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Yeah, you asked a good question, so I have changed the notes; I still need to upload them. 

So basically, this is an example, right? This is   1/x- 1  . So what you can show is that 1 / 

x and 1 / (x - 1) are the same up to a unit multiple. For example, if you look at the 

valuation with respect to   1/x- 1  , then this identity states that   1/x- 1   is equal to a unit. 

Thus, this expression is a unit model of this times   x  . Similarly, you can also show that 

if you look at the valuation   1/x , there is again a reverse identity. 

 

 Therefore, in both valuations... Basically, what it means is that the maximal unique ideal 

can be generated by both. 

 

 So, yes,   x - 1   -1 and   x   -1 provide identical valuations and yield the same DVR. So for 

that, I actually had to change the proof slightly as well. So, Case 2 was not properly 

studied before. You divide it into two cases: 1 case is that   x   ∈ R  . Let   R   be a 

valuation ring, and we are looking at the function field with the transcendental element  

x. 

 



  . 

 

 We are basically looking at the projective line. So, you then divide it into two cases: 

whether your DVR contains the variable x or not. So, the containment of x gives you an 

irreducible f, while the non-containment of x gives you 1 / x. Yes. 

 

 Yes. So, f is an irreducible polynomial in 1 variable, x. Correct. But this proof is also 

written in general. So, we don't make assumptions. 

 

 Yes. In case 2, since x ∉ R, R is a DVR. So, its inverse is in R, which means that k ( 1 / 

x) is also a subring of R. And now, from the above case, the unique maximal ideal is 

generated by some polynomial in   1/x . The only observation that was missing before is 

that   x-1   is not a unit in   R  . If it were a unit, then   x   would be in   R  , but in case 2, 

we have assumed that   x   ∉ R. 

 

 This means that   x-1 is not a unit, which implies that it is in the maximal ideal. This 

means that   f-1 (x)   divides   x-1. So, they are the same; they can differ only by a constant 

multiple. So, that is it.  So, this part that was previously muddy is now fine. 

 

 Yeah, so when you look at x - 1, you actually get this property. Somewhere, I have 

added, "Yeah, this property you get in blue." So,   1/x- α for any constant   α   gives you 

the same valuations; they are all generators of the principal ideal. That is the example. 

We had not observed this before; it is not a contradiction; it is fine. 

 

 Okay. I guess we can start. Any questions about this part? Yes. So, we have shown that 

the Z function is a rational polynomial in T, and we can think of this as the analytic 

continuation of the power series. We can now use, let us say,   g(t)   /   h(t)   or   a(t)   /   

b(t)   as the function defined over all complex values of   T  . This function satisfies the 

functional symmetry equation, where   T   is replaced by   1/QT  , resulting in this 

relationship.  

 

 So, we did this, and hence we also obtain, in classical form, this Z( 1 – s) related to Z (s) 

via the norm of the canonical divisor class. We have information about poles; there was 1 

typo here: the residue is not Zt but Q-1 times Zt, because we had already multiplied our Z 

/ Q-1. The residue of   Z_t   is actually the class number divided by δ .   Q - 1  . Okay, that 

came from what happened in the formula. The residue at   t = 1   means that you have a 

univariate polynomial which you multiplied by   t - 1   and then set   t   = 1. 

 

 So, the answer you get is called the residue. In other words, if you have a polynomial, 



you can first divide it by   t - 1   to get the remainder, meaning you get the quotient and 

then substitute   t = 1   into the quotient. However, here it is very explicit, so you do not 

have to think about integrals. The motivation comes from there, so now the final thing is 

to. 

 

I deduce that δ = 1. So, for that, we need this Bayes' change theorem. So, let us prove 

this. Yes, we want to relate the Z (  C_n)  , which is the same curve in a higher field, with   

C  , which is the curve defined over the finite field  Fq . So, by the Euler product, it 

suffices to compare the two sides for a point P on the curve and its conjugates on the 

curve. 

 

 Thus, the picture is that you have the curve C, and then you have the curve CN. So, 

points on the curve, when you move to the same curve but in a higher field, may actually 

ramify or split and give you more points because you have a bigger field. Well, the 

problem is that the point P is actually not a real point; it is a prime ideal. Essentially, the 

prime ideal factors; thus, the prime ideal may factor, and the cloud of points factorizes 

into smaller clouds, which are again prime ideals in this CN. So, P here may give you Q1 

and Q2; this is what is happening. 

 

 So, we will see that the part of P on both the left-hand side and the right-hand side 

behaves as claimed, and then by the Euler product, you can take the product over all the 

points, and you will obtain the theorem. So, let us consider this point P now. The Euler 

product is that the Z function factorizes according to primes. There is no experience. 

Yeah, but there is no experience; we have not defined it. 

 

 Obviously not; z(t) is simply σ(t) raised to the power of the divisor. Sure! So, the 

definition we started with is essentially the same as the ordinary Riemann definition. This 

is the sigma of   1/ns   in the case of numbers. So we are simply using the same analog 

definition of it for curves. What you are saying will be reduced after this theorem. 

 

 But anyway, the main technical content is actually the same, which we will now examine 

at a specific point. So, what is happening there? So, for this point, let us fix point P for 

the proof; we will not change it. So, let   M_P   be the unique maximal ideal of the DVR 

corresponding to   P  . Since   P   is a smooth point, the germs essentially give you this 

local ring with the unique maximal ideal   M_P  .  So, this is a DVR, and the DVR data 

indicates that this field, RP mod MP, is a finite extension of K, right? So Kp is the field 

where, I believe, P completely splits, and it is still a finite extension of K. 



 

 

 

 It sits between FQ ‘ and FQ; if K is true, then K is FQ. So, KP basically has this model: 

KT mod F. Is it an irreducible polynomial over   Fq  ? So, this is just a description of 

where the point completely splits. Yes, so what did we have? We had this field   K'  . 

Over this field   K'  , which is slightly larger than   Fq  and has size   Qn  , what will 

happen is that   F   may split further. 

 

 No, not that. Yeah, okay, fine. So, F is irreducible in KT, which is FQT, but when you 

go to FQ in the end, F may split; let us say it splits into E polynomials or E factors. So, 

what can you say about the factorization such that FT splits into E factors? Over the new 

field, they are now irreducible over the prime field K. 

 

 So, F splits into F₁, F₂, ..., Fₑ. So, what can you tell me about them? So, it is not difficult 

to prove; just use the properties of finite fields. You can reduce F1 to Fe, as they are 

mutually coprime. Their degree is the same, and regarding E, you can say that whatever 

the degree of F is, you take the GCD of that with N, and that will be E. Since the   F_i   

are coprime, their degrees are the same, and   E   is nothing but the GCD of   N   and the 

degree of   F  , which is also the degree of the point. 

 

 As an example, if you take an irreducible polynomial   x6 - α  , then it is supposed to be 

irreducible over   Fq  . So, what will happen when you go to FQ 2?  So, when you go to 

Fq 2, this degree 6 polynomial will essentially split into two degree 3 polynomials, each 

of which will be irreducible. So, x 3 + or - the square root of α, okay? Also, if it were just   

x2 - α   that you had, then   x2 - α   would completely factor when you go to   f(u2)  , and 

for any other even degree, it will simply split into factors of degree divided by 2. This can 

be shown easily; these are the properties of the main polynomial at the point when you 

move to an extension. 

 



 That is what we must deduce. What it says about the point is that point P corresponds to 

the points Q1 through QE. In Cn, the degree of the point is equal to the degree of Qi, and 

all these degrees are the same. So, it is E times d of q1. Okay, so you can rehash this 

polynomial factorization into our degree operator at this point. Essentially, what is 

happening is that this point, which was a prime ideal in Fq, gives you the prime ideal 

factors into prime ideals in the new world when you go from Fq to Fq to the n. 

 

 In the new field, Q1 to Qe and their degrees are the same, which will then be equal to d(p 

/ e). This is an equivalent formulation at the level of points. So, what is the current 

contribution to the Z function? Let us check that. Thus, the contribution in   Z_tn C_n   is 

the left-hand side of the theorem. The contribution coming from point P is as follows. 

 

 

 

 Do we believe this? So   tn  comes for free because we have already substituted   tn into 

the Z function. The degree of Q1 is dP / E, so that is in the exponent, and the 

contributions are coming from Q1 to QE; they are the same contribution, so we have 

multiplied that, right? So, corresponding to P, when you look at the conjugates that split 

above as you approach FQ to the N, you get these E factors in the product. This, we can 

say, is the exact contribution from P on the left-hand side. Is that fine? We have to match 

this with the right side. What we will show is the following identity: Yes, the above 

expression is simply 1 - t n, - n . dp / e - e. 

 

 Now, we want to study that expression. So, regarding that expression with E in the 

exponent, we want to see how it factorizes. Once we establish this claim, you can fit it in 

and see that the RHS contribution is the same, right? So what we basically have to show 

is this factorization, which is a bit strange because on the left-hand side, you have 

multiplicity E, but on the right-hand side, you seem to be getting different results. Right, 

but are you hitting different things? Since η is an nth root of unity, and n and the degree 



dp share a common factor, their gcd is e. After a few steps, the term η raised to the dp 

repeats, and you can show that it repeats exactly with a multiplicity of e. That is what we 

will check now; it is actually easy to verify. 

 

 Let N' be N divided by GCD(E), D' be DP divided by GCD(E), and you know that this is 

true because the GCD of N and DP is E. Therefore, when you divide them out, they 

become coprime. The right-hand side of this claim equals the sum of the η's, 1 - η, and 

the degree of the point raised to the power of t. So, as η runs over the nth roots of unity, 

all of them are raised to the ed ‘, or η e runs with e repetitions. What we are saying is that 

as η goes over these n roots of unity, η e, since e divides n. 

 

 What η raised to E is just the nth prime root of unity, so you will actually see things 

repeated E times; every value gets repeated E times. D ‘ is co-prime to n ‘, so if you raise 

this to D ‘, the same behavior can be observed. So, η ed ‘ runs over with the same number 

of repetitions; that is all. This indicates that the multiplicity = E. All we have to check is 

whether the base is also correct: T N D / E. 

 

 Let us also verify that. Essentially, what you can say is... You have a product, so you get 

η ‘ . t raised to the power of dp. Can I say this? This whole thing is raised to E- I hope 

this is correct. 

 

 So, η ED ‘ is nothing but this η ‘, which is the N-th root of unity. You go over the distinct 

ones and then raise the whole thing to E; that is the repetition, and that is the multiplicity. 

So, what is this now, the thing inside? I guess that should just be T raised to dp n ‘E, right? 

That is as promised. So, that is the left-hand side. Is that fine? Yes, we have verified this 

factorization using the nth roots of unity, and this essentially informs you about the Z 

function. 

 

 So, the contribution of P in this Z function substitution is exactly that. Which, yes, is 

already the factorization of Z in terms of T and C. Okay, because this  1 - η t  dp-1  is the 

contribution of  p  in this particular substitution of  z , which is  z(η t, c) . We have 

checked the contributions in all these  z  substitutions, and the product matches the left-

hand side. Is that fine? Okay, yeah, so we did this mainly to understand δ and how it 

would help. 



 
 

 

The corollary of this is that there are exactly two poles. Δ = 1. Let us prove this. The 

calculation of the functional equation we performed essentially tells you that the Z 

function, after you perform the infinite series summation, is a polynomial   L_T   

multiplied by   (1 - tδ)(1 - q tδ)  , where   L_T   is an integral polynomial in the variable   t  

. 

 

 Yes, I am not saying anything about the degree of L. I am just saying that the 

denominator consists only of these two terms: 1 - t δ and 1 - q δ, which is easy to verify. 

Yes, we now want to use this base change theorem. So, what should we change the base 

to in order to obtain some information on δ? So, here is an interesting trick. So let us 

change the base to   n   =   δ  . Okay, so this δ, or so, remember that this is happening over 

the integers. 

 

 So it is not clear why we should choose this as our base change, because the field was fq 

and we are going to fq n. Now, I am suggesting that instead of fq n, we go to q δ. Okay, 

that is, then apply the base change theorem. What you will receive is the following 

formula. z t δ c, δ = the product of η δ, = 1 So, η is a δ-th root of unity, and it goes over all 

of them: Z, η, t, and c. 

 

 What happens here? So, something interesting is going to happen now. The reason is that 

when you substitute η t and replace t with η t, the denominator will not change; that is 

why we did this. So, you will get L (η t) that changes, but not the denominator, right? So, 

this means that you are essentially getting the numerator as the product of   l η t   over all   

η  . This will become   t   δ  . That is not very important; what is more important here is 

that the denominator is exponentiated, resulting in this. 

 



 That is the important thing, so in the denominator, you are essentially getting poles with 

multiplicity δ, correct? And why is that a problem?  Yes, on the left-hand side, we have 

substituted T δ, so we need to deduce this carefully. You simply substitute T raised to the 

δ in the formula above. The above formula, yes, with the different L. So, let us do that 

carefully.  On the other hand, ZT δ C δ is another L ‘ function where you substitute T δ, 

and in the denominator, you have. 

 

 

 

 So, let us not do this in 1 step; let us do it in two steps. The Z function for   C_δ   looks 

like this, which implies that the Z function, when substituting   T_δ   for that curve, is   

L'_T_δ  . Is that correct? Okay So, yes, we have these two expressions.   The place where 

you will find a contradiction is that, in this case, all the poles are simple, which means 

they are simple poles. Yes, his point is correct. 

 

  But let's, yeah, which is why this needed to be done carefully. So let's do that. Let's call 

this δ ‘. Still, it should be okay; do you see that? We are doing this properly now. Today, 

I think the projector is not good; it does not show the colors. 

 

 So, even if it is different, the form is still the same. So, when you substitute T δ in this 

form, you see that there are more poles, but they are all simple. There may be more poles, 

but they are all simple. So there is no repeated pole; however, in this expression, you 

seem to be obtaining a multiplicity δ. The only way to achieve this is for δ =1. So, in the 

calculation of the functional equation, the term we have is   q - 1   .   z_t  . 

 

 If I multiply it by   t - 1   and then set   t   = 1, we see that we obtain the class number   

h_c   when   δ   = 1. So in the calculation, we had this   h c/t - 1  , correct? So, if you clear 

out t - 1 and then set t = 1, you will obtain the class number, and now you can gather 

information about L(t). This means that (q - 1) times L(t) . (1 - t) is eliminated. So, you 

get 1 - qt and qt - 1 at t = 1, which is equal to the class number, which means that. 



 

 So, on the left-hand side,   q - 1   will cancel. So, you understand that l1 = hc. Okay, so L 

of 0 is trivially 1, but L of 1 is an interesting invariant: it is the class number of the curve.  

 

 

That's an interesting fact, so let's compile these facts into a major theorem. The properties 

of L-functions are, well, this is simply a property of the curve, not of the L-function, but 

we have demonstrated it using this as an intermediate function. So the following 

sequence is now exact, correct? So this was the containment, and this was the extent. 

 

 So, the degree of the class group is subjective, okay? The content here is that there is a 

divisor whose degree is 1; that was the only thing missing from our understanding, so 

now we have it. There is a degree 1 divisor, and this is true over any field of constants. 

You can take the finite field   F_p  , and that is correct. The second property is that we 

have just seen the Z function is   L(t)   |   1 – t|   and   1 - qt  , where   L(t)   is integral. 

And its degree is equal to what? Now, with δ = 1, you can go back and check the 

calculation of the functional equation. 

 

 There was a 2g - 2 appearing, and there were terms in the denominator. You multiply by 

them, and 2g - 2 becomes degree 2g, so the degree is equal to 2g. It satisfies the 

functional equation, which is as follows. You can also check the calculation we did by 

simply eliminating the denominator. The functional equation for z provides you with the 

functional equation for l, which is qt squared raised to g. 

 

 That's how the L function transforms, which, by the way, is a polynomial. It's a degree 

2g polynomial. So that you can also deduce from this.  There is a t raised to 2g appearing. 

So, it makes sense. That can only happen for degree 2g because you are essentially 

substituting 1 / t on 1 side. 

 



 L0 is 1, and L1 is the class group, which represents the class number, okay? So, these are 

the properties of this L-function. Are there any questions? Yes, that's a good question. 

Uh, I did not think about it. Yes, that is a good point. So, even if this degree were not 1, 

suppose you wanted to reach this δ degree divisor. 

 

 So, what you should do is sample two random points and then consider p1 + p2. 

Actually, p1 will have an order of something, p1 will have a degree of d1, and p2 will 

have a degree of d2. You use Euclid's algorithm to express   d_1   and   d_2   as a 

combination equal to δ.  Suppose   a_1 d_1 + a_2 d_2 = δ  ; then the divisor should be   

a_1 p_1 + a_2 p_2  , and the same thing will yield. Those are abstract points; this is an 

actual point of degree 1. 

 

 No, that is not the claim. Is there an actual point. No, this is a claim only for the class 

group. What you are saying is not true. It may not even be the total of the actual points. 

 

 The divisor may simply be a sum of prime ideals. Since you can use both positive and 

negative integers, you can understand what Euclid's algorithm is. Yes, that is the correct 

way to understand it. See, asking anything about actual points is very difficult because we 

have not yet proven the Riemann Hypothesis. Right, so we do not know whether these 

actual points even exist. Your curve may have nothing in the field of constants   k  , so 

you have to go to a very large field. 

 

 Unless we prove the Riemann Hypothesis, all your questions are somewhat based on the 

hypothesis. So, let us just consider that as a computational question here. Compute a 

divisor D that is in the pre-image of 1. This would essentially involve sampling not 2 

points, but 2 prime ideals, and you still have to do this; it is not immediately clear. 

 

 Because you may not have any actual points. Since you do not have any actual points, 

you will either need to sample from prime ideals or wait until we prove the Riemann 

Hypothesis. Once that happens, we will have many points in the base field, and you will 

be able to sample from them. That would be the correct algorithm, but then you would 

have to wait for it.  The second question is, "Can we compute LT?" Given, of course, the 

curve over the field of constants, right?  So, we know that when we proved Riemann's 

theorem, we observed that the genus is not too large and that the computation of the 

genus can be done efficiently. In terms of the degree of the curve or the degree of the 

planar representation of the curve, the genus is maximally quadratic. The degree of L is 

not large; it is only quadratic in the input.  



 

We are asking two questions: How big are the coefficients of the L function? If these 

coefficients, which are integers, are too large, then you cannot even output them 

correctly. So, how big are these coefficients? If they are small, can you compute them? 

That is the second question, and it is a harder 1. As Madhavan will tell you, there is no 

solution. Even after a lot of work, there is no algorithm to do this; the best you can 

achieve is exponential-time algorithms. 

 

 Even that is not clear; it will only become clear through the hypothesis. Because if nature 

were too harsh, and if these curves were too poor, then the coefficients of L could have 

been doubly exponentially large, and there would be no way to output that. Is there even 

anything that exists? Yes, yes. Among these questions, the second 1 is definitely open. 

The first question will be easy once we have solved the Riemann hypothesis. 

 

 Also, this question will be easy because the L function has small coefficients. So, 1 can 

present them efficiently in the output.  But we do not know how to compute them; the 

presentation will not be a problem, okay? So, yes, now let us come to this hallowed 

connection to counting points on the curve in the field of constants, shall we? So, what 

does that have to do with the Z function? So, I mean that the way we have defined the Z 

function is the way Riemann defined his function, which is via the sum of 1 / n s. In our 

case, it is the sum of t raised to the degree of the divisors, which are like numbers. In 

Riemann's hypothesis, it is also unclear how his function connects to counting primes, 

right? A systematic way to go from there to counting primes exists. We can do something 

similar here; it will involve simple algebra to connect our Z function with counting actual 

points on the curve in the base field of constants. 

 

So, let's do that next. Let’s start with the Euler product, which we have been using all the 

time. To simplify, let’s denote it as   z  ;   z   will represent the Z function of the curve   C   

over the field of constants   k  . 

 



It factors as follows. So, by definition, this is not a case we encountered when we defined 

the Z function, σ(t) d, which sums σ(t) d of a divisor over all the positive divisors that 

factor in this way over points. That is why, in fact, we go over non-negative divisors, so 

that the matter will ultimately resolve itself into points. Now, this is a strange product 

because the points, which are even the main ideas, are infinite, right? So you are actually 

multiplying infinitely many things, but you can see that everything is well defined. There 

is a notion of convergence in power series, so it's okay; you can actually perform the 

multiplication. 

 

 The next thing we will do is something even stranger: we will differentiate this identity. 

Okay, so it's already an infinite product, but let's make it even stranger by actually 

performing two operations. Let us apply the logarithm and then take the derivative. So, 

use the logarithmic derivative. What you do is take the logarithm of both sides and then 

differentiate with respect to the only variable,   t  . So, what does that accomplish? We are 

doing this so that the product— I mean, the logarithm of the product— is the sum of the 

logarithms. 

 

 So, you convert the product into a sum using logarithms and then differentiate it. So let 

us see what you have.  So let us not worry about   z   for now. The   d log(z)   is equal to 

the sum over all the points, and the summand is   d. log((1 - t)-1)  . Okay. So just 

remember this identity: the derivative of the logarithm of a function is equal to the 

derivative of the function divided by the function itself; that is what we want to use. 

 

 Right, so the left-hand side has become z ‘ / z, and here you will get the derivative of 

this: 1 - t raised to the power of negative 1, divided by itself. So, let’s do that. So, what is 

the derivative of this?  - 1 . dp . t dp - 1, divided by itself. 

 

 Oh, sorry, I messed something up. - 1, then you get 1 - A, dp - 2, so you actually get 1 

here. Okay. There is a - 1, so when you differentiate, you will get - 1, but - 1 will become 

- 2 in the exponent. Yeah, yeah, but let's not do that. 

 

 This is just using f ‘ / f; that is all—no further tricks. So it becomes this, and there is no - 

1. This is also not present because, yes, - 1 times - 1, the quantity (1 - t) raised to dp gives 

you - 1 as well. Yes, this is the expression. And, right, how would you like to see this? I 

want to see it this way. 

 

 Go over all the points. The degree of the point multiplied by all the numbers is correct. 

So, sigma dp is out, and t -1 is also out. Now, what we are doing is taking t raised to the d 

power divided by 1 - t raised to the d power, and we are simply expanding it back into a 

power series. Right, so you get powers of   t   d  , with   t   n   .   d  , where   n   starts at 1. 



 

 That is what it is. Whenever you see a summation, you should try to swap it. So let us 

swap this. What will you get? This is   T^{-1}   times the summation. Suppose I went 

over the numbers   m   to get   T   raised to   m  . What is the coefficient of   T   raised to   

m  ? What is it counting? Yeah, let's go over the numbers first and then look at the points 

they are counting. So,   t   raised to   m   will be counted and will appear here only when   

d   of   p   divides it, and it will then come with   dp  , right? The coefficient, in simpler 

terms, of   t^m   inside this inner sum comes from those points whose degree divides   m  

. 

 

 The contribution, or weight, of that is   d(p)  . That is what we have just swapped in the 

summation; so what does this mean? How can you read this off now? In the finite field of 

size   q^m  , is that clear?  So, if the degree divides, think of the field   QM  , right? Its size 

is   QM. In that field, since the degree of this point divides   M  , that prime ideal actually 

completely factorizes. For that cloud, you are actually in the splitting field, in 1 of the 

splitting fields. So, how many factors will you receive?  

Exactly d of pSo all the conjugates are present in this field, which has a size of   q^n  , 

correct? So you are actually counting points in that field; that's all you are doing. 

 

 So, what is the number of points in that field? So Nm is the number of points on the 

curve above that constant. That's all, isn't it? That's all you have in the RSS feed. So, 

essentially, there is a mysterious connection between the Z function, as we defined it 

from first principles, and the generating function of the points we wanted. 

 

 

 

 There is a clear connection. So, let us finish this.  So, let us integrate it. To remove the 

"d" on the left side, the derivative from 0 to t gives, so when you integrate from 0 to t, the 



derivative of the log of z will become the log of zt. Sorry, what will the right-hand side 

become? There is T raised to M - 1, right? So this will just become T raised to M divided 

by M, starting from 1. Yes, that is it. In other words, if you do not like logarithms, then 

you have to use exponentials, so the exponential of sigma, okay? So, that is the 

connection between the ordinary Z function definition and the generator you would want; 

they are exponentially related, okay? So, this is brilliant. 

 

 It is especially brilliant because, as we have written it as an L function, it is L(t) / (1 - 

t)(1 - qt). So now, if you also expand Lt using its roots, you can proceed. We'll achieve a 

magical result because we are using the first identity. Uh, so the logarithm of L_t can be 

expressed as a product. 

 

 So, you find the sum of the logarithms of the factors, compare both sides, and arrive at a 

formula for N_m. Let's do that. Um, so now use the fact that   Z_t   =   \frac{L_t}{1 - t} 

(1 - Q_t)  . Furthermore, do not think of   L_t   as a polynomial; think of it as a product. It 

is univariate, so it completely factors. We do not know about its fundamental 

properties—perhaps its roots are not simple, and they may repeat, and so on. 

 

 However, over the complex numbers, there are roots, so let us just factor it. You know 

how many roots there are when counted with multiplicity, which is   2G   roots. 

 

 Its degree is... so I will write in the... I will write this differently, and the reason will 

become clear soon, because I essentially want to take the logarithm of both sides, right? 

So if I write  1 - α_i t , the logarithm of that gives me a better expression. Instead of 

expressing this as  t - α_i , I write  1 - α_i t  so that the logarithm will work better. 

 

 So, Α and I are complex numbers, and let's check. Just, yeah, just that. Correct. The roots 

of L are actually units in the complex field. So, you can invert them. So, that is what we 

have done. So, these are actually the inverse roots of L, or the inverse zeros of L. 



 

 

 

 Now, Z is also a product that will help with the first formula. So, let us plug it in. What 

we have now is the log of  1 - α i t  from  i = 1  to  2g , which is the L-function part, - the 

log of  1 - t , - the log of  1 - q t . And this is equal to σ(nm), the generating function, 

essentially, right? So now, from here, you can read off the formula for   n_m  , which is   

n_m   =   q^{m+1} - \sigma   of   l_i   raised to the   m  . Right? That is the formula. So,   

\frac{1}{m}   can be, I mean, basically just the logarithm; you recall that the logarithm of   

1 - t   is, or rather, - the logarithm of   1 - t   is just   t + \frac{t^2}{2} + \frac{t^3}{3}  , 

and so on. 

 

 So, t raised to the power of m is present everywhere. So forget that;   n_m   =  q   raised 

to the power of   m + 1  , which comes from the denominator of the Z function. The 

interesting part comes from the roots of L, the inverse roots of the L function, and many 

others related to 2g. So this part, α i to the m, is regarded as the error term. Why is there 

an error term? Well, if this were not present in the projective line, the curve would have   

q^{m+1}   points, right? So, that is another way to view it. 

 

 So, this is the projective line plus an error. So, the projective line has   q^{m+1}   points, 

right? The point at infinity is positive 1, and the others are from the affine. So, this error 

is 0 only in the case of the projective line. For all other smooth projective curves, you 

will have some error term, + or -. So, since you are summing over complex numbers, I 

should have said sigma α_i or sigma α_i to the m. 

 

 Since this comes from an integral polynomial, it will always be real. In fact, it will 

always be an integer in this instance. So, this integer can be positive, negative, or zero. So 

when it is 0, you see that this is the case of the projective line. In other cases, you will be 

slightly above or below the average. Yes, that is true because it is a statement for all   m  . 

 



 In small   m  , weird things can happen, but if it is true for all   m  , then your curve must 

be a line. Yes, the fundamental question that was asked more than 100 years ago is: How 

big is the error?  So, what is your guess?   So, how big can the error be?  Right, so the 

version of the Riemann hypothesis basically states that the error cannot be too large. In 

fact, the error term will be the square root of the main term; it is bounded by the square 

root multiplied by the genus   g  . Thus, it aligns very nicely with what happens over the 

numbers. So, for the estimate of primes, the error term is conjectured to be the square 

root of the main term. 

 

 The same thing you would conjecture here; the difference is that we will actually prove 

it. In fact, we will prove something very significant: we will prove that the α i's are not 

arbitrary. So, the α i's themselves will prove that their norm is very special; it is equal to 

the square root of q. So, that's the version of the Riemann hypothesis that we will prove. 

1 last thing I want to mention is that, through this functional symmetry, we immediately 

obtain the following observation: the property that we can label α_i's such that α_i times 

α_i + g equals q. 

 

 Let us see why it is actually true that you obtain this immediately from the symmetry. 

So, the symmetry basically relates L(t) to L(1/t), right? So, if α i is an inverse root, then it 

indicates that there is another inverse root, which I am calling α of i + g, such that the 

product is q. This follows from the symmetry. So, you have 2G roots; you can label them 

and arrange them so that this property holds for each pair. But, as I said, when we prove 

the Riemann hypothesis, we will actually demonstrate something very powerful: we will 

show that the norms of these two are equal as well. 

 

 

 

 So, we will show that the norms are equal, which means that the only option is the 

square root of q. This is part of the symmetry; I mean, you can try to deduce it from the 



symmetry, but it is much more than that. So, I don't know why people would have 

conjectured that. This thing is amazing because it is what causes the discussions now. We 

have to fight this other pair so that everything is resolved. Yes. So, okay. 

 

 


