
Lecture 02 : Ideals and Varieties 

 

 And so, for that we will assume field a small k to be usually f(p) or f(p) bar and the affine 

space will simply affine n space will simply be the space of all points. So, these are as a set it 

is basically n tuple with coordinates from the base field k. but we will have a more elaborate 

notation here this fancy a to the n sub k because it will not just be a set, but it will actually 

be a topological space which we will define in due course, but this would be a refine n space. 

So, this is where our points live and the polynomials or the functions are on this space  So, 

function is basically it takes a point in the affine n space and it evaluates you should think of 

the function at simply a polynomial and the polynomial can be evaluated at a point and the 

polynomial also has coefficients from the same base field k. So, this picture is basically the 

diagram you should remember in all the things we do in this course that this green ball is 

the space, it has a point P and then the orange part are these functions or objects which are 

outside or on top of the space. So, in this case these are functions f and g and they will 

evaluate to possibly different things on the same point. 

 

 So, we want to study the green wall the set of points, but we will always studied by 

something else. So, for that we need to define the connection what is the connection 

between these two words. So, the first operator will be the z operator. So, this is zeros of a 

polynomial f which is just points p in the affine space such that f vanishes and the same 

thing you can do with a subset t. 

 

 So, z of t is points which vanish on all the elements of t. for all f, f of p is 0. You should ask 

the question, when is for a polynomial f, when is z of f empty? So, can you think of 

polynomials which have no roots, no zeros? So, of course, you can think of them, but usually 

we will assume small k to be an algebraically closed field like f p bar. So, any polynomial f 

you pick, there will always be a 0. So, Z of f will actually be non empty in our interesting 

cases of course, in finite fields and other fields which are not algebraically closed then Z of f 

can be empty, but it would not be the case in our the generic situation we will be in. 

 

 Can Z of f be everything? So, Z of f equal to a to the n whole the whole space, f vanishing on 

every point. This again is possible if k is too small, but in algebraically closed field it would 

not be possible. You can always find a point which is not a 0 of f. So, z of f will be somewhere 

in between it will not be empty, but it will also not be everything except of course, if you 

took f to be 1 a constant then there is no root. So, that would be the only case when it is 

extreme usually it will be in the middle. 

 

 So, example is so Z of x1 2. and x 1 + x 2 right. So, what are the 0s of this? So, remember you 

are interested in common 0s. So, first one implies that x 1 is 0 and second also implies x 2 is 

0. So, the only solution is 0 comma 0, only 0 is this right, this will not even depend on what 

field. 

 

 So, it is true for any k. what is z of x1 2 assuming that we are looking at affine 2 space. So, 



here this is only setting x1 to 0, x2 is free. So, you will get 0 comma t for every element in k 

right. So, it is basically the affine line affine 1 space with 0 appended on top. 

 

 So, these things are called curves, we will formally define it, but the first 0 set is a single 

point and the second 0 set is a curve, it is parameterized, in fact it is even parameterized by 

a single variable here. So, with this z operator now we can define  the closure or when is a 

set closed. So, basically in the affine space as I said we will not just look at it as a set that 

would have been boring. We will actually look at it with more geometric behavior. So, for 

that we will identify some special sets in the affine space and these are called closed sets. 

 

 So, a subset y  in the affine space is called algebraic or closed if y is equal to z of t for some t  

So, simply put you will call a subset of the affine space closed if it is exactly the set of 0s of 

some set of polynomials. So, these are the closed sets and the complement of these we will 

call them open, but before that let us see an example of this. So the complex field is which is 

basically the affine space that this is closed why is it closed it is the 0s of what it is the 0 set 

of the 0 polynomial right. So this is closed because  Because trivially if you take the zero 

polynomial then you get everything. So the whole set is the whole affine space is closed. 

 

 But a more interesting object is complex - zero. So if you puncture the complex line at zero, 

is it closed? So this is a proper subset of the affine space. can you express it as Z of t, why 

not, it is not completely trivial. So, this is not closed. So, you can show as an exercise that 

this is not closed. 

 

 So, some subsets are closed, the others are not closed. what this is complex - 0, the 0 point 

is closed and if you remove it then the remaining thing is open. So, we will define these also. 

So, complement of closed is called open. So these will be the cornerstone of our geometric 

perspective of varieties or zero sets. 

 

 So we will always think in terms of subsets which are closed and subsets which are open 

and then build things on top of that. Again we are doing this to build a connection between  

this green ball and the orange ball, we will slowly identify very strong connections between 

these two words. So towards that, so for a subset Y which is basically a set of points that you 

are looking at, what should be the corresponding polynomials? So, you are in this green 

word from this how can you go to the orange word. So, for that we should define what is 

called an ideal. So, for any subset y set of points define an ideal I of y to be those 

polynomials  which annihilate all the points. 

 

 So, if you are not aware of the term ideal you can just take this as a definition also or maybe 

actually I should give the other definition as well. So, a set I  subset of A is called an ideal. if 

so you need some axioms in particular you need I itself to be a ring you should be if you add 

two elements or you multiply them you still get an element within I so it should be a sub 

ring but there is more there is something extra which is a more important property that if 

you take any element outside the ideal and multiply with something inside you come inside. 



you want I to be a sub ring and you want the product of any element for all a in R for all 

elements  a small a in the big ring a, a times i is basically the set of elements of i each of them 

multiplied with a, this should again be in i. So, this is the key property. 

 

 So, you must have seen this object before in when you have a ring you can talk about ideals 

of a ring and we use the notation this one. So, whenever I will try this I will mean that I is a 

subset of A moreover it is an ideal, it is an ideal. Yeah. So, it is a yeah that is true. Let me not 

write it down. 

 

 So subring means that in here 1 may not be present, 0 is present. So 0 is there, 1 may not 

be. So, basically the usual axioms of ring that you can closed under addition, closed under 

multiplication and for addition there is an inverse, there is associativity, there is 

commutativity and all those things are there, distributivity is there. So, those list of axioms 

you have to go through or everything I satisfies in addition it satisfies this property that 

anything outside multiplied by inside is inside. So, I am giving this here because the object 

that I have defined has this property. 

 

 So, for a set of points y when you look at the polynomials which annihilate all these points y 

this set is an ideal. you can check that f1 + f2 if f1 is in Iy and f2 is in Iy then their sum is also 

there because the sum will also annihilate product will annihilate moreover if you take 

some g which is outside this set I and multiply it with something inside which is f, f times g 

will be inside So, the key axiom of ideal is also satisfied. So, this is the ideal corresponding to 

a set of points. On the points we are not assuming anything, y is an arbitrary subset, but Iy is 

always an ideal. So, that is a definition and a property. 

 

 So, now we have some kind of an association developed. which is so in the affine space if 

you take an object y a subset and this a is the polynomial ring functions defined on the affine 

space everywhere so y is associated with an ideal  right so on the left hand side you have 

points and on the RHS you have polynomials so from set of points you can go to set of 

polynomials forming an ideal which is this IY definition and is there a converse to this if I 

give you a set of polynomials T then I have defined ZT before So, from points I can go to 

ideals and from set of polynomials t I can go to a 0 set. So, we have the first basic association 

and we will slowly make it stronger because we should now try to understand what where 

will these closed sets go. and is the association as strong as starting from a y going to iy and 

then when you come back, you come back to y. Can you take two steps and come back to the 

place where you started, in other words is it a one to one correspondence, there is an 

inverse to these maps. 

 

 So this object here is an ideal. and this object here is closed or algebraic. So, these are very 

different words this in fact if you have heard the term category these are two different 

categories and we are actually what these arrows are these are functors. So, from the 

category of affine varieties we are going to the category of algebras. 

 



 and back and forth right. So this is the thing which we will develop slowly into a well oiled 

machinery. So could we make these associations well behaved. example can we make them 

one to one. One to one means that if you start with two different, if you have two different 

closed sets then the associated ideal should also be different and vice versa. If you have two 

different ideals then the associated closed set should be different. 

 

 Is it a, is this an exact association of one to one correspondence. We will see that that is not 

true but we will come very close to making it correct. So, your time for a first proposition. 

So, this is trivial phi and the affine space both are open, union of open is open. and if these 

are finitely when you open then the intersection is open. 

 

 So I will prove this, proof is quite easy but before that any questions? Yeah, so well this is 

just a proposition from we have given the clear definitions, from the definitions we can 

prove this. Once we have proven this then we would have defined what is called the Zariski 

topological space inside an affine variety. But are the terms clear? Do you have any 

questions till now? Okay, so how do you show that empty set is open? You have to look at 

the complement which is A to the n and that is closed, right. And why is A raise to n open? 

Because the complement which is empty that you have to show is closed. 

 

 So let's see that. So A to the n is Z of what? Zero. And empty set is Z of what? One, right. So 

because of this you know that empty set and the complete set, full set, they are closed by the 

definition. So complements are open by definition. 

 

 Okay, so next is... you have yi equal to z of ti, we have assumed that these yi's are oh sorry yi 

complement. So, yi is z of ti complement. because we have assumed that phi i is open. So, it 

is complement of a closed set ti is a subset of polynomials. Now, what is their union? So, 

union is basically intersection of z ti complement. 

 

 This is what you want to show open  In other words you have to show that intersection of Z 

TI is Z of something, can you guess what? Union of TI. Union of TI yes. So, which is equal to, 

so note that the intersection or let us just look at a simple case Z of  T1 intersection Z of T2 

is what? So this is Z of the union. Is this fine? Because, so points which are zeros of T1 and 

T2 on the LHS, you also get those points in the RHS. 

 

 and phi sub hrsa right. So, it is obviously an equality and you can repeat this infinitely many 

times also. So, hence in this union of yi you may have infinitely many phi i's we do not care it 

is always open is that clear. It can be uncountable as well. Yeah, I mean nothing stops us 

from  the in the definition what did we say we just said that y is equal to zt for some t right 

so there is no count here so this is this follows from the definition third thing is now you 

have to look at intersection of yi complement so intersection of yi is what its intersection of 

ZTi which is equal to union of ZTi whole thing complement right. So, now you have to 

basically write down union of ZTi as Z of something what would that be. 

 



 So, let us see that. So, Z of T1 union Z of T2 what do you think this is. what should you fill in 

the blank. So, the point can be a 0 of either t 1 or t 2 one of these right. So, if t 1 and t 2 were 

singletons what you will do is just you would multiply the two polynomials. So, same thing 

you should do here also you should just multiply every possible way  okay f1 from t1 and f2 

from t2 you should take f1 times f2 for all possible choices is this fine except that the 

problem is that can you repeat this infinitely many times because if you have infinitely 

many ti's then you will have to multiply infinitely many polynomials and that multiplication 

is undefined okay so we need finiteness here so this means that finite union of finitely many, 

otherwise we cannot repeat this. 

 

 Okay so which proves all three properties. Any questions? Yeah so this is just a fast proof. 

You have to think about this as a homework. that we have missed anything or is this a 

complete proof. Now one question you may ask is in property C is this just a artifact of the 

proof or really can it happen that infinitely many YIs open sets you take, you take the 

intersection it becomes closed. Can you think of an example where you take infinitely many 

opens and the intersection is closed. 

 

 Which means that you take basically you take infinitely many closed sets and their union is 

not closed. Can you think of an example? Yeah, so you cover the entire space this would be 

the example. So we can do this as follows. So look at the union of points. 

 

 Point is just a complex number. So each of these sets it's obviously closed. And union of 

these infinitely many closed is. Yeah that's not a good example. Maybe I should remove 0. 

 

 Then what do you have? Then you have. the affine line - 0. So, union of open now that is not 

what I want, I want union of closed union of closed is open yeah is that fine. while this is not 

closed. It is open, but as an exercise you show that this is not closed, you cannot express it 

as Z of t. So, this covering the whole almost the whole space is the problem. 

 

 So, hence we have proved whatever can be proved these ABC properties are optimal. and 

this gives you what is called a topological space, it is a heavy word, but it just means this, 

this proposition to remember it we call it topological space. So, the family of open sets  of A 

to the n is called the Zariski topology of the affine space. So, Sarisky was the first one who 

gave this definition. This is a very different definition from what was known before him 

because the way you define geometry or analysis, the way you do it in reals and complexes 

you define balls. 

 

 So, you around the point you take a ball and that essentially is the idea of your 

neighborhood and an open set. So now you can show that the union of opens in the sense of 

these balls is again open and the intersection is open and so on. And you have to pick an 

open ball. But that is something which is very metric dependent. 

 

 You cannot do it in a discrete space. So you want something else to be done in the case of 



finite fields. because your affine space here is coming from F(p). So, here instead what you 

do is that you look at these 0 sets. So, you look at the complement of 0 set. So, these are your 

open sets and believe it or not ultimately they will behave like these open balls you had. 

 

 in the real space okay but to actually see any use of it you have to wait for a long time but 

this will help you guide and compare many of the theorems that will prove and also the 

terms that we will define the inspiration is from this topological comparison so for example 

now you can talk about decomposition or irreducible spaces so let me define that so we will 

call a subset irreducible if there does not exist a proper closed, there does not exist proper 

closed y1, y2 such that. y is equal to y 1 union y 2. So, basically you have this set of points y 

we will call it irreducible if or we will call it reducible if it can be decomposed into two 

closed subsets and if you cannot do that we will call it irreducible. So, proper here is 

important  because of course, trivially you can always decompose y as empty set union y 

that is not allowed, that is not of any interest and conventionally we will define phi to be 

reducible. So, the empty set is defined to be reducible  every other set why we call it 

reducible if and only if you can express it as the union of two non-trivial proper closed sets. 

 

 So, the I mean the idea of this or the reason why we want to focus on irreducible sets is if it 

reduces then. kind of by induction we can reduce the properties or we can study the 

properties of the components. So, for reducible y we can instead study its components. y1 

and y2. So, we can study them the smaller pieces and then from there we can derive the 

properties of y. 

 

 So, which is why we will only focus on the irreducible ones. So, example is again the line 

show that this is irreducible which is an interesting exercise. How do you show that? the 

line cannot be broken into two closed sets any ideas. So, say you write the line as the union 

of two closed right. So, it will be Z t 1 union Z t 2. So, union of two kinds of 0s, why is this not 

possible? Because it would be z t1 t2 and that would be 0. 

 

 Yeah, that is a good suggestion, yes. Yeah, so you have a set of polynomials. such that the 0s 

is everything which means that 1 has to be there, which means that it has to be 0 then, t1 

times t2 should have nothing but 0. So, this as a set is just the 0 set. you cannot have a non-

zero polynomial sitting there, because that would immediately reduce the number of roots, 

cannot get everything which. 

 

 One of them should be. Exactly, that means that one of them is 0, which means that one of 

them is improper. So this is a general proof the affine n space over any field that is 

irreducible. So now finally I can define what is an affine variety. So this was an affine, we 

defined affine n space but this is everything. usually will have 0 sets which will be much 

smaller, so we have to give them a name and that would be this, so an irreducible closed set 

of a raise to n is called an affine  will shorten it to Av. 

 

 Yes, so note that we started with the full space which we called affine n space, then we 



defined 0 set or closed set or algebraic set, but those may or may not be affine varieties. So, 

affine varieties have to be more special, they have to be closed sets, but they also have to be 

irreducible. So, these smaller things we call them affine varieties, these are kind of the 

primes here  okay any bigger thing can be decomposed into the smaller and we'll only be 

studying varieties so variety is a technical term it's very different from a zero set and one 

more thing I can define which is an affine varieties open set open subset is called a quasi 

affine variety. So, instead of closed it will be open. So, what are the examples? So, 0 of x 1 2 

this is an affine variety  in any affine n space that you are just setting x 1 to 0. 

 

 So, it is closed and it is a subset of that a raise to n and we have shown that it is also 

irreducible because it is a to the n - 1. So, it is an affine variety what about z of x 1 times x 2. 

is this an EV, this can be decomposed like this, so this is not an affine variety, right and 

what's a quasi affine variety. so open essentially means that we have to exclude some zeros 

some zero set so from zx1 2 that is the affine variety if you exclude something for example 

this then it is quasi affine. 

 

 x 1 has to be 0, but x 2 has to be not 0. So, when you introduce these conditions you get 

quasi affine variety. Any questions till now? So, now what we will do is we will make our 

associations more precise, in particular we will start with this y being an affine variety. and 

we will look at what is i of y and from there if we now look at the z operator so if you apply z 

on i of y you will come back to LHS but will you get y or will you get something else  So you 

can either apply I and then Z or you can apply Z and then I. So how do these functors 

interact? So this is the I map and this is the Z map. 

 

 So you can apply I and then Z or you can apply Z and then I. You get the same answer. So we 

will now quantify that. so in this course i shouldnt use the term functor but i anyways will 

because its taking you from one word to another so there is no good word for this i mean 

you can always use association or map but functor will be something which is correct so lets 

study the functors z and i okay and to make this study simpler we will just assume K to be 

algebraically closed. In fact in this course you just assume it to be f(p) bar, it is this big field 

which sits above f(p), it contains I mean f(p) bar is essentially the field where if you define a 

polynomial then it will always have a root in some finite field. So it's the collection of all 

possible roots of polynomials over all possible finite fields of characteristic p. 

 

 This is f(p) bar. So think of k to be that. But the arguments will hold for any algebraically 

closed field, so in particular complex numbers. Or you can look at function fields and their 

algebraic closure and so on. And we'll need one more definition  which is the radical of an 

ideal. So, this is denoted suggestively as 2 root of i. So, what is 2 root of an ideal? Radical of 

an ideal, this is the  set of those polynomials such that for some exponent f to the e is in i, 

which means that so i may have f 2 it may not have f. 

 

 So, you introduce f inside further i may have f 3, but may not have f. So, introduce f inside. 

So, whatever power now the final object this 2 the radical or 2 root of i whatever g there is 



all the radicals of it if they are polynomial are also inside. For example, what is the radical of 

the ideal generated by x 1 2 x 2. what is it maybe I should ask the easier question first this 

one so in this since x1 2 is there you also have to put x1 right and that would be enough so 

you will just get this ideal now next is the radical of  x1 2 x2 what is this yeah here I have 

wrong in my notes the correct answer is this will not change and yeah and so on. 

 

 Yeah, which power of x1, x2? That is true. Let us write that since x1, x2 is in the original 

ideal. is this clear yeah x 1 2 x 2 2 is in the original ideal. So, you have to then put x 1 x 2 that 

then would be enough you can show that these things are now equality, it was correct and 

yeah an ideal is called radical. if the radical is itself. So, now we can prove a nice proposition 

which is for any ideal if you look at the 0 set and then you look at the  ideal of the zero set, 

then you get. 

 

 So, I mean ideally you would want the ideal I right, but what you will get instead is the 

radical of it. You also mentioned that the radical of any ideal is again. Oh, that is not clear. 

So, look at this definition. So, in this if you have F1 and F2, then you have to show that F1 + 

F2 is also there. 

 

 It is not very easy. So, you have to do this as a homework exercise. So, basically F1 to the E1 

is in the ideal I and F2 to the E2 is in the ideal I, you have to show that F1 + F2 raised to 

something is also in the ideal. What you can show is you just take just look at F1 + F2 raised 

to some big E say E1 + E2 + 1 that you would be able to show. is also in the ideal. So, sum 

will also be in the ideal, product will also be in the ideal, product will be easy to see and if 

you multiply anything from the outside to f then you come inside the ideal. You can show 

that radical is again an ideal, but for general ideals either radical may be bigger right as you 

saw in the example. 

 

 So, what you are getting here x1 is a bigger ideal than what you started with, x1 2 is 

significantly smaller than the ideal x1. So, radical operator may take you to a bigger ideal, 

when it does not then we say that it is a radical ideal. okay and what this proposition is 

telling you is that if you start with a radical ideal then applying z functor and then the i 

functor brings you back so i and z they are kind of inverse functors for radical ideals okay 

which is a great one to one correspondence result Is this clear, okay. So, let us do this in 2 

parts. So, first you show that the radical of i is contained in i of z of i, why is that? Since you 

have to just read this, look at the zeros of the polynomials in i, the common zeros. 

 

 So look at a root, for example, p. So since p is killing everything in i, you can see that p will 

also kill everything in radical of i, 2 root of i. right because the 2 root is nothing, but just 

powering yes which is why all these polynomials they are actually killed by z i that is all. 

Yeah but this i z i could have been bigger than 2 root of i. 

 

 So, now we have to show the other side. So, for that let us take an element g in i z i. So, what 

does that mean? that means, g vanishes on z i points z i. So, z of i are just points in the affine 



space and on these points g is vanishing. Yeah, but remember what we want to show. So, we 

want to show that from just this hypothesis, we want to show that some power of G is in I, 

because we want to prove the proposition. 

 

 So, there we have to show that any G which is here, its power is actually in I. So how do you 

show this? So this is a cute algebraic trick, it is called Rabinovich trick. So I will just give it, it 

is hard to introduce it. So you just write this in ideal terms as follows. So the 0 set of  i and 1 

- g times y is. So, the points which annihilate which kill i and they also kill 1 - g y, they do not 

exist because if some point is killing i then it also kills g. 

 

 So, the second part actually becomes 1. right so this this zero set is actually empty so here y 

is a new variable okay so i can introduce a new variable and then i can introduce a new 

polynomial which is this one - the product of g and y this new polynomial has the property 

that  common zeros of i they cannot annihilate it because they make it 1 that is why the 

hypothesis right. So, this is the algebraic formulation of what the line you had before and 

this will be very useful. So, let us define the new polynomial ring which is a with y attached. 

A was the polynomial ring in n variables and now we have n + 1 variables this is a new 

variable and in that we have this ideal I + 1 - g y ideal which has no common zeros. 

 

 So, when do you think an ideal has no common zeros in an algebraically closed field. so as 

we had discussed many slides back intuitively it's only possible when this ideal already has 

one right one is the only obstruction to roots so this is what i want to claim that one has to 

be in the ideal okay so this is called  weak Hilbert, Hilbert's null challenge arts. So, Hilbert 

null challenge arts is the, is a criterion for ideals to have a  the polynomials in an ideal to 

have a common root over an algebraically closed field. So, we are invoking that I will sketch 

this proof after we have finished this line of argument it is not very difficult, but instead of 

getting diverted by that let us just continue. So, intuitively it seems right that if this ideal has 

no root then the ideal should have  and let us just continue with that. So, what does that give 

you? So, this means that 1 can be written as some polynomial a 0 times 1 - g y and some 

polynomial a 1 times a generator of i dot dot  where a 0 to a m are coming from a prime we 

do not know anything else about a 0 to a m 1 - g y is the distinguished polynomial we have 

introduced and f 1 to f m are generators. 

 

 So, using the generators of this ideal which has 1 by the definition of ideal we get that there 

will be these a 0 to a m in the new polynomial ring a prime. What do you get from here? 

What good is this? So, here you do not have any special information about other 

polynomials except 1 - g y. what you can do is that y is a free variable so you just substitute 

y to be 1 over g so let us substitute y to be 1 over g and what do you see so now 1 is equal to 

a 1 had x's and y so y becomes 1 over g. and f 1 was free of y right f 1 was only in x 1 to x n 

there was no y in f 1. So, you get this is this clear and now you can just clear away the 

denominator  by multiplying by a high enough power of g. 

 

 So, g to the e is now equal to some polynomial a 1 prime, a m prime for e a natural number 



and  a i prime in the polynomial ring a prime. In fact, in a there is no y now, so it is just x 

variables. So, which means that g to the e is in the ideal i and that is all we wanted to show 

right from the hypothesis  g in i composed with z of ideal i, we wanted to deduce that g to 

the e is in the original ideal. 

 

 So, we have both ways. Is this clear? This implies that g is in the radical. Why do we need 

generator? Why did we need generators in the algorithm? You can do it without generators. 

If you directly use the element, you can write it as some. No, no, no, what do you mean? The 

module, this ring has changed. 

 

 From A, it's now A prime. The ideal definition has changed. Yeah. So... Multiply something in 

I with something else. No, no, but the out is not 1. There are A1 to AM, M things which are 

out. 

 

 You also mentioned that these rings are new to me. Because of that... Yeah, let us just keep 

that under the rug. Nobody will ever notice that. Everything is finite, don't worry. What is 

more important is what is this weak Hilbert's Nostral Insights that I have invoked. 

 

 That I can sketch because it's a useful thing. It appears also in other problems in computer 

science. So, let us just do that as a detour. Yeah, if you do not understand what this big word 

means, it means that this was a theorem proven by Hilbert about the zeros of a system. So, 

Nullstellens is basically positions of zero and Zarts is a theorem. So, it is Hilbert's theorem 

on zero positions. So, you start with the assumption that zeros of an ideal do not exist and 

you assume that k is algebraically closed. 

 

 So, k bar is the same as k which we are taking k to be f p bar or complex numbers. that is 

fine. So, over that base field you have a set of polynomials t in fact think of t as an ideal. So, 

he gave a criterion in fact he characterized how can it be that z of t is empty by showing that 

actually one has to be in yeah I need a really need an ideal where j is an ideal. 

 

 that one has to be in the ideal j. So, the line of argument is as follows. Let me specify the ring 

also. So, Zj is empty, k is k bar and j is an ideal of  this polynomial ring say A, in fact you can 

think of it concretely to be k x1 to xn. So, where do we go from here? So, what you should do 

is first you pick a maximal ideal that sits above j. Okay so there will I mean you can basically 

you can intuitively see that for any ideal or for any set of polynomials there will always be 

an ideal which is maximal which means that between this maximal ideal M and A either M is 

equal to A or in between there is nowhere to grow further to an ideal. Okay so this is what 

this means is either  a is equal to m, I want it to be proper. 

 

 The ideal containing m should be a or m itself. Sorry, the ideal containing m. The ideal 

containing the maximum ideal be there itself or the whole way. No, that is fine, I want to 

move to the next steps. So, I want to say here that, I want to say that  a over m is a field. This 

you have to show as an exercise you take a maximal ideal above j then just by the 



maximality it follows that a mod m will be a field. basically if it wasn't a field then it means 

that there are zero divisors things which are kind of which are not invertible well yeah 

there are non-unit elements in a mod m so you can use those non-unit elements to grow the 

maximal ideal m further which will be a contradiction ok so the only place where you stop is 

an ideal that makes A mod M a field. 

 

 So this is a property of the maximal ideal, in fact you can take it as a definition also, this is 

what we are talking about and which then is a field extension of this K. Now, note that k is 

already algebraically closed right and you are going to a field extension. So, can that field 

extension be finite extension finite algebraic, it cannot be right. So, then the only field 

extensions which are exist for example, over complex are once that are transcendental. 

 

 So, you have to introduce something which cannot be a root of any polynomial. So, this 

means that E over m is a transcendental extension of over k. Yeah, if not k. So, if this 

extension is proper then it has to be transcendental, but can it be transcendental? Again I 

mean if it is transcendental you can show that this will violate the maximality of M. so which 

means that actually a mod m is equal to k which means that we have a root, so which means 

that m has a, so z of m is non-empty which will then contradict that z of j was empty. 

 

 So, from this contradiction what you learn is that to begin with this J should have been 

everything, M was A. So, overall this means that the only way to come out of this 

contradiction is that the  j was equal to a which means that fun was in j that is the proof. So, 

there are these algebraic concepts if you are aware of them you will see this proof as easy if 

you are not aware of them then you have to do some homework. But as I said in our bigger 

picture this is not quite needed because  when we said that the only way Z of something to 

be empty is when 1 is there in that ideal that is quite believable you can take it and move 

forward. If you want the details then the sketch is here. 


