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We are still trying to build this association between varieties 

and ideals. So, we defined a fine variety as irreducible close set 

and we took a detour and we defined radical of an ideal and we call 

an ideal i to be radical  if square root of it is equal to itself, 

which means that if any power of a polynomial is in I, then the 

polynomial itself is in I. And what we have shown this proposition 

that for any ideal of the polynomial ring, if you look at the zeros, 

if you look at the zero functor and then you look at the ideal 

functor, then you come back to the √i. So, which means that these 

two functors are in a way inverses of each other, as long as your 

ideal is a radical ideal. So, if you take zeros and you take ideal 

then you get to this thing which is which may be slightly bigger 

than the ideal i, but it is very strongly related. Any questions 

till now? So, I have posted assignment 1. 

 



 

 You can check the new website and that assignment if you do then 

you will learn more things some of the things that we have been 

skipping the background of all this. So, where are we now? So, we 

have shown that. So, this is the geometry and this is the algebra 

the polynomial ring affine space versus polynomial ring. So, the 

following association we have shown that  if you look at the 

collection of I mean basically if you look at a y which is algebraic 

it is an algebraic it is a subset of the affine n space which is 

algebraic it is a close set. 

 

 Then when you look when you apply the ideal functor you will get 

what you will get an ideal which will be radical. So, you will get 

here a radical ideal. And if you on the RHS if you start with a 

radical ideal I and you apply the zero functor you will get what? 

You will get a closed set, why? But more importantly if you now 

again apply I then you will come back to the same place where you 

started. So, this is one to one. So, we have shown a one to one 

correspondence between close sets or algebraic sets and radical 

ideals. 

 

 Is that clear? This proposition interpreted like this. Moreover, 

we will make it more precise and then that is the object we will 

study. The closed set we have to take it irreducible right, because 

we have said that if a closed set reduces or decomposes into two 

components y 1 ∪ y 2, then it will suffice to study y i's separately. So, 

we will only look at irreducible closed sets. and for that the ideal i will become even more 

special. 

 

 So, it will become what? So, you have if you start with an affine variety which is nothing 

but an irreducible algebraic or closed y. then this association is with prime ideals. So, if Y 

is irreducible and closed then the I functor will take you to a prime ideal and on the RHS 

if you start with a prime ideal then the Z functor will give you and a fine variety. So, 

geometrically affine varieties are nothing but algebraically prime ideals. So, what is a prime 

ideal? In case you do not know prime ideal is an ideal where if g x h is in the ideal then  

either g is in the ideal or h is in the ideal. 

 



 So, it behaves very similar to the notion of prime numbers if number if the product of 

numbers g times h it is divisible by a prime p then either d g is divisible by p or h is divisible 

by p it is the same thing, but now happening in algebra instead of numbers. So, how does 

that relate to affine variety? So, let us start with the an affine variety  Let us start from the 

LHS, take an affine variety Y which is defined via Z (I). Maybe I should let Y be affine 

variety, let I be the radical ideal such that Y = Z(I). So, for any variety y from the previous 

association if you apply the i functor you will get the radical ideal which defines y. So, you 

will get y = Z(I). 

 

 Essentially your refined variety y is the zeros of this system of polynomials that generate 

the ideal i. Moreover, i is our radical ideal now. So, what we are claiming we have to now 

show that this radical ideal i is prime right. How do you show this? So, if i is not prime, 

then there will exist two polynomials f and g both of them are outside  but their product is 

in I. So, this is the definition of not prime there will be a product such that the factors are 

outside the ideal, but the product is in the ideal. 

 

 So, what I will contradict. Now, using f and g is the fact that Z(I) which is the affine variety 

that you started with, it is actually factor, it is not irreducible. I will give you the two 

components. Can you guess the components? How will you decompose Z(I) into two 

closed sets that are non-trivial? and their union should be Z(I). So, you basically in one 

case you set f to be 0 in the other case you set g to be 0 you get two systems. So, z(i) + f 

and i + g. 

 

 So, you have to check this any point which annihilates i which is a 0 (i). can you see that 

it will be 0 of at least one of these either it is annihilating it is a 0 (f) or it is a 0 (g). So, it 

is true because f times g is in the ideal right. So, if you have a 0(i) then it means that f times 

g is 0. So, one of these has to be 0 it cannot be that both f and g at that point are non-zero. 

So, simply because of that any point on the left hand side is in one of these.  

 

Now look at the other direction a point which is in one of these is clearly a 0(i) right. So, 

you have you have an exact equality. So, check this. And so, we have decomposed closed 



set Y into two closed subsets. 

 

 You just have to check that these are proper. So, why are they proper? Why cannot Z(I) + 

F be equal to Z(I)? And this is a proper decomposition. that contradicts. So, you have to 

show this why this is proper do this as an exercise. So, this would mean that you have you 

are contradicting the variety y it has to be reduced which means that i is prime. 

 

 So, if you start with an a fine variety y then you will go to prime ideal and we have to now 

start with the prime ideal and see what happens. So, let i be a prime ideal. Now, y we will 

take zeros of i. So, from RHS now we will move to LHS. So, Y will be zeros of I. 

 

 You have to show that this Y is an affine variety. So, it is clearly closed set. Why is it 

irreducible? So, if it factors then what happens? So, here you can again show that. you will 

get a contradiction to the primality of I. So, from this you can deduce that you will get that 

Y is an affine variety. 

 

 So, I have skipped some of these steps which you have to fill in. Is this clear? And yeah, 

so slowly we are making it this more and more precise the correspondence. So, close set 

corresponds to radical ideals, AVs correspond to prime ideals and what do points 

correspond to? That is the last thing. point P ϵ Y corresponds to maximal ideals, that would 

be 1 to 1. Yeah, this will be rather easy, one section will be very easy, so if you take a point  

a 1 … a n I should not say in y and k remember we are assuming it to be algebraically 

closed. 

 

 So, for a point p which has coordinates a 1 to a n. the ideal will be. So, this will be simple 

you just set xi to ai that is the relation. This is an ideal of a. And you can clearly see that 

this ideal is a maximal ideal because if you quotient a |i| then you recover the base field k 

which means that this ideal is maximal as a | i| is k which is a field. 

 

So, a point corresponds to that maximal ideal and the converse is what I had sketched 
last time, then E |i| will be isomorphic to k. here it will be simple. So, since i is maximal 



almost by definition a |i| will be k and that gives you this homomorphism. So, let me 
write the homomorphism. So, then you have a isomorphism that takes a |i| to field 
elements which means that in particular it takes xi to a field value. 
 
 So, this is a field element and since phi is a homomorphism  what you get is that this 
a 1 ... a n is a 0(i). So, since I mean any homomorphism from a |i| to k has to be I mean 
if you look at where x 1 → x n are being mapped is being mapped to a point which is 
a 0(i). you can I mean if this is in so the reason why you have to have this is because 
otherwise the homomorphism will would not be defined. The on the LHS a |i| any 
element in i is essentially treated as 0. So, all these elements in the image have to be 0 
just because of the well defined nature of the homomorphism. 
 
 this image of X i's gives you the point, so that covers both the sides. So, points 
correspond to maximal ideals and affine varieties correspond to prime ideals and closed 
sets they correspond to radical ideals. Any questions? So, this is the dictionary that you 
have to remember throughout the course. There is one more exercise that you should 
try. we have defined closed sets and we have defined irreducible closed sets. 
 
 So, what is the relationship between the two? In particular algorithmically also you 
would be interested in the decomposition, right. Can you decompose any closed set 
into irreducible closed sets into affine varieties? So, show that every closed set y in the 
affine n space. can be expressed as a finite union of affine varieties y i. So, this is 
important, this shows that an arbitrary closed set given to you, it may when you start 
its decomposition, it is in the case that you will have to, you will require infinitely 
many steps in the decomposition. There will always be a finite number of irreducible 
closed set y i's, such that the union covers  the y that you started with. 
 
 So, the idea here will be I mean this is related to the property that in this polynomial 
ring every ideal is finitely generated. So, y gives you this ideal  So, you were given the 
closed set Y through some polynomial system which generates I or I mean even if the 
generators were in known what you know is that for any closed set Y when you look 
at the corresponding ideal whose 0 sets Y is there are finitely many polynomials in the 
generator. So, every ideal I is finitely generated. So, any for a Y the finiteness of the 
union comes from looking at the ideal identifying the finite set of generators and then 



using each of these Fi's to define Vi's that is the idea. 
 
 Yes, that is true how do you get. But I thought this is related to the Newtonian 
property. So, this is called the Newtonian property. No. this is yeah yeah yeah right 
ok. So, then let me just state this as a different property. 
 
 So, that is one property that this is second property. So, what is the algebraic version 
of 1? You are claiming that it is factorization of an ideal. I guess yeah that should be 
immediate. So, let us also write that any ideal I can be expressed as intersection of ideals  
such that the 0 set of these ideals is an affine variety. So, the property 1 is basically 
equivalent to property 3. 
 
 So, you have to prove for one of these. So, this close set decomposition into affine 
varieties is essentially the question of factoring an ideal where by factorization we mean 
this intersection of i i's and this will be finite this is some i = 1 to m. the same m. So, 
prove this it is important because for algorithms you want these even these bounds you 
want. So, that you know how much you have to compute. So, that from a general 
given polynomial system I you can get irreducible ones the affine varieties. 
 
 So, here I can now actually delete this. It is just any ideal. Every ideal is finitely 
generated. Yes, so these are the properties I will not prove, but whenever you get into 
an algorithm you will have to ask these questions and you will have to give bounds. 
There are various ways to prove this. 
 

  

So, you can try this. So, now going back what do we do after we have this association. So, 

now we are interested in functions over this y. So, for a close set or for an affine variety 

what are the functions that we can study. So, in let us move in that direction now. So, for 



a closed Y, we define the coordinate ring, we will write it Ay. 

 

 So, this coordinate ring will be, so remember that  all the polynomials which are in the 

polynomial ring A, I mean the question is whether they are genuine functions also defined 

on y, they are right because those are actually functions defined everywhere on the affine 

space A n. So, they are also defined on y, but we want to make them well defined we want 

somehow this relationship. So, the correct way to study those functions only on this closed 

y instead of the whole affine space would be  to mod out by the functions which define the 

0 set. So, these will be the functions we are interested in once you localize, once you specify 

a close subset y and this we call the coordinate ring. So, for example, what is the close the 

coordinate ring of affine and space. 

 

 So, for the whole space the coordinate ring is everything, but if you look at a smaller subset 

that is closed inside a n, then what you will get is basically an extension of this polynomial 

ring, it will be a ring extension and it is exactly that a |i| (y). So, let me write that. So, A y 

is thought of as the ring of functions defined on y, but we will call it the coordinate ring of 

y. So, let us see  a proper example. So, take a polynomial f look at the 0s call that y and 

ask the question what is Ay. 

 

 So, for an irreducible f look at the 0s. So, we are looking at essentially this hyper surface  

of f, what do you think is E (y), the functions defined on y. So, this is by definition E |i| y 

and I y is the ideal f, so E | f|. So, all the polynomials let us say g mod f is the function that 

is defined over y. Is this clear? So, we do not look at absolute functions in A, but we have 

to now mod it out by the defining equations and the whole ideal we have to mod out by 

that gives you the correct functions and it is it matches the intuition for the whole affine 

space there it is the polynomial ring questions. If no questions then the next thing you want 

to do is you want to define dimension. 

 

a  

So, you intuitively know that a line a point has dimension 0, line has a dimension has 

dimension 1 and plane has dimension 2 and so on, but that you know because you can see 

it. Here we want to define it algebraically without drawing any pictures. If I just give you 



this ideal I of y. from that what should the dimension be? So, algebraically what is the 

definition of dimension? So, intuitively we know that dimension of a point is 0, dimension 

of a line is 1. 

 

 and dimension of the plane is 2. So, can this be done algebraically? So, which we should 

then hold for any field basically including finite fields. Yes, so that for that now we have 

to define what is called tower of prime ideals. So, the bigger the tower of prime ideals you 

can embed in an affine variety the bigger the dimension is. So, I will just give the definition 

and then we will interpret it. So, the dimension  will shorten it to dim of an affine variety 

y is the max positive integer such that there exists a chain. 

 

 Zn of affine varieties inside Y. So, instead of defining it algebraically, I am actually 

defining it as a tower of closed sets, irreducible closed sets. So, what this is saying is that, 

so Zn here is the maximum fund. So, you can take  z n to be y for example, and look for a 

affine variety which is smaller strictly smaller than that. So, call that z n - 1 and then in 

inside that you find something affine variety which is strictly smaller z n - 2 and keep doing 

this. So, I guess this is  0 and this is y right, sorry empty set is not an affine variety in this 

course, it should be a point yeah some point. 

 

 So, you start with the whole affine variety and then  you keep making it smaller always 

remaining an affine variety and you reach all the way to a point. So, for example, if your y 

was a point then the dimension will just be 0 and if your affine variety y was the affine line 

in that case you will have z0 and z1. so the dimension will be 1 and so on. Degree of f no, 

no so we do not want to define degree we want to define dimension these two will be 

different degree also will be there yeah, but degree is a more complicated thing in this 

course dimension is far easier. So, yeah so those are the examples  So now, you can fit in 

the intuition that you have of a point, a line, a plane into this format. 

 

 So, when you are in the affine line, what you have to do is you have to look at this. So, 

this is the chain of closed sets inside the line. But of course, you have to show why is this 

maximal, why cannot you have three things. So, something between the set 0 and the whole 

line, can you have a close set between a proper close set. So, this only tells you that the 

dimension of A 1 > = 1. 

 

Right, but why is the dimension exactly 1, why cannot it be 2 for the affine line, how do 

you show this. So, you basically have to characterize the closed irreducible closed sets 

inside the line, which means you have to understand the prime ideals. If you have a prime 

ideal P  So, affine line means that there is only one variable. So, what are the prime ideals 

inside K x 1? See by the basic algebra which you already know, you can show that every 



ideal here is principle and since the field K is always algebraically closed. so the ideal I 

will have a generator just x 1 - α1, so these are the only prime ideals. 

 
 

 So, which means that essentially it is a point, so you the only close set that A 1 has a fine 

fun space has is this single element, which I have taken here to be 0. So, that means the 

dimension is actually 1, the tower cannot be extended, it is exactly 1. So, this is good for a 

point you know dimension is 0 and for a line now you know the dimension is 1 and this 

thing now you can check for other examples. So, the other example you should do is what 

happens in the affine plane right. 

 

 So, natural tower is 0 contained in line contained in plane. which would mean that the 

dimension of the plane affine to space is at least 2 and you have to show that it is not more, 

it is exactly 2. So, that I leave as an exercise. So, we will define dimension of this of this 

geometric object via  the longest chain of affine varieties you can embed and you will see, 

you can see through the exercise that this will match beautifully with your geometric 

insight that you have from the real Euclidean real space, real spaces. But here now we will 

not need  anything about the field K except algebraic closure. 

 

 So, it is true for arbitrary fields now. Any question? Yeah, and now in this course the 

promise is that we will only restrict to dimension 1, right. So, an affine variety of dimension 

1 is called an affine curve. So, this course is about the study of dimension 1 affine varieties 

which we shorten to curve over algebraically closed fields and specially f p bar finite fields. 

Yes, one thing you can you should prove is the following property at this point that an 

affine variety y ϵ a n  when will it have dimension n - 1. So, affine varieties of dimension n 

will be the whole affine space and next question you can ask is what are the affine varieties 

whose dimension is 1 less n - 1. 

 

 So, what you can show is that these will be exactly of this type 0s of a single polynomial  

essentially hyper surfaces defined by a single polynomial, where F is irreducible in the 

polynomial ring over the algebraically closed field K. So, dimension n - 1 affine varieties 

are given by a single polynomial, single irreducible. So, studying them is essentially 



equivalent to studying the zeros of a irreducible polynomial. Proof of this is not very hard. 

 

 Basically, any y you can express it as zeros of some polynomial system. and then show 

that the dimension of f 1 f 2 will be smaller than the dimension of z f (1) which will itself 

be smaller than the whole dimension which is n. So, I mean you have the affine space 

intuition is that if you intersect it with an irreducible polynomial f then the dimension will 

fall and if you intersect it again with F 2, then the dimension will fall another step. So, if 

since you are assuming y to have dimension n - 1, you have to stop at the first step. So, 

there will be only one generator. This is the thing that you have to  So, because of this you 

understand dimension n - 1 affine varieties and in particular there is this nice case of curves. 

 

  

So, a curve y in the affine 2 space is just zeros of a bivariate polynomial. So, your 

polynomial ring in A 2 has only two variables and curve you are asking it to have dimension 

1. So, then it will always be given by a single polynomial. So, curves in two variables it is 

just a single constraint which has to be irreducible because we are assuming it to be an 

irreducible closed set. 

 

 is that clear. So, again this course is just about studying f ( x 1, x 2, 0)s of just this. This is 

the simplest case you can imagine above univariates. Yes, so let us take that example. So, 

I mean we actually already saw that example. So, A 1 we just checked know this was the 

example univariate means that you are in the affine line we have shown that dimension is 

when is 1 and we understand the chain inside A 2. Yeah, so then why do not you go to A 

3?  



 

So, in A 3 this is also a curve  So, you have now two relations and they together reduce the 

dimension from 3 to 1. It is a curve and you cannot express this as a single constraint. This 

can never be written like this. Is that a question? Yeah, is that clear? So in higher affine 

spaces curves can be I mean at least their representation can be more complicated because 

there will be many constraints intersecting to reduce the dimension. 

 

 But in the affine plane this A2 curve is just a single constraint. When we study morphisms, 

we will actually relate the two. We will show that somehow in a cube and a n, when you 

are given a curve, we can actually reduce it to two variables and a single constraint, but 

that will take some time. So, let us now move forward to what Madhavan was saying about, 

essentially it is this algorithmic question that if I give you a polynomial system. in the 

affine n space, how do you compute dimension. So, the way we have defined dimension it 

is very abstract, because it seems to be going over all possible chains of affine varieties, 

which is which we cannot really compute with right. 

 

 So, we have to give a more deterministic procedure, instead of this optimization over all 

chains of affine varieties. Let us transform this definition to something more interesting. 

So, let us give a more explicit way to compute dimension. So, what we will show is the 

following theorem. dimension of y is the same as transcendence degree of the coordinate 

ring over y with respect to the base field k. 

 

 If you do not know what is transcendence degree then of course, this does not seem very 

explicit. So, let me define this. So, transcendence degree is  It is basically the maximum 

number of independent variables you have in your ring. So, independent variables means 

that elements which have no algebraic relationship whatsoever. So, for example x1 and x2 

these are algebraically independent because they do not satisfy any relation in the 

polynomial ring. 

 

 In the polynomial ring they are both of them are free and independent and similarly x1, x2 

and x3 they are independent. So, the maximum number of independent elements in the 

coordinate ring. So, remember this is something about the functions on top of y. So, the 



functions which are independent their number this is exactly equal to the geometric this 

quantity which we have defined the dimension. 

 

 This is what we want to show. So, this is again we are  setting up the dictionary between 

geometric and algebraic concepts. So, transcendence degree of a ring B is the number of  

algebraically independent elements y 1 to y t ϵ B such that if I attach them to K,  And if I 

look at the, so I should call B to be, B is a domain. B is an integral domain. So, for an 

integral domain, you can look at the field of fractions. 

 

  

So, for example, if B is integers, then the field of fractions is rationals. And if B is the 

polynomial ring in one variable, so f bracket x, then you can go to the field of rational 

functions over that. So, that is K ( B). So, this extension is an algebraic extension. is a finite 

algebraic extension. 

 

 So, this is similar to what I had said, but a bit more concrete. So, y 1 to y t you should 

think of these as  the maximum number of independent elements and once you have 

included them in your base field K then everything else that you see in B is dependent. So, 

everything in B is algebraically dependent on y 1 to y t in particular you can write  I mean 

anything in B will essentially be a root of some polynomial over φ1 to φt. 

 

 There is an algebraic relationship. There is an annihilator. Yes. Yeah, I am defining this 

object transcendence degree of B. Let me discuss this in an example because  then I think 

it will be clearer. So, what is transcendence degree of this object? So, k x y | y 2 - x 3| this 

is an integral domain there are no 0 divisors in this, k is some field  we do not care what 

field it is, but with respect to this k now I am asking for the transcendence degree. So, how 

many in this domain  how many independent elements can you find that is the question. 

So, for example, I can give you x right x just the first element x this is independent of 

constants in the base field k correct because there is no relationship between x and 1 right 

if there was then x would have become  a field element because k is algebraically closed. 

 

 For example, you take k to be algebraically closed, so in that case you can see that x is 



independent. Now the question is, is y independent of x? Clearly it is not because there is 

a relationship y 2 is = x 3, right. So, you can actually now show that once 

I take x, everything else depends on x in B, which is saying that 

transcendence degree is 1. and trivial example is the field base 

field itself. So, what is transcendence degree of k with respect to 

k that is 0, because any element you take in k it is algebraically 

dependent on 1. 

 

 So, there is a big difference between transcendence degree 0 and 

transcendence degree 1 extensions of the field k. And what is 

transcendence degree of k x? It is a question simpler than the 

first one. So, for k x once you include x again everything else is 

dependent on x. 

 

 So, this is one. What is the transcendence degree of k (x ,y)? Two 

variables. So I can take x and y. So for sure two things are 

independent. There is no relationship between x and y by the 

definition of the polynomial ring. 

 

 But there could have been a third element independent of x and 

y. You can show that it does not exist. So it is only two. So 

hopefully this gives you the picture of  how the transcendence 

degree grows. So, base field it is 0, 1 variable it is 1, 2 variables 

it is 2 and when you cut it, when you intersect it with the 

relationship then it again falls down it becomes 1. So, you can 

already see that transcendence degree seems to be mimicking our 

definition of dimension. 

 

 That is what the proposition is saying, the theorem is saying. 

Theorem 1 says that dimension of this geometric object affine 

variety is the same as the transcendence degree of the functions 

defined on top of it. Is that clear now? So, formally I defined it 

here in red that is what it means. So, it is a property of field 

extensions. So, you look at the field k (y 1,y 2 ... y t). 

 

 and you look at everything which is in B, then this field you have 



two fields right. So, it is a field extension. The field extension 

should be a finite extension of fields, but let me anyways also 

define independence. So, y 1, y 2  are called algebraically 

independent, let us say over a field K, if there does not exist a 

non-zero polynomial a big phi 1. we are still trying to build this 

association between varieties and ideals. So, we defined a fine 

variety as irreducible close set and we took a detour and we 

defined radical of an ideal and we call an ideal I to be radical  if 

square root of it is equal to itself, which means that if any power 

of a polynomial is in I, then the polynomial itself is in I. 

 

 And what we have shown this proposition that for any ideal of the 

polynomial ring, if you look at the zeros, if you look at the zero 

functor and then you look at the ideal functor, then you come 

back to the √i. So, which means that these two functors are in a 

way inverses of each other, as long as your ideal is a radical 

ideal. So, if you take zeros and you take ideal then you get to this 

thing which is which may be slightly bigger than the ideal i, but 

it is very strongly related. Any questions till now? So, I have 

posted assignment 1. You can check the new website and that 

assignment if you do then you will learn more things some of the 

things that we have been skipping the background of all this. 

 
 

 So, where are we now? So, we have shown that. So, this is the 

geometry and this is the algebra the polynomial ring affine space 

versus polynomial ring. So, the following association we have 

shown that  if you look at the collection of, I mean basically if 



you look at a y which is algebraic, it is an algebraic, it is a subset 

of the affine n space which is algebraic, it is a closed set. Then 

when you look, when you apply the ideal functor you will get 

what? You will get an ideal which will be radical  So, you will get 

here a radical ideal. And if you on the RHS if you start with a 

radical ideal I and you apply the zero functor you will get what? 

You will get a closed set, why? But more importantly if you now 

again apply I then you will come back to the same place where you 

started. 

 

 So, this is one to one. So, we have shown a one to one 

correspondence between close sets or algebraic sets and radical 

ideals. Is that clear? This proposition interpreted like this. So, 

we will make it more precise and then that is the object we will 

study. The closed set we have to take it irreducible right, because 

we have said that if a closed set reduces or decomposes into two 

components y 1 ∪ φ2, then it will suffice to study y i's separately. 

 

 So, we will only look at irreducible closed sets. and for that the 

ideal i will become even more special. So, it will become what? 

So, you have if you start with an affine variety which is nothing 

but an irreducible algebraic or closed y. then this association is 

with prime ideals. So, if Y is irreducible and closed then the I 

functor will take you to a prime ideal and on the RHS if you start 

with a prime ideal then the Z functor will give you and a fine 

variety. So, geometrically affine varieties are nothing but 

algebraically prime ideals. So, what is a prime ideal? In case you 

do not know prime ideal is an ideal where if g x h is in the ideal 

then  either g is in the ideal or h is in the ideal. 

 

 So, it behaves very similar to the notion of prime numbers if 

number if the product of numbers g times h it is divisible by a 

prime p then either d g is divisible by p or h is divisible by p it 

is the same thing, but now happening in algebra instead of 

numbers. So, how does that relate to affine variety?  



 

So, let us start with the an affine variety  Let us start from the LHS, take an affine variety 

Y which is defined via Z(I). Maybe I should let Y be affine variety, let I be the radical ideal 

such that Y is = Z(I). So, for any variety y from the previous association, if you apply the 

i functor you will get the radical ideal which defines y. 

 

 So, you will get y = Z(I). Essentially your refined variety y is the zeros of this system of 

polynomials that generate the ideal i. moreover I is our radical ideal now. So, what we are 

claiming we have to now show that this radical ideal I is prime right. How do you show 

this? So, if I is not prime then there will exist two polynomials f and g both of them are 

outside I. But their product is in I. So, this is the definition of not prime there will be a 

product such that the factors are outside the ideal, but the product is in the ideal. So, what 

I will contradict  Now, using f and g is the fact that Z(I) which is the affine variety that you 

started with, it is actually factors, it is not irreducible. I will give you the two components. 

Can you guess the components? How will you decompose Z(I) into two closed sets that 

are non-trivial? and their union should be Z(I). 

 

 So, you basically in one case you set f to be 0, in the other case you set g to be 0, you get 

two systems. So, z i + f and i + g. So, you have to check this any point which annihilates i 

which is a 0(i). can you see that it will be 0 of at least one of these either it is annihilating 

it is a 0(f) or it is a 0(g). 

 

 So, it is true because f times g is in the ideal right. So, if you have a 0(i) then it means that 

f times g is 0. So, one of these has to be 0 it cannot be that both f and g at that point are 

non-zero. So, simply because of that any point on the left hand side is in one of these. Now 

look at the other direction a point which is in one of these is clearly a 0(i) right. 

 

 So, you have you have an exact equality. So, check this. And so, we have decomposed 

closed set y into two closed subsets, you just have to check that these are proper. So, why 

are they proper? Why cannot Z(I) + f = Z(I)? And this is a proper decomposition. that 

contradicts. So, you have to show this why this is proper do this as an exercise. 

 



 So, this would mean that you have you are contradicting the variety y it has to be reduced 

which means that i is prime. So, if you start with an a fine variety y then you will go to 

prime ideal and we have to now start with the prime ideal and see what happens. 

 

 So, let i be a prime ideal. Now, y we will take zeros of i. So, from RHS now we will move 

to LHS. So, Y will be zeros of I. You have to show that this Y is an affine variety. So, it is 

clearly closed set. Why is it irreducible? So, if it factors, then what happens? So, here you 

can again show that  you will get a contradiction to the primality of I. So, from this you 

can deduce that you will get that Y is an affine variety. So, I have skipped some of these 

steps which we have to fill in, is this clear? And yeah, so slowly we are making it this more 

and more precise the correspondence. 

 
 

 So, close set corresponds to radical ideals, AVs correspond to prime ideals and what do 

points correspond to, that is the last thing. point P in Y corresponds to maximal ideals, that 

would be 1 to 1. Yeah, this will be rather easy, one section will be very easy, so if you take 

a point  a 1 ... a n I should not say in y and k remember we are assuming it to be algebraically 

closed. 

 

 So, for a point p which has coordinates a 1 to a n. the ideal will be. So, this will be simple 

you just set xi to ai that is the relation. This is an ideal of a. And you can clearly see that 

this ideal is a maximal ideal because if you quotient a |i| then you recover the base field k 

which means that this ideal is maximal as a |i| is k. which is a field. 

 

 So, a point corresponds to that maximal ideal and the converse is what I had sketched last 

time, then E |i| will be isomorphic to k. here it will be simple. So, since i is maximal almost 

by definition a |i| will be k and that gives you this homomorphism. So, let me write the 

homomorphism. So, then you have a isomorphism that takes a |i| to field elements which 

means that in particular it takes xi to a field value. So, this is a field element and since phi 

is a homomorphism  what you get is that 


