by 8.  
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I mean so note that I am interested in the absolute value of the bias, and the bias in this 

case is minus 3 by 8. So, the absolute value is 3 by 8 which is quite high, and the bias in 

this case is 0, right? So, with this observation, we see that I can actually obtain 

expressions of this form.  
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So, so any expressions can be written in this form like you take, you take ex-ors and you 

do a i x i ex-or with ex-ors b i y i. So, here a i belongs to 0 1, and b i also belongs to 0 1. 

Thus each of a and b can be denoted by a hexadecimal number starting from 0 to f and 



they can be stored in the form of a table. Do you see that? So, you see when I am talking 

about x 1 ex-ored with x 4 ex-ored with y 2 equal to 0. I could have written this 

expression like this also, right? x 1 ex-ored with x 4 ex-ored with y 2 equal to 0. 

So, now, if you take the s box and number them like x 1, x 2, x 3, x 4, and y 1, y 2, y 3, 

and y 4, so, [thi/this] this particular expression x 1 ex-ored x 4, I can represent that as, 

you can take a another hexadecimal value which is equal to 1 0 0 1, and you can take b 

which is equal to 0 1 0 0, and now, consider sigma or rather you consider a big sigma of 

a i x i ex-ored with a big sigma b i y i equal to 0. So, I can represent my expression in 

this format also, right? Where i runs from 1 to 4 or and this expression also has got a 

similar sigma. 

So, therefore, this runs from i equal to one to four, you see that? So, therefore, now, I can 

actually represent this in the form of a table and all such kind of approximation, that is, 

all such kind of linear expressions, I can represent in the form of the hexadecimal values 

a and b.  

So, for example, this expression is for a and b, for the choice of a and b, right? So, I can 

find similar kind of expressions by varying this values of a and b, and how many values 

of a i is possible? There are sixteen values of a, and how many values of b are possible? 

Sixteen values of b. So, if I represent all these expressions in the form of a table, how 

many, [ex/expressions] what is the size of the table? It is a sixteen cross sixteen table, 

right? And each and what I can do is that in the table, each element will represent the 

number of times it actually matches and number of times it does not matches, match. So, 

what I do is that conveniently I just store the only the bias value and that is number of 

times it deviates from half.  
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So, therefore, if I represent this in the form of a table, this will look like this. So, you see 

that this is the value of b being varied and this is the value of a being varied. So, now, we 

again, if we look back into this expression x 3 ex-ored with x 4 ex-ored y 1 ex-or with y 

four x 3 ex-ored with x 4 will be 0 0 1 1 by the [simi/similar] similar example as, what, 

what we have done for the previous case, and y 1 ex-or y 4 will be 1 0 0 1. So, what is 

value of a 3 and 9? You just consider the third row and the ninth column. 

So, what is the value? 2. So, you see that t 3,9 is equal to two, and therefore, the bias in 

this case is actually 2 by 16 minus half. So, I can represent this in various formats. I can 

either store the value of 2 or I can store the bias value itself. So, in this case, I have 

actually not stored the bias value and this bias value comes out to 2 by 16 minus half and 

that is equal to minus 3 by 8. So, you, you remember the bias that we computed in the 

previous case. 

So, I can obtain a bias in this fashion, and for a any other expression or any other value 

of a and b, the bias value is equal to t a, b by sixteen minus half, and actually, there are 

lot many beautiful properties of this table. I, I can just show you certain things like may 

be if your, if your choice of a and b are both 0, then you can see that this values equal to 

sixteen. I guess you can easily figure out why, because if your a is zero, then all your 

cases you will get that value. 
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So, you will get all of the expressions all of the sixteen values will get satisfied, right? 

So, what are you doing it choose an a and b and we are adding the excess, right? So, 

therefore, in your, [tru/truth] so, therefore, your, if your truth table was like this, so, here 

x 1, x 2, x 3 and x 4, and your output was equal to y 1, y 2 y 3 and y 4. So, what we were 

doing is that we were varying this - 0 0 0 0 0 1. So, this is the corresponding truth table 

and I have got individual values of the y’s, right? So, note that if your a is equal to 0, 

then that means what? Your, it is always satisfied, right? 

So, therefore, if I take a is equal to 0 and b is equal to 0, then all the time my 

corresponding expression is satisfied, right? So, you see that. So, there are how many 

possible times? There are sixteen possible times, because I am varying the excess and all 

the sixteen times, I find that there is a match, right? 
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So, therefore, this value being equal to sixteen is quite obvious, but can you figure out 

why these values are eights? So, let us consider this column. So, what I am, what I am 

interested, is, is in this value l, I call that say for example, n l, that is, number of times 

you have got actually a your column is fixed to 0 but your a is varying, right? And only 

thing is that your a is actually greater than 0.  

So, so, what you have what are you doing? Here, in this case, you are you are keeping 

the a greater than 0 and you are varying the value of a, right? So, you note that, in, in the 



corresponding truth table, that is, since you have got all possible values of four bit 

values, if I fix the value of a, then you will find that an expression of these type, that is, a 

i x i will be [act/actually] actually equal to 0 half of the times, and half of the times it will 

be equal to 1, right? So, the moment I have fixed the value of b to 0, so in my expression, 

the second part goes to 0, right? 

So, what was my expressions format? It was like this - a i x i ex-ored with b i y i, right? 

so if I fix the value of b to 0, this term goes to 0, right? And I am interested in how many 

cases, this is equal to 0, and so, therefore, we, if, from here, we note that if I vary, there 

are total 16 number of possible cases, out of them, eight times this expression will hold 

and eight time this expression will not hold. So, therefore, this value of n l a, 0 should be 

equal to 8.  
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Another interesting property you can also find out. If I start adding up the columns, so 

you will find that if I start adding up the columns, that is, I keep on adding, so therefore, 

you will find that what I am interested is in computing n l a comma b and I do a sigma 

over all possible values of a which runs from 0 to 15. 
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So, in this particular case, you will find that your x that I can divide this particular case 

into two parts, that is, imagine that I am considering only the excess. So, therefore, you 

you can imagine that your, so what your, so, you can imagine that suppose your x value 



is equal to zero, the moment your x value is equal to zero, the assignment for y gets fixed 

because your s box is a fixed table, right? 

So, therefore, the expression that you are considering is in this case, this becomes equal 

to zero, and this is some value, right? So, therefore, you have for various values of b, this 

will be certain things, right? 

So, therefore, what I am interested is whether this is equal to zero or not, so that depends 

upon how your s box has been constructed, right? So, either in all the cases, so that that 

depends upon whether in all the cases, this can be equal to 0 or in none of the cases, this 

will be equal to 0, right? 
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So therefore, that means that this value, if your corresponding x that you choose is 0, is 

either equal to 0 or it is equal to half of the cases, right?  

Therefore, it is either equal to zero or you will find that not half actually for all the cases. 

It will be satisfied for all the cases. So, it is either equal to 0 or it is equal to 16. That 

depends upon your s box table, right? So, the moment I have fixed your x to be 0, your 

output y is decided, right? So, what I am interested is that whether sigma or rather ex-or 

of b i y i is equal to 0, so that depends upon your s box. So, if the, if that is, so, then, it 

will happen for all the possible values or it will never occur. 
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So, therefore, yours therefore, there are, there are, there are two possibilities - either it 

will be equal to 0 or it will be equal to 16. What about when x is not equal to 0? So, if x 

is not equal to 0, then you will find out that actually, if I, so therefore, this is gone. So, I 

am not considering these cases. So, how many possible non-zero values are there? There 

are fifteen non-zero values. So, you take, one, one value of x and you vary all the all the 

choices of a. 
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So then, you can apply the similar theory as this only replace a by b, and still have, still 

have got the same result, right? Right? Therefore, how many choices of possible a’s are 

there? There are sixteen choices. So, again, in half of the cases, this equation will be 

satisfied, and half of the cases, this will not be satisfied, because the moment you have 

fix the value of x, your y gets fixed, right? So, either that sigma b i or rather ex-or b i will 

be equal 1 or will be equal to 0. So, half of the cases, this is satisfied, and half of the 

cases, it is not satisfied, right? And therefore, you will find that, so, half of the cases 

means 8, and since there are fifteen non-zero values. So, you have got 15 multiplied with 

8 and thus works out to 120, right? So, therefore, you will find that if you add up, your 

sum is either equal to 120 or it is equal to 136. That you can check. 

So, your sum can be either equal to 120 or will be equal to 136. So, this result can also be 

generalized, but I just showed it, because with the example, things becomes easier. If it 

is, if you are not really convinced, may be you can go back and look into this.  
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So, coming back to our linear attack, so there are lot of interesting properties of these 

table. So, what we need to do is that we essentially need to form a linear approximation 

involving the plaintext key and the state before the last rounds which has got a good bias. 

So, that is our objective, and non-linear components in the ciphers are only the s boxes, 

so, we require to do the l a t table or the linear approximation table to obtain the good 

linear, [approx/approximation] good linear approximations for the s boxes.  
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So therefore, what we do is that essentially from these table, if you find out those choices 

of a’s and b’s, for which, the bias value is large, and we keep those values of a’s and b’s. 

So,so,  what we need to do is that we have got a four round cipher. So, we need we 

require to compute or rather find out the, [app/approximate] I mean a linear 

approximation for three round of the cipher, ok? 

So, what we do is that we take certain linear approximations like this. So, these are some 

examples which I already know, but in order to do a real life attack, you have to really 

find out these approximations, ok? 

So, approximations of the s boxes with high values are needed. So, you see that these are 

the various s boxes and these are the some, these are some linear expressions involving 

the inputs and the outputs of your s boxes, ok? 

So, note that the variable u is, [deno/denoted] is suppose[d]-, is supposed to denote the 

input of the s box, and v is supposed to denote the output of the s box, and here, u one 

five - how we can read this or we can read this as follows: this is the first round and I am 

considering the fifth bit.  

Similarly, u one seven means seven bit and first round. So, this is an ex-or and I am 

interested whether this value holds or not. Therefore, we see that there are bias values 

attributed 1 by 4 minus 1 by 4 minus 1 by 4 and minus 1 by 4. These are obtained from 



the l a t table. So, if we assume that the four rounds variables are independent, we can 

combine them by the piling up lemma. 

(Refer Slide Time: 47:31) 

 

(Refer Slide Time: 47:41) 

 

So therefore, what we can start doing is that we can start combining them by the piling 

up lemma, and we will see that [suppo/suppose] suppose I need to find out the bias of t 1 

ex-or t 2 ex-or t 3 ex-or t 4, so t 1 and t 2 and t 3 and t 4 - where the four individual 

random variables, and I need to find out the ex-or the bias of t 1 ex-or with t 2 ex-or t 3 

ex-or t 4. 



So, you see that this is the straight forward example of or application of the piling up 

lemma. If we assume that the t 1, t 2, t 3 and t 4, all of them are independent. So, you that 

this involves the first round; this involves the second round; this involves the third round, 

and this also involves the third round. (Refer Slide Time: 48:02) 
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So therefore, so, we, we often call this as a linear trail. It is refers to as a linear trail. You 

can observe from this diagram that this is a linear trail. So, you see, find out observe 

those, those arrows, you observe there are some arrows. 

So therefore, you see that these this is what I am bothered with. So, I am considering the 

approximation of this s box; approximation of this s box; approximation of this s box, 

and similarly, I am finding out the approximation of this s box also, why? Because the 

output of this is affecting the input of this s box.  

So, I am finding out the active s boxes, those x boxes which are disturbed by my initial 

disturbance, right? So therefore, I, I, observe these s boxes and I find out their 

corresponding approximations. So, imagine that approximation of this is t 1; 

approximation of this is t two; approximation of this is t three, and approximation of this 

is t 4, and each approximation involves the input of the s box and the output of the s box, 

right? The input of the s box is been denoted by the variable u and the output of the s box 

is been denoted by the variable v, similarly, for the all other s boxes also. 
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So, if we combine the ex-or, I mean obtain the s box, then we will see that applying the 

piling up lemma. We obtain a bias of minus 1 by 32, and t 1, t 2, t 3 and t 4 have the 

property that the input and output are expressible in terms of plaintext, the key bits and u 

four which is the input to the last round. 
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So, you see that the variables that are there in t 1, t 2, t 3 and t 4. I can express this them 

in terms of the plaintext, in terms of the key bits, and in terms of u 4 which is the input to 

the last round of the s box. So, I am in, what am I interested in? I am interested in finding 



out good linear approximations which involve the plaintext, the key bits and the output 

of the ultimate round of the input to the last round. So, therefore, this value, this variable 

u 4. So, I am interested in forming approximations which involve the plaintext the key 

bits and the u four values.  

So, you see that we have come till this point and I can apply the key mixing techniques 

and I can express these variables as a function of your key and the plaintext, and 

similarly, I can do it for this also. I can express this, as a, as a linear 

[appro/approximation] linear ex-oring between the between the variable u four and the 

corresponding key k four. 
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So therefore, what we do is this, that is, so these are your previous, I have just copied the 

previous thing - t 1, t 2, t 3 and t 4, but I can express t 1 in this form; t 2 in this form; t 

three in this form, and t 4 in this form. 

So, you see that t one is just a copying of this, I have copied this here, and I can actually 

express u five one as x 5 ex-ored with k 5 1, because u five one was the ex-oring of the, I 

can obtain u 5 1 by ex-oring your input. The fifth bit of your plaintext with with the fifth 

bit of your first round key. 
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Similarly, I can do it for the other things also, and for t two also what I do is that I take u 

6 2, so I can easily do that by v six 1 ex-ored with k 6 2 1. You can see this from the 

corresponding diagram. So, actually will find that there are certain other, you, you need 

to take care of this permutations also, so therefore, you have to be careful. 
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So, finally, if you take this ex-ors like t 1 ex-or t 2 ex-or t 3 ex-or t 4, you will find that 

you obtain an expression of these forms. You see that your expression involves now the 

plaintexts the corresponding values of v’s and the key values. 



So, you, again you, since I need to express in terms of the variable u four, so, I will 

express again this v six values in terms of the u u 4 values, the, rather the v 3 values, in 

terms of the u four values. The u, I, I am expressing my random variable v 3 in terms of 

u 4. 
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So, I can do that and therefore, since I just substitute some linear [va/values] expressions, 

then your bias values equal to minus 1 by 32. So, you can observe that the final 

expression that will essentially involve the plaintext key bits and u 4. So, that was my 

objective, and the corresponding bias value of this is was equal to 1 by 32. 

So, note that there are, there is now inside this expression. There is one term or rather 

one part of the term which involves only the key bits, and what can the key bit be equal 

to? It can be either equal to 0 or 1, because I have, I know that the key is fixed for all the 

various plaintext and cipher text pairs that I have obtained, the key was fixed. Therefore, 

this particular ex-or will either be equal to 0 or 1. 
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So therefore, the bias of the expression apart from the key bits will either be equal to plus 

1 by 32 or minus 1 by 32. So, so therefore, we can obtain expressions of these form and 

we can see. So therefore, what we have done is that we have obtain this approximations. 
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So, now what we do is that the final step of the attack is this, that is, what we do is that 

since we have obtain this approximations, you see that the bits that are there in your 

expression from u 4 variable lie in this s box and this s box. 

So, in order to see whether your key guess is correct, you require to guess only this part 

of the key and this part of the key, not the entire key part .So, if I require the entire key 

guessing, my complexity would have been two power thirty two. That is the boots force 

such complexity. 

But in this case, what we do is that I just guess these 4 bits, and these 4 bits, that is, 2 

power 16 complexity. The work load is 2 power 16, and then, I, [ob/obtain] I know the 

cipher text, I go back and I go to this point and check whether the corresponding 

expressions is being satisfied or not. 
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So that I store in a form of a table and I keep on doing it for the large number of cases. 

The idea is that if my key guess is wrong, then half of the times expression will be 

satisfied and half of the times it will not be satisfied, but for the correct guess, we will 

find that almost always that expression holds, and therefore, you can form a distinguisher 

from a random guess and a correct guess, and in this case, we have seen that if I just try 

for say eight thousand cases, the actual key comes out. 
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So, you see that we are actually stimulated this also, it works in real life. So, we will find 

that using eight thousand guesses and with the complexity of two power sixteen, you can 

actually break the cipher. So, the references that are followed are as again the Stinson’s 

book, Forouzan book, but there is a very good tutorial it is available online is written by 

Howard Heys and is called a tutorial on linear and differential cryptanalysis, and you can 

just Google it out and find out. So, it is available freely on net; it is written by Howard 

Heys. 
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So, you can solve this [ex/exercise] exercise it says that suppose that x 1, x 2 and x 3 are 

independent discrete random variables defined on the set 0, 1. Let epsilon 1 denote the 

bias of x i for i equal to 1 2 3. Prove that if x one ex-ored x 2 is independent of x 2 ex-

ored x 3, then either epsilon 1, epsilon 3 is equal to 0 or epsilon 2 is equal to plus minus 

half. So, you can take this as an exercise and solve this. This is the straight forward 

application of the piling up lemma. 
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So, next day’s topic is differential cryptanalysis and we leave (( )). 


