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 So, last class we defined the dimension of a closed set. So, the way we defined it was 

dimension of in fact an affine variety y is how many closed sets can you embed the longest 

chain of closed sets that you can embed. And then we showed, so this was the geometric 

definition, the algebraic one would be in terms of the, you look at the coordinate ring of 

that affine variety or you can look at the field of fractions of the coordinate ring, what is 

the transcendence of that over the base field k. So, the transcendence degree is we showed 

in theorem 1 that it is equal to the dimension definition. Any questions till now? So, already 

at this point with the new abstraction that we have developed you can ask the following 

computational questions. So there are many computational questions that you can 

immediately ask this will help you in appreciating the things we will do more abstract 

things which we will be doing. 

 
 
 
 
 So first is as stated in the overview if I give you a system of polynomials in the 
polynomial  in n variables. So, this is the input. So, then the ideal defined by this system 
is the following ideal right. So, the ideal is basically the collection of all the polynomials 



generated by f 1 →f m which is ∑a i f i where a i is an element in the polynomial  So, 
this is the relevant ideal and you can ask the question whether this ideal whether the 0 
set is empty and which is equivalent to testing whether 1 is in the ideal and this was 
the content of Hilbert's neutral challenge arts. 
 
 So this is a very practical questions it appears in almost all the I mean any practical 
problem you can actually formulate as this. It is a very very expressive language any 
optimization problem or anything else you can convert into polynomial system and 
ask whether there is a 0 which is equivalent to saying I mean if there is no 0 then the 
fun is in the ideal. So it is a concrete computational question. I have already said before 
that it is NP-hard, but you can still think about the best algorithms and special cases. 
So, what you want in those special cases is a fast algorithm in time polynomial in the 
input parameters which is m. And the degree of Fi's and so this was finite field. So, let 
us say fp. So, log (p) and what else n is also the number of variables and finally, how 
were these Fi's represented right. So, there is some size bound  So these are all the 
parameters in which you would want a fast algorithm. Now of course in general if you 
solve this you will be solving NP-hard problems, but may be in some special cases 
according to your input of interest you could actually find a fast algorithm. 
 
 So obviously I will not solve this question here or even discuss it, but you can think 
about this and if you want you can present something as an extra talk. Second question 
is a slight generalization of this, so you can directly ask what is the dimension of this 
zero set. So, dimension will be a number between - 1, 0 and n. So, - 1 dimension means 
that 0 set is empty, there is no root, 0 will mean that this system has finitely many roots 
and 1 to n will mean that the system has infinitely many roots when we are talking 
about fp’. So, the 0 set we can just think of this over fp ‘. 
 
 So, positive dimension means that there are many many roots. So, what is it? So, it is 
it - 1 to n the specific number you have to output right. So, the output is very small 
the input is also small, but actually finding the algorithm here is hard a fast algorithm. 
And similarly you can also ask for a root in this. So, actually finding a root here. 
 
 So, those are questions of practical interest. What else did we do? So, we defined 
radical. So, you can ask if I give you an ideal, how fast can you compute the radical of 



that ideal as a generating set. So, if I was given via the generator set F 1 to  then 
obviously F1 to Fm will still be in the radical, but there may be new polynomials which 
were not there before. So, you have to grow that generating set. 
 
 This is what you have to solve. So, given the ideal I via generators F 1 →F m find these 
extra generating polynomials G 1 → G m prime such that the overall thing is equal to 
the √ I that is another question. And the other thing you we have abstractly defined is  
irreducibility of a 0 set, a closed set, right. So, checking that. So, test if Z of i is an affine 
variety. 
 
 It is already a closed set. So, you just simply have to test whether it is irreducible. If it 
is reducible, then you decompose it. So Z ( I1) ∪Z (I2). So these are the questions. 

 

  

As soon as we have the abstract concepts you can immediately ask 

these questions. Generally these are hard questions except maybe 

question 4, but even that I mean when the number of variables is 

large even that will be hard. but you can convert this into an 

algebraic question which is testing whether z ( i) is an affine 

varieties equivalent to testing whether i is a prime ideal. And 

decomposing the 0 set of i will be like, so i will not be prime and 

you have to write it as the  intersection  of two ideals, i1 ∩ i2. So 

that would be factoring of an ideal, it is a factoring question. 

 

 Ok, Any questions? So I leave you with these computational 

questions and move to a more abstract kind of varieties which is 

called projective varieties. So we have defined 0 set, close set 

and accordingly affine variety. Now since we are calling them 



affine, there has to be another term which is now projective. So 

we will also look at projective varieties. And then in the future 

whenever we will say variety, it can be affine variety or 

projective variety. 

 

 These are different things. So what is a projective variety? So in 

a projective variety basically. we do not distinguish a root from 

its multiple. So, the idea is √α1 → α n is considered the same as 

any multiple of it as long as c is in the base field and non-zero. 

So, up to non-zero constant multiples field constant multiples 

roots are considered equal. So, it is basically affine variety, but 

then you are modding it out by an equivalence relation. So, 

another way to say this is roots are now not points in the space, 

but lines in the space.  

In the affine space and we will do a + 1 or may be not so soon let us keep it this. So, instead 

of these n coordinates we will be now we will basically lose a degree of freedom because 

we have we are only looking at lines in this space. 

 

 and so this is geometrically, algebraically we will be studying homogeneous polynomials 

that is. they have equi degree monomials. So, for example, x 2 - x y + y 2 right. So, this is 

a quadratic form that is a homogenous polynomial, but not  x 2 + y 3. So, this is an 
inhomogeneous polynomial this is not a neither is it quadratic form nor a cubic form. 
 
 So, in affine varieties your system may have these things, but in projective varieties 
your system of polynomial equations will be like the first case homogeneous. So, in 
homogeneous the key roots are basically lines right, because any root can be multiplied 
by c it is again a root. So, we basically want to  consider them equal up to this multiple 
c. So, for homogeneous f in fact you can take homogeneous polynomial set of 
homogeneous polynomials f 1 → f m. So, 0 set if α ‘ is a root  then λ  times α ‘ which 
is λ α 1, λ  α 2, α n with every coordinate scaled by λ  is again a root for all λ  in the 
field including 0 right. So, in particular for a homogeneous system 0 is always a root 
and if α is a root then any multiple is also a root.  



 

So, we just want to remove these extra roots you are getting from 1 and for that 
formally we define. So, consider the equivalence relation tilde in the affine space 
removing 0. So, we remove the 0 point and everything else is like a 0 … a n it will be 
considered equivalent to a point b 0 →b n if there exists a λ  in k star such that a ‘ is λ  
times b ‘. So, the thing I said before  and define the projective space, projective end 
space to be this. 
 
 So, this is the projective end space. So, note that projective n space you will need one 
more dimension in the affine space, because you want lines. So, you need one extra 
degree of freedom in the affine space and there you except 0 all the other roots you 
have this equivalence relation. So, equivalence mod equivalence relation simply means 
that one many points may have the same representation. or the same point may be 
representing many points, the other points being λ  x b ‘. 
 
 So, b ‘ represents everything that is like λ  times b ‘. So, these things form a equivalence 
class, they are in the same equivalence class. So, of course, you can count here. So, for 
k = fp, the affine space had how many points? p n + 1 and the projective space will have. 

So, you have to remove the 0 from there. 

 

 So, p n + 1 - 1. but amongst these points not everything is distinct right. So, you have to 

divide by the possibilities of λ  which is p - 1. So, that is it. Yes, so projective n space in 

particular has more points than the affine n space and it is not a power of p sum of these 

powers. Is that clear? Another thing is for a point in the projective n space any a 0 to a n 

point in the equivalence class of P is called  a set of homogeneous coordinates for p and 

we denote it by this notation. 



 

  

So, instead of , we use the separator. just to signify that here what is important is the ratio 

I mean whatever is the let us say you can divide each of these Ai's by the same λ  and it 

will be the same point. So, let us see the projective one space over complex. So, the points 

2 , 1 - i and 1 + i , 1 are the same. You can see this because you can multiply the second 

one by 1 - i you get the first point. 

 

 So, they are the same in the projective one space. 2 , 1 - i and 1 , 1 - i these are different 

these are different points because the ratio is for the first coordinate is 2 for the second it 

is 1. So, p n is the space of all lines  passing through a fixed point in the bigger affine space. 

So, in particular we took the point 0 and we took all the lines which are passing through 0, 

they give you distinct points in the affine n space, but you can do the same thing for any 

fixed point in e n + 1 that correspondence is there for lines versus projective points. Yes, 

so that is the geometric picture. Now, what is the algebraic analogs of what we did in affine 

varieties? So, there we used ideal, prime ideal, radical ideal. So, we have to repeat all that 

for projective now. So, let us do that quickly. So, what is the algebraic analog? or algebraic 

description of projective and space and what are in particular projective varieties, what are 

the closed sets, open sets and so on. 

 

 So, as you can already guess we will here we will only focus on homogeneous polynomials 

right. So, ideals which are generated by homogeneous polynomials  they will be the correct 

ideals. If there is any non inhomogeneous I mean if you have an ideal for which there is no 

homogeneous generating set then that will not be relevant in projective variety. So, ideals 

as you can see will always have I mean will usually have inhomogeneous elements  you 

do not care about that what you care about is the generating set homogenous. So, let S be 

the polynomial ring in one more variable. 

 

 So, we call that variable X 0 define what is called a grading  where S d is the degree d part 

of the polynomial ring. So, S d is the k linear span of monomials of degree d. So, grading 

is simply this decomposition of the vector space k vector space S which is the polynomial 

ring into these subspaces each is called S d for degree d. So, these are degree d 



homogeneous polynomials and their linear combination is what a polynomial is a general 

polynomial that is all we are saying here. 

 

 So, these are the homogeneous parts. to think in terms of that grading to give you the 

homogeneous parts. And one nice property is that if you multiply two homogeneous parts 

one of degree D other of degree E then you get D + E that is why it is called a grading. And 

with this grading now we can define all the algebraic analogs. that we had in affine variety 

in the affine case. So, an ideal I of this s which now remember has one extra variable n + 

1 variables over the base field k is called homogeneous  I will just shorten it to this is called 

homogeneous if I has a set of homogeneous generators. 

 

 Now, recall again note here that homogeneous generators does not mean that every 

polynomial in the ideal is homogeneous. S is as before defined here. S is the polynomial 

ring with one more variable than the target. So, target will be projective n space, but we 

have to keep an extra variable to see things algebraically. So, ideal is homogeneous then 

simple proposition. 

 
 

 So, an ideal I is homogeneous if and only if I follows the grading by which I mean this. 

So, if you look at the degree D homogeneous polynomials in the ideal. for different d, then 

their linear span gives you the whole ideal. This is a property which is true if and only if 

you started with a homogeneous ideal. 

 

 For inhomogeneous ideal it is false. You can see an example may be right here. Counter 

example is  if you started with the ideal x 1 2 + x 2, then what is I ∩S 1? What 

are the linear forms in this? There is none, right. I mean it is 

only, should I call Z well, may be I empty is the right thing. and 

same is with quadratic forms. So, homogeneous degree 2 and 

homogeneous degree 1 are totally absent in this ideal. 

 

 So, clearly the RHS is nothing. So, I is not the direct sum of or 



the linear span of these linear forms, quadratic forms because 

everything is empty. So, it happens when I is inhomogeneous. If 

you took homogeneous then you can see that it is clearly true. I 

mean that is a simple proof of the proposition. Second property 

is some product  intersection  and radical of homogeneous ideals 

is homogeneous. 

 
 

 So, homogeneous ideals behave miraculously well with all these 

things which we were using in the algebra for a fine varieties. So, 

ideal sum was needed for  intersection  of 0 sets, product was 

needed for the union of 0 sets. yeah  intersection radical was 

required to have this one to one correspondence between 

varieties and ideals. So, all those operators behave well on 

homogeneous ideals they give they take homogeneous ideals to 

homogeneous ideals. 

 

 Yeah, that is a good question. I did not write I ∩ S3. I mistakenly 

said it is empty. I mean you have to check that it is empty. That 

also will be empty I ∩ S3 S4, but even if somehow it was non-empty 

it does not matter because the generator of ideal I is quadratic 

degree 2. So, if you cannot cover degree 2, then already this 

condition i equal to direct sum is false. 

 

 So, I do not need to see I ∩  S 3, because good things have to 

happen already in degree 2 and they are not happening. Yeah, but 

you can never generate x 1 2 + x 2, it is just linear plus quadratic part right. So, S 

1 S 2 is enough, this shows  Yeah, I think how did I define S d, I define it as a k linear span, 



so 0 is also there, yeah by definition 0 is there, that is fine. And example of property 2 you 

can see  I will not prove this proposition, this is a simple exercise follows pretty easily from 

the property above S d x S e ϵ S (d + e) from the grading it follows, but still you can see 

this example. So, if you take x 0 x 1 2 and x 0 x 1 these are the two  homogeneous clearly 

homogeneous ideals. 

 

 Note that first ideal has homogeneous generators, but they are different degree which gives 

you inhomogeneous polynomials like x 0 + x 1 2, but still the ideal is called homogeneous 

because of the generating set. So, if you add them what do you get? you get x1 2 x0 x1 2 

that I hope is the sum yes second one is contained in the first. So, this is the sum if you 

multiply them. So, product ideal you have to multiply all the generators in every possible 

way. 

 

 So, that will give you quadratic and cubic. now cubic and biquadratic. So, x 0, x 2, x 1 and 

what is the  intersection ? intersection is x 0, x 1. So, in this example you can see that all 

these operators they give you homogeneous as expected  That is what you can show in 

general. Well, in this particular case x0, x1 is generated by x0. 

 

 So, multiple of x0, so it is a 0 thing, modulo the first ideal. So, this example is then non-

trivial. At least one person is confused. So, work this out. Now, we can define the closed 

sets in this new space called the projective space, projective n space. So, what are the closed 

sets? So, you should look at subsets of this polynomial ring S that contains only 

homogenous polynomials. 

 

 then zeros of this given a system of homogeneous polynomials look at the zeros and then 

consider them equal up to the equivalence relation. So, basically points in the projective n 

space  f p = 0, may be p is not a good choice in this course, may be big P. So, just like we 

had the 0 operator 0 functor before in the affine case, in the projective case it will be same 

thing except points will be considered equal up to multiple by constants. So, we write point 

p in the projective n space everything else is the same as you have seen before. 

 

 And, hence the same definition is true for ideals also. Ideal is also a subset. For 

homogeneous ideal I, same z i, use the same z i for ideals also. So, which means what? So, 

now, in the projective line this new z. So, now, we will be we will not say what I mean 

what z is will be clear from the space you are in. So, when we are in the projective space 

then it is the z corresponding to the projective space equality. 

 

 So, with that understanding z of x 0 2 is 0 , 1 is this clear. So, the affine z would have given 

you what 0 , t for every t. right, but the difference here is that since there was a duplication 

there we are just putting different t's we have now compressed all of them into one, this is 



just one point. So, there is a difference sorry. 

 

  

Yeah, yeah sure, sure yeah if you will prefer. So, I will abuse that because I will set the 

context in the very beginning it is a projective line. So, all those things are equal and here 

again similar thing will happen this is projective z. So, will you get 0 , 0. you cannot get 0 

, 0, because projective line that does not have that point, 0 , 0 was removed was excluded. 

 

 So, all you will get is yeah. So, x 0 or x 1 one of these has to be 1 both cannot be 0 and 

when 1 is 1 the other is plus - 1. So, I can just write these two points  by which I again 

mean 1 1 and 1 - 1. So, you can take x 0 x 1 equal except 0 value or you can take them 

opposite sign  except the 0 value. So, there are two points in the projective line that satisfy 

this. So, there is a subtle thing that happens, there is a difference between affine z and 

projective z, but I hope this is natural given the homogeneous nature of the system. 

 

 So, that is the definition of closed set as you can imagine. So, subsets y in the projective n 

space it is closed or algebraic  if there exists a homogeneous T subset of the polynomial 

ring in n + 1 variables such that y is equal to zeros of T with the understanding of projective 

z. And for closed y  The complement is called open. So, now we have a subtly different 

topology which we are going moving towards. So, we have defined z accordingly we have 

closed sets and open sets and now you can see all those properties that union  intersecction  

of open is again open. 

 

 and so you get Zarisky topology on the projective n space. Those basic things have to be 

checked. So, if you want you can do it as a homework. So, family of open sets in P n  form 

what is called, what we will call the Zariski topology. So, the idea of a neighborhood 

around a point is now this abstract thing you for the point you have to contain it in an open 

set that is the neighborhood of a point. So, whenever we will draw pictures like this point 

P and this is the neighborhood this is the ball. 

 

 So, in reality the ball is actually a ball. but in the over a finite field what we are saying is 

that this is some open set U subset of p n it is open, where open means this that you have 



to find a system of polynomials homogenous polynomials t zeros of t take the complement. 

that is what u is that contains the point P. So, these are the neighborhoods. So, whenever 

we will say in this course take a neighborhood of a point P it will be a very, very loaded 

term because all these definitions coincide and these pictures will always be wrong. 

 

 So, I will always trying to fool you by drawing these pictures. hopefully you do not get 

fooled or you do get fooled whatever works. Yes. No, no I continue with the same k just 

assume small k to be always f p ‘ for this course small k is f p ‘ well at least till. for the 

next 2 months I guess small k will just be fp ‘. In the last month we will when we will do 

when we will prove Riemann hypothesis there we might call small k to be fp, but theorems 

will always geometric ideas will always be for fp ‘. 

 

 If you do not take fp ‘ then the problem is that this neighborhood business will not  because 

I mean as we saw in examples last week, previous weeks for a system of polynomials t the 

0 set z of t may just be empty, if your field is very small there will be no root. So, you do 

not want that and so dimension etcetera is defined for algebraically closed field. So, now 

you have the natural definition of projective variety. So, projective variety is an irreducible 

closed subset of the affine projective n space for some n and may be I say here k is equal 

to k ‘. just assume that an open subset of a projective variety is called quasi projective 

variety. 

 

  

Generally, whatever we will say about projective variety will be true for quasi projective 

variety. Only difference is between closed and open, both are irreducible. So, that will help 

and dimension is defined as before. So, dimension of quasi  or projective variety is defined 

via the chain of closed subsets. 

 

 So, all the geometric and the algebraic perspectives we saw before will hold. with the 

understanding of homogenous systems. So, let us quickly see examples well as I said all 

the theorems will hold. So, in some cases you might want to study the open set instead of 

the closed  Why is that? Why should it be open? Close may not be open. Oh, in pn you are 

shifting to pn then I see. 



 

 Yeah, but his question was even for quasi affine variety. Why do we define that? So, let 

us see examples of this again in the projective line. So, z x 0 2that we saw this is a projective 

variety. What about the 0 set of x 0 2- x 12? See Zx0 2 is a projective variety because it was 

a single point dimension 0 and irreducible. Second one had two points dimension 0, but it 

cannot be irreducible then it factors into 2. 

 

 So, this is not a projective variety it is just a projective close set it is not a variety. Variety 

is a special property. Dimension of both these things is 0. These are finite objects. 

 

 Let us go to the projective plane or complex. So, now if you take the difference of these 

two. not these two sorry something else. Look at this. So, what you have to remember here 

is that this projective plane comes from affine three space. There are three variables x 0 , x 

1 , x 2. 

 

 So, what is z of x 0 2? So, this x 1 and x 2 can be arbitrary. So, there are many points. 
In the second one, you have already set x 0, x 1 → 0. So, what do you do with x 2? You 
can only set it to 1. This is a singleton. So, from the first one, we are subtracting the 
second and this is  does not seem to be closed, but it is open. 
 
 So, this is a quasi-projective variety. In fact, it is a curve. It is a projective curve, 
because in two dimension you have set one constraint to 0. So, the remaining 
dimension is only one. So, it is a quasi-projective curve. 
 
 Yeah, you can define dimension for 0 set or yeah any closed set. Chain, just look at 
the chain. I see. So, you just look at the chain of varieties. So, that definition you have 
to change, you just look at varieties. these in this case there will be projective varieties, 
chain of projective varieties and the last element is then not the same. 
 
 Last element is the maximal projective variety sitting inside. That is an important 
point. That definition you have to change, but the thing is you want dimension to be 
geometrically intuitively correct. So, this is the only thing which is intuitively correct 
finitely many points it should be called dimension 0. If you are getting by your 
definition dimension 1 then the definition is wrong intuitively does not make sense. 
So, dimension positive should always mean that there are infinitely many points 
because you are in f p ‘ algebraic I mean if you are over complex you should have 
infinitely many points for positive dimension. 



 
 that is the basic intuition you have to keep in mind. So, now we can draw a nice 
picture of association recall the functors. So, I of y the ideal functor which will take. 
So, we are defining I which takes  some subset of points of the projective space. So, 
maybe I should say that. So, this I functor will be the ideal generated by homogeneous 
F in S such that  for all the points that you are given fp is 0. 

 
 
 So, now you the functor the ideal functor will take subsets of points to an ideal which 
just collects the maximal possible system  which defines your subset y and then to come 
back. So, which is that we have already defined we already have defined the z of a 
functor given a system t z of t is the projective points and the last thing is the 
homogeneous coordinate ring. So, this will be denoted S y it is the polynomial ring 
modulo this ideal. 
 
 So, like we had in affines definition A of y. So, similarly we have S of y. So, S of S is a 
functor here which takes an open set which takes any subset of points to  functions 
which are defined on top of these points. So, these are S mod ideal Iy. Is this clear? And 
this will give you the nice picture of associations. So, now you can look at the 
projective space, n space and the polynomial ring n + 1  So, these two we will think of 
them as associated by the dictionary of i z functor. So, a y here subset via the i functor 
maps to the ideal which is homogenous and a set of polynomials here will map via the 
z functor to close set. 
 
 So, closed sets are in one to one correspondence with what? So, not homogeneous 
ideals, but you have to take the radical. Again this is a version of Hilbert's, Dundald's 
and Lanzard's identical to what we proved before. So, radical homogeneous ideal. So 



in a way you can say that these radical homogeneous ideals they are completely 
characterized by the 0s which is the close set Y. 
 
 What? Yeah, yeah that was a proposition you have to prove. So, projective varieties 
will be in one to one association with homogeneous prime ideals and point single point 
will be in one to one association with maximal prime which is maximal ideal. So, these 
are one to one. So, these I and Z functors they behave based on the definitions we have 
given closed set and projective variety. One explicit way to study projective varieties 
is by reducing it to affine varieties. 
 
 So, we can study projective or general projective n space by affine coverings. So, this 
happens because, so let us go to  the projective plane over complex and the zero set 
that we had. So, we can I mean this is what we were doing also when we were trying 
to find the roots the 0s. So, what we think of is there are 3 variables x 0, x 1, x 2 in the 
affine 3 space and we cannot have all 3 0 = 0. So, we set x 0 to 1 then we set x 1 to 1 
and then we set x 2 to 1 right. 
 
 So, basically those are the 3 affine parts of this projective  0 set. I mean you take a 
maximal ideal  Yeah if it is inhomogeneous then you reject because here I need 
homogeneous. Yeah but I want both the conditions homogeneous and maximum. I 
thought this is a symmetric it is not symmetric. 
 
 Yeah I want an ideal which is both homogeneous and. I mean amongst homogenous 
ideals I want maximal. So, then I should I do that for the prime case also yeah. So, that 
is a bit asymmetric. amongst homogenous you get the maximal that is the point yes. 
So, here you just follow the algorithm you use to find the points right. 
 
 So, you set x 0 to 1 when you set x 0 to 1 then x 1 has 2 possibilities + - 1. third 
parameter is free, so any complex number. So, this you can see as an affine closed set 
that is the first part, but this does not give you everything. In fact, disjoint there are 
other things remaining, which is you are now allowed to set x 0 to  Now, you can 
allow you can set x 0 → 0. 
 
 So, x 1 will also be 0. So, you can set both of them 0 because you have a third parameter 



which is free. So, that is then 1. So, you can. So, what we will do now is we will just 
look at this as two affines covering the projective close set. The first one  is the first 
affine component and second is the second affine component the union of this we call 
an affine cover. 
 

 

 So, let us just formalize this simple thing is this clear example. So, that is a proposition  

So, pn has an open covering via n + 1 affine n spaces. So, this is just you look at the 
following close set a 0 to a n such that a i is not equal to 0. and this you do for all i. So, 
I have defined u 0 u 1 ... u n, where for a particular I just say that a i is not equal to 0. 
 
 Now, since a i is not equal to 0, I can as well normalize this by a i, I make a i 1. So, 
these are the positions of 1 that you get n + 1 positions and that will cover all possible 
points in the projective n space. So, that is what I write P n is union of U i, i 0 → n and  
u i is a n. Technically I should say homeomorphic, but that is something I have not defined. 

 

 So, u i is essentially a n via the following map and that is a nice map. it is phi i hui to a n. 

It does what? It sends a 0 to a n e 0 ... a n to as I said you just divide by a i. sorry this has 

to be omitted. So, from n + 1 coordinates you go to n coordinates, you just omit this a i by 

a i thing which is 1. 

 

 So, you go from a 0 to a i - 1 and then go from a i + 1 to a n. you just reduce one coordinate. 

So, that is a well defined map from u i to a n and you can see that in the image you have 

the whole affine n space and in the domain of course, you have this u i which is which you 

can see what it is. This map is what is called homeomorphism because  So, you can see, 

you can prove that pre-image of open set is open. In fact, the, no, it is stronger than that. 

Open sets of ui and open sets of a n, they are in one to one correspondence. 

 

 So, when this happens then you are sure that the Zariski topology, the geometry is been 



completely preserved. So, in that sense u i we can say is a n, it is just a relabeling. it is the 

whole affine n space. So, this together with the cover union of Ui being p n, we have shown, 

we have basically decomposed p n into open subsets each of which is the affine n space. 

Are these Ui's disjoint? I mean there is no way to compare them right, because they are I 

mean the coordinates that you are dropping are coming from different places. 

 

  

So, you cannot really compare, no you can sorry the embedding of u i is in the same n + 1 

a 0 to a n coordinates. Yes, so you can ask actually then this question are these disjoint or 

not. So, this is not a disjoint covered. So, points actually overlap point may be present in 

many UIs, which is why you do not get the correct count. 

 

 You cannot just say that n + 1 times the size of UI is equal to the size of P n. There is a 

heavy overlap. These things are overlapping. So cover does not mean that it is a disjoint 

cover, it just means that I have a way to like look at neighborhoods which look like the 

whole affine space. So we have patched together different affine spaces. This patching is a 

very important geometric construction. 

 

 It can be taken to a insane level of abstraction which we will not do in this course. So, this 

property of p n is inherited by all projective varieties and quasi projective varieties. So, this 

inheritance means that what we did with p n we decompose into these affine n space patches 

we can do the same thing for a projective variety decomposing it into affine varieties and 

that is now straight forward. So, what you do is for projective variety y write y as  union 

of same thing like before i equal to 0 to n intersect with u i. In that big projective n space 

you have these patches u i's. 

 

 So, you just intersect your projective variety with that patch you will get possibly a smaller 

patch which is a subset of y. yeah and that is an affine variety. So, n + 1 affine varieties 

now cover your projective variety. Is that clear? So, that is it next time what we will do is 

we will  So now we have defined varieties of all types, affine varieties, projective varieties, 

quasi affine, quasi projective. What we need to do next is we want to compare two varieties. 

So we will do morphisms next time. 



 


