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Divisor Class Group 

So we started long time back divisors of a curve div C, this is the sum of basically a 

integral combination of linear combination of the points, where points has to be thought 

of as more general than just an actual point, it is a prime ideal actually. in the let us say 

bivariate polynomial ring over the base field small k and the function field of the curve is 

big K. So, these p's are actually you can think of them as just DVR's these are the discrete 

valuation rings because it is a smooth projective curve. a point, we will always think of it 

as a DVR or a valuation, defining a valuation. So, we did define a lot of things regarding 

this. So, div C is the, div C is the, this biggest group, it collects all these points. 

 

 

 

 

 Div 0 is that subgroup which has only degree 0 divisors and div a are those divisors 

which come from a rational function from the function field. So, there are actually it is 

not very hard to see that most of the divisors will not correspond to any function, they 

will just be abstract. sum of points. For example, if you just look at two points p 1 and p 2 

and look at p 1 + p 2. 



 

 So, p 1 + p 2 there may not be, in fact if you just take a point p, p may not correspond to 

any function, because if it did say if p was equal to the principal divisor of a function f, 

then there should also be a pole. but there is no pole p you are only talking about p so 

single points will actually never correspond to functions you need minimum two points 

one with one or zero other the pole so we have three things div c div 0 div a div a is for 

principle divisors and yeah then we had this we defined this l sheaf So this ld sheaf for a 

divisor is those functions which are not any worse than - d. So the poles are not any 

worse than the divisor d. It is a way to specify not exactly but approximately you are 

specifying the poles. You are interested in those functions x. 

 

 whose poles have multiplicity no worse than - d. If d had already negative order points 

then minus of that will become plus. So, you can specify both zeros and poles to some 

extent it is not an exact. description of x, but it is only approximate. So we are interested, 

so there will be many x's actually which will satisfy this condition. 

 

 So if we collect all of those and this is a very good object, we call it the LDC, we 

showed that it is actually a vector space. So we showed that LD is a vector space over the 

base field k. This is simply because if you have an x and y that have poles or that 

basically the valuation is not any worse than this d, then for the sum also you can prove 

the same thing because of valuation property. So it is a vector space and more 

interestingly we can actually compare LD prime with LD. So when d’ >= d, then the L 

sheaf we can actually compare the dimension of these two vector spaces and it happens to 

be the degree of the difference. 

 

 We proved this theorem and from this actually we showed. Okay we showed two things 

first thing is important we showed that if divisor D' >=D then the dimension of LD' | LD| 

is upper bounded by the degree difference. So we have an upper bound on the dimension 

of any LD that's second corollary and hence we showed that dimension of LD is always 

finite and we will call it ld. So, ld is the dimension of the ld sheaf it is always finite. So, 

we prove the finiteness finite dimension of the sheaf ld sheaf. 

 

 So, at this point what we have is. we have this ld, small ld which is the dimension and 

we have the degree of d which is d (D), d (D) and we want to understand their difference, 

how far or close are they. So that is the question that we will focus on this whole week, 

that this ld - dd  How much can it fluctuate? For example, it can become as small as 

possible. Can it become arbitrarily negative? You can also ask the same question for 

positive. Can it become arbitrarily large? So, these are the two questions. 

 

 Can it become arbitrarily large and can it become arbitrarily small? Okay, we will focus 



on the small question first because Riemann studied it and completely solved it. Why do 

you want to study this question? I do not. So, Riemann was the one who studied this 

question. So, in 1800s Riemann gave a. 

 

.. What is the... Well, how small can the L sheaf be compared to the degree of the divisor  

how few functions can LD sheaf have. So, can the LD sheaf be very small or can it be 

very large. 

 

 So, Riemann focused on the small question first, can the LD sheaf be arbitrarily small 

compared. So, when we say small we are comparing with the degree, because we have 

these upper bounds which we showed before that LD sheaf is kind of  upper bounded by 

degree. So, which is why the fluctuation on the upper side is kind of already understood. 

It is only the fluctuation on the lower side which we have to understand. So, Riemann 

studied that question and showed that actually it cannot fluctuate too much. 

 

 There is a range in which it fluctuates and the bottom range will be called genus. okay 

that is the algebraic definition or arithmetic definition of genus that we will. d (D) is the 

degree. D yeah d (D) is the degree, where you have to account for not only the order of a 

point, but also degree of a point. So, it is sigma order of a point multiplied by degree of a 

point. 

 

 So, actual points are degree 1. and these cloud of points are higher degree, you have to 

collect the conjugates. If you are not in an algebraically close field otherwise everything 

is degree 1, every point is degree 1 I mean. Any quick questions? So, we will prove some 

technical results. which are quite important to move to Riemann's proof for genus, in fact 

Riemann's invention of genus even. 

 

 So, we first try to understand how many zeros or poles can a function have. So, degree of 

principle divisors, let us define that. So, for a rational function x in the function field big 

K non-zero x, define the divisor of zeros as x 0. So, these are the zeros that the function 

has with the multiplicity. 

 

 So, it is just this. So, it is the sum of valuation times p for positive valuation which 

means that p is a  of X with multiplicity VP, VPX, right. So, that is an element in the 

divisor group, in the absolute divisor group and similarly divisor of poles. So these are 

the poles which means the valuation is negative. We will call this x ∞  . So it is the - of 

negative valuation. 

 

 Why do I put - because I want these two to be positive divisors. So, x sub 0 every order 

is positive and x sub ∞   every order is positive because Vp was negative I make it 



positive. So, these are both positive divisors. It is in div C and it is a positive divisor. So 

divisor of zeros and poles. 

 

 Oh, but that we have seen since the first month. Any rational function, how many zeros 

can it have with multiplicity? So even in the algebraic closure case the zeros can only be 

finitely many with the multiplicity. So the sigma that I am doing is actually always finite. 

I mean in div C you can only add finitely many things. 

 

 It's a free abelian group. So this sigma has to be finite and that you can just use our 

results which we have been proving since first month. that a rational function has only 

finitely many zeros and also analogously or symmetrically finitely many poles counting 

multiplicity. So, the points p for which valuation is non-zero or overall it is finite. So, 

finite sum and what is the relationship between the principal divisor  of the function. How 

is it related to divisor of zeros and divisors of poles? So, zeros are given by this part and 

poles are given by this part. 

 

 So, this is the relationship. It is an obvious thing. You sum up the zeros and take the 

difference with poles, subtract the poles  so okay why did we do this so the goal is to 

prove that or to understand what is the degree of either of these what is the degree of x0 

and what is the degree of x ∞ right how are they related can you show that what is the 

relationship between degree of x0 and degree of x ∞   yeah what is the proof how do you 

prove this yeah so formally you look at 1 / x  So degree of 1 / x, zeros of 1 / x are the 

poles of x. That is the key thing, 1 over x is again a well defined function on the curve. in 

the function field of the curve. So, if you look at the 0s those are actually are the poles. 

 

 So, I mean even without the degree 1 / x 0 = x ∞  , these two divisors are the same, their 

degrees are the same and how does that relate to x 0? Yeah, so maybe we prove the more 

fundamental thing. So, - x0 is 1 / x0, wait what  But how do I convert this into x ∞  ? 

Yeah, I think that part is wrong. so degree of x 1 / x is degree of x ∞   and I want to say 

that it's the same as degree of x0, but why is that or maybe let's put it in the middle. I do 

not know how to prove it right now. Let us just continue with a bigger theorem. 

 

 This will follow. For now it is just a curiosity. Let us leave it at this. We will actually 

prove something much stronger about the magnitude of degree of x0 and degree of x ∞   

in the next theorem. Let us do that first. what we will show is that for every rational 

function these 2 degrees are equal to the field extension. 



 

 

 

 Okay so what is this field extension this is the function field of the curve that is we call it 

big K and small k is the base field you can also think of it as finite field or algebraically 

closed field whatever attached with x so since x is a non-constant function small kx to big 

K is actually a finite, it is an algebraic extension, it is a finite extension because small x is 

a transcendental element and this is a transcendence degree 1 field. So, this is a finite 

number and degree of this function field is exactly equal to the degree of the poles and 

the zeros. So, this is a major result, it tells you a lot about the divisor, the principal 

divisors. and this will also actually subsume the proof of Riemann's theorem for genus. 

 

 So, let us do this in detail. So, let n be this degree. which we know is finite because of 

transcendence degree 1. So, we are only looking at function fields of transcendence 

degree 1 which is why this is a given and D be the  zero divisors of zero x zero with 

support s. Informally you can see that first the degree of x zero is the number of points. 

 

 Number of zeros yeah. So, it should give the extension degree of x. No it is not, it is not 

at all, I mean may be people guessed it like that, but it is very far from a proof. The 

problem is that there is no easy way to tell or to interpret the extension degree, big K over 

small kx. I mean because if you think of a planar curve, it is given by a bivariate 

polynomial f (x) ,   y = 0. So, your big K is just Kx |f (x ,   y)|. 

 

 It is just this quotient ring. What is its degree? You do not have any interpretation. Its 

degree over Kx. Also x is an arbitrary function and you are the curve is given in some 

other variables let us say u ,   v. So, f of (u ,   v)= 0. 

 

 So, from that it is not so easy to do this. This is a fairly general statement about 

transcendence degree one fields, but you are right that in very special cases you can guess 

it. because I mean if you just look at a univariate, trivially the zeros over algebraically 



close field at least, the number of zeros is equal to the degree right, I mean with 

multiplicity I mean even for x to the 10, the number of zeros with multiplicity is 10 and 

the degree is also 10. So, what Deepthujit is saying is we are trying to achieve that. but in 

a very general case, nothing here is univariate, this is all a very complicated situation. So, 

you will see the proof will be quite long and very indirect. 

 

 So, and it will use the LD sheaf, we will actually work with the LD sheaf that will be 

utilized here. So, big N is basically the, it will give you the number of basis elements, 

right. Big K you can think of it as a vector space over small kx and you get that vector 

space as dimension N. So, we will use that. that the degree of the divisor, the divisor of 

zeros is upper bounded by big N and then will lower bounded by big N. 

 

 So, there are two parts in the proof both are quite long. So, let  . Yeah, you can take up 

primitive element y, yes and so then you can think of y as satisfying f ( x ,   y) = 0 

equation. Now,  you will be talking about the degree of y then. 

 

 This extension degree is the degree of y. How will you relate it to zeros of x? That is not 

clear. No, if the primitive element of big K is y, there is a single polynomial f(x,y) equal  

there is this planar curve description, but we are only talking about the degree of the 

extension, there is no Galois, we never talk about Galois anywhere in the course, may be 

only in April we will talk about Galois, here it is just a general field extension. So, it is 

not clear that degree of y, what is degree of y to do with zeros of x or poles  Yeah I mean 

maybe once you see the full proof you will have some interpretation but I can't start with 

that because this really needs a proper proof. So here the idea will be to use the L0 sheaf. 

 

 for some reason using L0 sheaf here will be helpful. So, what we will do is collect n + 1 

functions y0 to yn from the L0 sheaf. and since I mean obviously they live in the function 

field big K and since they are n + 1 many they are linearly dependent. So this means that 

there exist f0 to fn polynomials in one variable x not all 0. such that sigma f i y i is 0. So, 

this is just by the definition of n wait sorry I made a mistake l 0 s these things are tricky. 

 

 So this is by definition of S, by definition of N. So L0 sub S recall it is saying that when 

you look at the valuation of these functions with respect to points that are in S, they are 

all non-negative, they are not poles. This is all we are saying, I mean for now it is not 

important, what is important is that for n + 1 functions, any n + 1 functions there is a 

dependence by F i's being univariate in X and from this dependence now we will 

conclude some interesting things. No, no, no for any n + 1 functions there is a 

dependence because dimension is begin that is all. I mean as I do more calculation L0s 

will be used. 

 



 right now we are not using it. You will see how it will be used. So, we can assume here 

that  not all the fj0 are 0. Because if all these fi0s are 0, I mean fi remember is a 

univariate in x. So, if all these are 0, then it means all of them are divisible by x, then I 

can as well divide by x and  recalculate. So, after a while since f i's are finite degree you 

will get to a situation where you have a dependence, but let us say f 1 at 0 is not 0. 

 

 This is easy just by division by x both sides. So, we can rewrite this. as sigma aj yj equal 

to - x times gj yj, where aj + x times gj. is fj. So, I can break fi into the constant part and 

the non-constant part with respect to x. Constant part is aj and the non-constant part is 

multiple of x, x times gj and not all the ajs are 0. 

 

 
 

So, this left hand side is non-zero. I should not say the whole thing is non-zero, but one of 

the edges is non-zero just remember that. So, this implies that for all the points in S, the 

valuation of left hand side which is sigma aj yj is equal to valuation of x +  the valuation 

of sigma g j y j. This is just the, just severely apply valuation both sides. Since you have x 

times something, valuation will become additive, will be additive on that. And what do I 

want from here? So, this is at least  minimum over all the j's, valuation of g j and 

valuation of y j. 

 

 So, first thing is valuation of x, second is it is a sum, valuation of sum. So, it will be +. 

So, valuation of summoned is valuation of g j + valuation of y j and over all the j's the 

minimum can be used, that is just valuation axiom. Yes, so what can you say about 

valuation of g j and valuation of y j with respect to the point, g j is a univariate. 

 

 in X. So, I claim that both of them are greater than equal to 0. Do you believe this? So, 

valuation of yj >= 0 because of the assumption that we have not used that all the y's are in 

L0 S. So, because of that it is >= 0, P is a point in S. Why is valuation of g j non 

negative? That is because g j is a polynomial in x, if valuation of p is negative then p has 



to be a pole. The only pole of a polynomial is can be point at ∞  , but point at ∞   is not in  

So, pole of g j can only be infinity  , point at inifinity  , but that is not in S, because what 

was S? S was the 0 of x. 

 

 and we are using x in g j correct. So, because of that. So, now we can continue the 

calculations. So, this is then at least v p x which is the order of d at p. So, this means 

what? So, this actually this whole calculation tells me something about the function 

sigma aj yj. So, this tells me that sigma aj yj j0 to n is in an l sheaf which is l - d s. Okay, 

because I went over all the points in S and I have compared the valuation and it is at least, 

it is at least - of - of d, that is d. 

 

 Right, so we started with y's which were in L 0 S and we have ended up with this 

combination of y's which is in L - d S. So, what have we deduced? So, we have deduced 

that the dimension of the quotient space is less than equal to n, because  If you take any n 

+ 1 functions in L0 S mod L - dS, there is a linear combination that kills it and the linear 

combination only uses constants a j's which is in the base field small k. So, we have 

shown that dimension of this quotient of L sheaf is at most n and Now we are done 

because we know that the left hand side here, this was a lemma we showed for any finite 

s, we exactly know the dimension of the quotient. It is the  degree of 0 - the degree of - d 

which is degree of d. So, which means we have shown that degree of d is less than equal 

to n that was the goal. 

 

 So, we have upper bounded the degree of the divisor of 0s of x. Is that clear? So, this is 

not a trivial proof, not a direct proof. You are actually looking at a basis of functions of 

the function field. It is not, there is no good interpretation of this. It is really an algebraic 

proof of the field extension. 

 

 So, next we will show  that degree of D is lower bounded by n. Here the idea will be the 

opposite. Again L sheaf, but the L sheaf that we will use here is very different, we will 

use x ∞  . So, instead of l 0, we will actually look at this x ∞   and we will use some very 

large exponent e, from this we will get the lower bound of degree. So, previously we 

started with n + 1 functions, now we will use, we will again start with a basis. let y 1 to y 

n be a k x basis of the function field such that these y i's are integral over k x. 

 

 So we need a basis, but we also need them to be integral. What is the meaning of 

integral? We have seen it before when we were doing geometric interpretation, the 

geometric part of first month. So integral basically means that, see every element in big K 

is algebraic over small kx. 

 

 So there is a min poly. for Y1. So, I want that main poly to be monic. So, why will such 



a basis exist with monic main poly. So suppose you got a y1 whose minpoly is this. So 

over the univariate polynomial ring, the main poly is this. The problem is that this leading 

monomial y1 2 has coefficient x. 

 

 

 

 

 We want it to be 1. How do you make it 1? I mean if you divide by x then the problem is 

that you will get 1 over x times y1. You do not want that. So what do you do? So the 

simple trick is you instead of y1 2 y1 you should look at x times y1 that will be integral 

because you multiply this by x. So you have x 2 y1 2 xy1 + x 3 equal to 0 which means 

that xy1 whole  So in terms of xy1 if I see it has a monic min poly, so xy1 is integral. So, 

use this transformation whatever is stopping you from integrality which is the leading 

coefficient you multiply by that I mean some power of that and then use y1 multiplied by 

8, y will still be a basis, it will still be a basis element because you have only multiplied 

by univariate in x which in your word is a constant. 

 

 right small kx is your base kind of the base field in this extension. So, you can multiply 

by whatever constant you want basis will not change. So, from a basis you can go to an 

integral basis. So, we have that and  So notice that x i y j when you multiply by x is to 

this basis you get this set let us call it b. these functions are k linearly independent for any 

t. I have changed the linear independence here, I am talking about now small k, the field 

of constants. 

 

 y1 to yn was the basis over kx. So, it obviously means that if you multiply by x powers 

these functions xi, yj they will be independent over the base field of constants small k. 

Small k is think of it as a finite field. There cannot be a dependence of these xi, yj 

because if there was a dependence then the ys will be dependent over kx. which will 

contradict the definition of the basis, is that clear. 



 

 So, I can change the kx to k and I can multiply by xi's as many as I want. So, I multiply 

up to t, this t is a parameter you will see that it will give an interesting proof, will take t to 

be ∞  . So this is clear. The other property I want you to see is if y is integral over kx and 

has negative valuation. then x has negative valuation. 

 

 This is not very difficult to see, let us quickly check this. Sir. Yes. Sir, earlier the k e n 

dependent on periodic  Yeah, some very big number t. No, no y is given, y is fixed, y is 

this, sorry where was that, yeah the last line y1 to yn they form a kx basis of the function 

field. I mean just read this line what this is also saying what it implies is that if you 

multiply yi's by x to the j's then they are independent over the field of constants. oh 

whether y can y1 be 1 over x you are saying. No, no, but such a thing can only be 1, I 

mean it only y1 can be 1 over x, others then also have to involve, see 1 over x in kx is 

kind of 1 right, it is a unit. 

 

 So, it will only be a scaling. So, 1 over x if you multiply by x to the i. No, you do not 

need to remove it. Oh, you are no see. So, let us take y 1 to be even simple just 1. When 

you multiply it with x to the i, you get x, x 2, x 3, dot, dot. 

 

 These are independent functions over constants. You get them independent over 

constants because x is a non-constant. No, no see it says k linear. No, first of all algebraic 

independence is nowhere being used. Yeah, we never, we started in the theorem premise 

just a non-constant x, big K - small k. 

 

 why is this big k over kx finite degree extension, because of the transcendence degree 

one. So, that is the only place where I said anything about algebraic dependence or 

independence. I am thinking like the example like 1 by x. 

 

 Everywhere else it is linear dependence. x is to m, this is linear independence. Exactly. 

This is algebraic independent over. Exactly. Yeah. that is algebraically independent. So, I 

see should I say that small k is algebraically close then because otherwise it may be a 

problem. 

 

 No, I think since you have mentioned this is now important that I call this, this. See I 

want my results at least in this part of the month to work also for k to be a finite field. So, 

in that case I do not want you to take x to be just a element in bigger finite field. I want 

you to take x to be a genuine function. So, I should subtract out k bar. 

 

 It is only then that I can claim algebraic like a transcendental function. x is a 

transcendental function. It is important to have this actually. This is a very simple 



property, again let us just see it in an example. Suppose the integral dependence that you 

have or min poly you have is y 2 + xy + x 2 + 1 equal to 0. The key thing is that the 

leading monomial y 2 comes with coefficient 1 and then you have univariate in x. 

 

 First is x, the other is x 2 + 1 and so on. Sorry, it is not ∞  , it is 0. So, if the valuation of 

y is negative, what does it mean? I want to deduce that x is also negative valuation. This 

simply follows from the fact that, see you see 4 monomials y 2, xy, x 2 and 1 and their 

sum is 0. So, y 2 valuation has to be equal to one of the other 3 valuations is equal to Vp 

of  one of the other three. So, let us do it case by case. So, if the valuation of y 2 and xy is 

the same, then clearly you get that valuation of x is negative. 

 

 If valuation of y 2 is the same as valuation of x 2, then again you get that x is negative. 

and if valuation of y 2 is equal to valuation of 1 then you get a contradiction. No, no, no, I 

am not making an exclusive statement I am saying that valuation of y 2 is overlapping 

with something and whichever thing it overlaps with gives you the same result which is 

that valuation of x is negative. Is this clear? You can look at the three cases here and you 

can see that everything works. Even simpler, just focus on y 2 and look at the cases, 

valuation of y 2 equal to valuation of xy or x 2 or 1. 

 

 So, some of these cases are impossible other cases give you x negative. Same thing. No, 

no it is same thing you look at y to the d and when you compare with some other 

monomial either that monomial is an absolute constant like 1. That is a contradiction. 

Non-constant monomials either already have a y to the i. or its y to the i times x to the j, x 

to the j will give you negative x valuation. 

 

 Not clear, then we have to do it the painful way. So, essentially what you learn is that 

valuation of y to the d is valuation of  y to the i x to the j, which means that valuation of y 

to the d - i is equal to valuation of x to the j. No, this is the exact proof. You compare y to 

the d with y to the xj, i is less than d. We are using integrality here very critically, it is an 

integral dependence. 

 

 So, i is less than d and d - i is positive. So, LHS is negative, valuation of y power is 

negative, while on the RHS you have valuation of x to the j. Now, j cannot be 0, it has to 

be positive. 

 

 When it is positive, valuation of x is negative. That is all. So, that is a general proof as 

well. So, this is just a technical result. Now, how will we use it? So, what this tells you is, 

since the y j's that we have picked they were integral. their poles, their poles are shared 

by x, that is all it is telling you.  



 

 

So, poles of yj are shared by x, you should read the previous probability like this and 

from that it follows then that  for large enough s the divisors x to the s + t poles of this + 

the poles of that basis x i y j for all i's and t's. 

 

 for all i's and j's are all positive. So, let us read this in the following way. So, x to the i yj 

is what I am interested in. the only thing that stops it from being positive are the poles. 

Now, the poles come either from x to the i or from yj, the ones which come from x to the 

i they will be made positive by x to the t, x to the t the divisor of poles of that will make 

the  poles that come from x to the i, make them positive and for yj we have shown 

whatever is a pole, it is also a pole of x. So, x to the s, s is big enough, it will make yj 

poles positive. 

 

 Otherwise, what would happen is that the y 2 in the example may be sitting with an x 3 

for example. So, when you compare x 3 y 2 with other monomials, you do not get a 

property on valuation of x. Integrality is given as like 1 x like y raise to t. Yeah, because 

y 2 is free of x. When we say integral means that all the roots of this are in. 

 

 Let us go to the place where I talked about integrality. the existence of an integral basis. 

What did I say here? Maybe I should have redefined it. I just want the minpoly of y1 to 

be monic over the polynomial ring kx. I want it to be monic that is all. It is not about 

integral closure or anything. So, tell me this, is 2 root 2 integral or not? No, no, obviously 

you know, I am asking them, because they are confused about this. 

 

 So, 2 root 2 is integral right, because it is min poly is x 2 - 2. But what, but is 1 over 2 root 

2 integral? 1 over 2 root 2 is not integral because it is min poly is 2x 2 - 1. So, integrality 

is a concept of eternity. I mean this always, integrality always means that somehow when 

you look at the min poly it is monic. 



 

 There is no fractions involved. So, it is the same concept. And now you see why it is 

important, in this proof it is important because y 2 has to come with 1. If it came with x 

multiplied by x then you get some, then the last line you get into trouble. Min poly over 

the, I mean the polynomial in x and y1. 

 

 polynomial in x and y, y1 I do not want fractions here. You want the minpoly of y1 right. 

Minpoly of y1 yeah. So, a priori these other coefficients they could be stuff like 1 / 2. No, 

no, no, no in the integral definition I want a polynomial in x and y1 that is what I mean 

by minpoly, it is a polynomial in everything. 

 

 So, you just clear denominators. Yeah, yeah, yeah. No, no see otherwise 1 over 2 root 2 

will also become integral. Because you will say that no, it is not 2x 2 - 1, it is x 2 - half. 

Those are not our standards. So, where am I using this? That previous property actually 

connects the poles of y, j with the poles of x and this is the important part. this part is 

present to balance the negative terms. 

 

 So whatever negative order the principal divisor x i y j has, it will be made positive. So 

this is big enough. And since this is big enough it will clear away all the negativity that is 

there in your life that is the reason. So, all these are positive divisors and yeah. 

 

 So, what does that mean in terms of L sheaf. It means that x i y j is in L sheaf right of 

this. So b is a subset of that. So we have identified a lot of functions in this L sheaf that 

are independent. So that lower bounds the L sheaf dimension. So this means that the L of 

this is greater than equal to size of B which is NT right. So we have a lower bound on the 

L sheaf of this divisor and  this is obviously greater than equal to x ∞  , right? The x to 

the s + t divisor, uh, ∞   divisor is at least the divisor of x ∞  . 

 

 So from this you use the L - d relationship, L shift dimension - degree. So that will tell 

you that, uh,  L of this is less than equal to degree of that. So, L - D of this bigger divisor 

will be less than equal to L - D of the smaller divisor. So, that is  which implies that n t is 

less than equal to so s + t - 1 times degree of + L of x ∞   yeah. final result you have now 

T something like it's a free parameter for now. So, because L - D of the bigger divisor is 

less than equal to L - D of the smaller divisor you get that NT is upper bounded by  I 

mean degree of this thing is S + T - 1 times this thing + the smaller L chief. 

 

 What do you do next? What you do next is you take T to ∞   because T is free. So you 

make T extremely large, so large that,  everything else will disappear and you will get n 

less than equal to degree of x ∞  . Is that clear? Right, so we have a lower bound. except 

that we have a lower bound not on x0, we have a lower bound on x ∞  . So, see in the first 



part we have shown, oh sorry, big D, what was big D? We had taken big D to be x0 and 

we had shown that degree of x0 is at most n. 

 

 

 

 

 We want to show that degree of x0 is at least n. We have shown now for x ∞  . How do 

we go from here to x0? From x ∞   to x0? 1 by x, yeah. So, so essentially repeat this 

proof for 1 over x. Now since kx and kx -1 are the same base fields this proof will give 

you that degree of x0 is lower bounded by n. Is that clear? So the poles of x will be zeros 

of 1 by x and in fact when you repeat the proof you will actually get 1 by x ∞  . 

 

 So the poles of 1 by x which is zeros of x. So you will get maybe I should write that. you 

will actually get this when you repeat the proof which will be degree of x0 which is your 

big D that's the line of argument and combined with the first part you have shown that 

degree of D is n is that clear  And of course, you have also shown that degree of x ∞   is 

n. So, you have shown two things. You have shown that for a rational function the 

principal divisor has equal zeros and poles and you have also shown that the cumulative 

degree is exactly the degree of the field extension algebraic. No, the- so the divisors are 

actually equal, right? X zero and one by X ∞  , it's the same- Sigma P is the- Sigma P is 

the same, yeah. 

 

 And then I'm applying it on degree, but actually the divisors are equal. know that was 

clear also one hour ago but the problem was how do I show equality I guess for equality 

you need this proof this longer proof. Oh, we are all- no, no, we are working with the- the 

function field of the curve. 

 

 Yes. So, we are always in the smooth projective model. That we decided a month back. 

So, then you already know what the function look like, right? What- what is the function 



like? You have G over H where G and H are the same degree. Mm-hm. You might have 

different degrees because then it won't be a very different function. Yeah, but how do you 

show that the- our explicit definition of degree of a polynomial matches this abstract 

definition of small d? I don't want to get into that because I don't think it's- that part is not 

easy. 

 

 In fact, ultimately, it will need this long proof. You can't avoid it. It's already a simplified 

proof. Okay. Any questions? yeah so this is a major technical result it will clarify many 

things in the subsequent work that we will do what you learn now immediately is are 

these properties so for all functions what do you know about the degree of the principal 

divisor  What is the degree of x? It is 0 because it has two parts, x0 - x ∞  , both are 

equal, degrees are equal, so it's 0, right? So all rational functions are degree 0. And now I 

have a containment. So this div AC,  actually sits in diff 0 C, which obviously sits in diff 

C. 

 

 

 

  

So let us see this as a map and degree is a map from this two integers. So this is a 

sequence of  abelian group homomorphisms. Okay. So degree, we have defined this to be 

a homomorphism from the div C group to integers and div C has a subgroup div 0, div 0 

has a subgroup, all the principal divisors. Div A is the principal divisors. Okay. So yeah, 

so with this tower of subgroups, now we can define actually two quotient groups, div 

mod div 0 and div mod div A. So the,  the class group, maybe not the class group just the, 

this first group, I mean CL stands for class actually, so this class of C group is div C mod 

div A is the, group of divisors of divisor classes. 

 

 So, let us erase this and CL0C is more interesting  We couldn't define this before 

because we didn't know whether div A is a subgroup of div 0 but now we know. So the 



degree 0 divisors which you would have expected in the first instance to somehow 

connected to rational functions of the curve, right. That how close is it actually to 

functions on the curve that is measured by CL0. 

 

 So this group is a cornerstone of all of algebraic geometry. So this is the group of divisor 

classes of degree 0. So this is what we will usually call the class group and it has many, 

many properties, too many to actually even mention in this course. But we'll see what can 

be done. So what is the connection between them? So we can write down a sequence, 

CL0C is kind of contained in CLC. and this degree also acts on this and this is an exact 

sequence of again group homomorphisms. 

 

 So do you know what is an exact sequence? Okay, exact sequence just means that in 

these arrows, image is contained in the kernel. Sorry, equal. Yeah. Yeah. That is image of 

a map. is equal to kernel of the subsequent map. So whenever you have a sequence of 

homomorphisms you are interested in understanding the image of the previous map. 

 

 and kernel of the next map so that both of them are obviously in the same place, they are 

in the same group. So you want to see what is the connection between them. When these 

two are equal, you call the sequence exact. Here it is trivial to check. The image of the 

very first arrow is 0, which is also the kernel of the second arrow. right and similarly the 

image of the second arrow is in the, is equal to the kernel of the third arrow because I 

mean when is degree 0, it's 0 only for degree 0 divisors. 

 

 So it's, it's a triviality here. Yeah, now the question about, yeah, Madhavan asked this 

question, is this degree map onto? So, if I extend the z arrow 0, map the whole of z to 0, 

right. So, the last arrows kernel will be the whole of z, whether the third arrows image is 

the whole of z, that is the question of onto. So, is degree an onto map? . yeah so it will be 

true so I leave this as an exercise. I guess this degree so containments are trivial but the 

degree is if you work it out there is some non-triviality here yeah so the non-triviality is 

the following see we have defined degree on diff c what is the definition on diff c mod  

div A that should be worked out. 



 

 

So, definition of degree on div C modulo div A C. So, the issue is the following you can  

have now not only a divisor D but you can add any rational function right because D + X 

and D is the same should be the same I mean D + X and D are the same in this CLC But 

how do you define degree so that the degree of d + x and d is also the same no matter 

what x is. 

 

 It should be true for all x. So is our older definition of degree does it satisfy this 

condition that you have to check. Yeah. So, this is the non-triviality. So, you have to 

check it. 

 

 So, this is actually the, so degree is additive and degree of a function is 0. We have 

shown it. So, that is why. What I wrote you have to actually check. This is the check. So, 

this checkpoint is passed. So, you can actually add whatever rational function you want to 

your divisor and degree will not change and this is why our degree the definition was 

fortunate it also works for the class group. Okay, so I think that should be enough for 

today. Yeah, so what we will do next is Riemann's theorem. 

 



 


