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Divisor on Curves 

So last time we have started proving this theorem about approximate valuation. It 

basically says that if you are given points p1 to ph and points always mean DVR and 

valuations. So they define valuations v1 to vh respectively and  what you want to find is a 

u in the function field such that the valuation of u minus some offset function which is 

already provided to you is at least m i an integer which is already provided. So, the only 

unknown here is u can you and the key thing is that you have to find out u that works for 

all these inequalities simultaneously. that is the hard part because in the base case when h 

= 1, let us make this bigger. So when h = 1 that is the base case, so there you only have 

one inequality. 

 

 

 

So in that case you can pick your u to be just u1 plus the uniformizer for v1 α1 to the m1, 

right. So you will have actually exactly valuation equal to m1. That is easy, it will work 

whether m1 is 0 positive or negative, right. So, you will get at least valuation v1 to be 

exactly m1. 

 



 But when you have both v1 and v2, then it is actually trickier because now you have two 

uniformizers and two numbers m1, m2 and also two offsets u1, u2. So, you do not know 

how to do a similar trick, it is not very easy. So, these are the offsets. So, when you have 

multiple offsets then it's a problem and multiple valuations. So, first thing we showed 

claim 1 is I mean we will basically the proof will be induction on H, how many 

inequalities you have, how many valuations you have. 

 

 assuming that you have shown it till h - 1, you can immediately get claim 1. So, what 

claim 1 is saying is that assuming the theorem for h - 1 up to h - 1, you will always be 

able to find the u such that vi u = given ei. So, this is a simpler statement than the 

theorem statement. The theorem statement has an offset because it is a stronger result. 

The stronger result will give us the weaker result which is claim 1. 

 

 It is defined in a way so that you get claim 1 by induction. The proof of this is very 

simple. You first find wi such that vi wi = ei. So, this is not a common thing you do it for 

every ei and then you apply the theorem. So, now you use wi as the offset and find a u 

such that vi u - wi is at least ei + 1. 

 

 So, by the theorem statement for each - 1 you will get that the valuation of u is exactly 

ei. Is that clear? So, on the given points and the valuations which you can also think of as 

multiplicity that is why we call it M. So, for given points Pi's and given multiplicities Ei's 

what claim 1 is saying is that you can find a U such that that points multiplicity is exactly 

Ei. Okay. That is the key thing you want to prove about functions versus points on the 

curve. 

 

 Yeah, but we haven't shown, now we have to show the induction step, right. So, you 

want to get to h now from h - 1. So, for that we will need to show that, we will actually 

do many things, but first thing we did is claim to showing that the valuations are always 

independent. suppose not so we have this for the sake of contradiction we have this 

dependence Vh on every u is equal to a linear combination of Vi u for the same Ris 

suppose there are rational numbers Ris such that Vh is a as a function as a valuation 

function it is a linear combination given by Ris of Vi. So it is true for every u in the 

function field. 

 

 



 

 

 

 And then we showed that there are contradictions in every case. I will not repeat that 

proof. Any questions till now? At some point I will post this. But you can also see the 

proof in the old lecture notes. what we have to do is the inductions we have to complete 

the induction step. 

 

 So, our plan now is that we will construct this u which is a combination of the offsets u 

i's we will find these x i's such that we will in fact design these x i's in such a way that u 

which is ∑ x i u i will work it will give you the theorem statement. So U minus the offset 

valuation is equal to this thing. So we'll basically design Xi so that X1 - 1 and Xi 

valuations are under control. So let's move in that direction. Oh I need another claim 

which follows from claim 2. 

 

 So, I want to show that there exist functions z 1 to z h in the function field such that the 

determinant of the matrix v i z j. is non-zero, it is an invertible matrix, okay. So this is an 

h cross h matrix, it is a square matrix and we are saying that it is an invertible matrix. 

There exist such value functions whose valuations have this define this invertible matrix. 

This actually is an easy consequence of claim 2. 

 

 It again is a is an evidence of vi's being independent. But how do you find these Z1 to 

Zh? So, kind of an inductive proof. So, suppose you want to find Z1. So, let us look at an 

equation. The solution set of ∑  R i V i z 1 = 0. 

 

 So, consider this solution set it is a vector space of course. Now, what I want in I do not 

know what z 1 is what I want is that. a Z1 such that the rank of the solution set is 1 less. I 

want to claim that such a Z1 exists. This is because vi's are independent. 

 



 Do you see this? See for all the z1s in the function field, the rank of this is always 

maximal which is h. What would happen? This should just be linear algebra. I think you 

should think of vi the function as a vector evaluated on all possible z1s. Think of it as an 

infinite vector and you have shown that these vectors v1, v2, … vh they are linearly 

independent. So, it basically means that there has to be a z1 at which this rank is smaller 

than expected, it is smaller than the maximum which is H. 

 

 Do you see this? So, just prove this by linear algebra and claim 2, we have shown claim 

2 that was the important thing. Next what we will do is,  or this only gives us Z1, we also 

want now Z2. So, we look at two constraints. So, consider the vector space of the solution 

set. of this and some other Z2 and the claim is that this = h -  = h - 2 for some z2 in k *. 

 

 Now the first constraint already reduces the dimension by 1, so you are in R ‘ cannot be 

more than H - 1 dimensional solution set. The second constraint what you, so Z 2 think of 

it as unknown, Z 1 is fixed. What you do is that from the first constraint you  say you find 

R, you express R1 or Rh as a combination of R1 to Rh - 1 and plug that in the second 

equation, right. So, second equation is a linear constraint in R’, but now one less. So, you 

only have R1 to Rh - 1. 

 

 So you rearrange and you basically do what you did in the orange part that there will be 

a Z2 because of the linear independence of V1 to VH - 1 sorry V1 to VH because of the 

linear independence of that there will be a Z2 such that the dimension is 1 less than the 

number of Rs which is H - 1 - 1 is that clear. So, the plug the first in the second. So, when 

you plug it in then you basically instead of R 1 to R H you are looking at only R 1 to R H 

- 1 and by the first orange conclusion you will now have H - 2 for the solution set. Yeah. 

So, we have found Z 1 we have found Z 2 and then we can just continue this and we can 

find  What do you mean plug the first one? Oh, the first one vi z1 are just known 

numbers, right. 

 

 So, suppose you have an equation, this is giving you the equation r1 + r2 + r3 = 0. So, 

you write r3 as - r1 - r2 and just substitute that in the second equation. So, r3 is 

eliminated. So, now actually you are only looking at h - 1 ri's. And since this vi, z2 are 

unknown, valuations which will be, which you know are linearly independent, you will 

find a z2, so there is a solution set is smaller of r ‘. 

So, it is again coming from claim 2. And yes, so when you keep doing this.  

 



 

 

So on repeating this we get z1 to zh in K star such that no non-zero Q linear combination  

of so, v i z j vanishes simultaneously. Okay so you look at these vectors v1 to vh 

evaluated at zj for all j so you have these h vectors you have what you have shown is that 

there is no single vector which is orthogonal to all of them right because the first one had 

already reduced the dimension to h-1 second one will make it h-2 when by the time you 

reach h you would have h-h. So the only vector which is simultaneously orthogonal to all 

these is the 0 vector, nothing else, which is another way of saying that this matrix is 

invertible. 

 

 right which is the same as saying the determinant is non-zero, is that clear. Yeah I do not 

think I needed to do all this I could have also said in the beginning that just because vi's 

are linearly independent functions. you should be able to find z1 to zh. For example, if 

you just picked in a sense randomly from the function field, you will actually satisfy this 

determinant being non-zero condition. But I guess you get some idea of the proof also. 

 

 Key thing is basically looking at these vi's  these infinite factors evaluated at all possible 

z's and you are given that these infinite factors each of them are linearly independent. So, 

you should be able to basically find a minor h cross h which is also invertible this is what 

the proof is doing ok. So, how does this claim help in the induction step. so once you 

have this invertible matrix you solve for that is you want to find u  that would be the goal 

now and for you will find excise explicitly. So, let us solve for the following equations 

solve for c's such that ∑ c j m  times v i z j = - 1 if i is m and 1 otherwise it is basically. 

 

 So, think of C as a matrix. it has entries j, m we will be doing this for all m. Think of this 

as h cross h matrix  I think it is basically the matrix which when you multiply with this V 

i Z j matrix the product is 1 everywhere except in the diagonal you have - 1 is that right 



yeah I am doing this for all I m. So in the matrix product if you look at the m , or i , mth 

entry, the i , mth entry is this linear form and this value is - 1 only in the diagonal when i 

is m otherwise it is 1. So this is a simple C , V matrix equal to all 1 except in the diagonal 

that is happening  So this matrix times the C matrix = - 1 and everywhere else we have 1, 

right. I hope this subscripts are not messed up. 

 

 So, i , mth entry of this product matrix is what the constraints I have written. So, 

anyways this c is easy to find because v is invertible. So, c = v -1 times this matrix. So, it 

exists because v is an invertible matrix we just showed and so, c's are. yeah in general 

they will be rational numbers. 

 

 

 

 

 So, we convert them into integer or integers  okay basically look at the denominator that 

you get in the solution matrix and multiply by the LCM, D is the LCM. So, these will 

become the matrix C will become an integral matrix now and now we have a sequence of 

mysterious design. So, first design is  define ym to be product of zj dCjm, yeah so you 

want to take a product of the zj's that we had found raising it to these exponents which 

are now integers that we just found  So, where is this? This is happening in the function 

field right. So, y m is now a function. So, we have designed these h functions from z j 

and let us record its valuation. 

 

 So, what is the valuation of y m, v i y m? So, by this orange  property which we wrote 

you should be able to deduce that valuation of ym is there was a - 1 right that - 1 will 

become - d and + 1 will become + d if i = m otherwise  fine this is the point of this design 

so we have found these y1 to yh such that when they look at their valuations v1 to vh 

they are a sequence of - d and + d is that clear and finally another mysterious design of a 



rational function which is xm which will be (1 + ym -1 )-1, okay. So these will be my xm's 

which will define the u that the theorem wanted. So let us check the valuation. So 

valuation of xm  is what? So, when I is different from M what happens? V I is you are 

taking this will be = - V I 1 + Y M -1 and what is the valuation of 1 + Y M -1? So 

valuation of vi1 is 0, vi ym -1 is what? This is - d, right. So 0 , - d, so the answer will be - 

d which is d. 

 

 Fine, so VI (xm) is D and the other thing I have to see is Xm-1. So what is that? Sorry, 

Vm (xm-1). So, Vm ( xm – 1) is do you have any handle on that? So, xm - 1 will be this 

right which is  Which what do you know about this? So, valuation of y m + 1. So, 

valuation of v m y m is - d and v m 1 is of course, 0. 

 

 So, this valuation is - d and inverted. So, d this is again d. Okay so we have checked that 

for this design of rational functions vi value is d for i different from m and vm (xm-1) is 

also d. Okay so let us now move to the design of  u for the theorem. So, u will be ∑ xi ui 

the offsets and you have to check the valuations now. So, u - ui =  m in each and m ≠i. 

 

 

 

 

 So, yeah let us check v i of u - u i. that is what you want in the theorem statement right 

you want to evaluate the valuation of ith valuation of u - ui. So, this will be what will you 

get from here. So, let us check vi of  Well vi of xi - 1 we have evaluated already. So, that 

is d or d + yeah vi ui and this part vi (xm). 

 

 Vi ( xm- um). Okay. Yeah, but I want the valuation of the sum. Can I control that? Okay 

yeah so the thing is what you want here is that this should be less than equal to mi right 

this is what you want to show in the for the theorem statement and here in the valuation 



of the summands you see that you are getting these two numbers but d for now is free 

right so you can just pick d to be large enough so that these two values they exceed or 

they at least are m i. So, let us just remember that in the design. So, fix D large enough  

such that d + vi uj is greater than equal to the max of mi's for all ij. Is this fine? So if I 

pick D to be a big enough number then well actually kind of we had already fixed D. 

 

 We also had this, we have said that pick a D such that D times C j m is our integers but 

there are many such possibilities for D. So you keep on increasing D such that all these 

constraints are satisfied. That is easily done and then now you can deduce that vi of u - ui 

since both the summands it is at least mi, valuation is at least mi. So, your theorem 

statement is done. 

 

 Is that clear? So, this completes the induction step. gives you the theorem. So, we 

constructed ultimately u as a combination of the offsets and these xi's how are they 

constructed. So, they are basically I mean if you want to reverse engineer the proof you 

should look at this expression u - ui and from this you can see why we designed these 

mysterious looking rational functions ym xm. Okay and one more thing we should 

remember from this proof because the whole the subsequent part of the course is really an 

attempt to understand this corollary okay or investigate this corollary which is that the 

thing that we showed here in the very beginning claim 1, a claim 1 that given 

multiplicities and points you can always find a function which has those valuations. Let 

us just remember that as a corollary of this theorem. 

 

 So, S is a subset of  S is a finite subset of the smooth projective curve C and you are 

given multiplicities candidate multiplicities. So, these are of course integers. So, you are 

allowed to specify p as a 0 or as a pole and you can also give multiplicity 0 of 

multiplicity 1 or 2 or pole of multiplicity 100. So, - 100 then there always exists a rational 

function f. So K remember is this function field of the smooth projective curve such that 

these multiplicities are matched. 

 

 So this is a very important result. In fact this is the most important result you have seen 

till now in these two months. And this important result is what we will now kind of go 

really deep into in the next two months. So, you have some your favorite finitely many 

points p's and multiplicities and you want to study these functions. So, we are obviously 

not saying that there is a unique function like there actually there are infinitely many f 

because any f you can multiply by constants, constants are infinitely many. So, obviously 

you have always you have infinitely many functions which will have these 0's and poles 

with this multiplicity. 

 

 But now we will be interested in measuring how many. They are infinitely many but you 



can actually show that the set of these functions kind of form a vector space over the base 

field and you are interested in computing the dimension of that vector space. That will be 

the goal and we will do a lot of stuff in this. basic question following Riemann. So, any 

questions till now or maybe I should have discussed the this question over the affine line. 

So, when C is the affine line or the projective line, what do you think are these functions, 

how many are they? Yeah, so since you know divisors, it's easy to get confused. 

 

 But the others don't, so heavily fine. Not saying that. No, no, we haven't defined divisors. 

So, in case you already know divisor, you may confuse this with saying that. Maybe I 

should make a note here. So, here is the warning for the experts. well also for the non-

experts actually, I will formulate it in the following way. 

 

 This f that you have, it may have other poles and zeros outside s. So, zeros of f and zeros 

of 1/ f may actually be strictly bigger than s. This corollary is not saying that the zeros 

and the poles are just S. There are, there will, there potentially could be points which are 

outside what you were given in the input which is S. Yeah, so that actually gives you a lot 

of extra leeway because there are still these unknown points which can be zeros or poles. 

 

 You don't have to worry about them. Those are kind of don't care zeros and poles. 

Important ones are only these s and for that there is a match. Yeah, that's one thing and 

second is you can work out the,  set of f's in the case of projective line. Just to get an 

understanding of how these f's look like. 

 

 The proof I have given is actually very tricky. You do not immediately understand what 

this f is, but if you work it out for the projective line, essentially what happens is if you 

say that 1 has to be a 0, then you look at the function x - 1. right and if you say that 2 has 

to be a pole then you look at the function 1 / x - 2. So, those kind of things suffice they 

give you complete understanding over the projective line. Obviously, over a curve it can 

be trickier because 1 / x - 2 may  I mean in the case of a actual curve you have you will 

have two coordinates x and y. So, you cannot simply do 1 / x - 2 you have to think about 

what is the point x , y. 

 

 And then for a point which has two coordinates you have to define an f which satisfies 

these conditions so that that will be trickier. So, I think yeah you can easily work out the 

case of projective line.  

 



 

 

take C to be the projective line and find Fs. That will be a good example to understand 

this proof and the corollary. So, let me move to the next topic which will be the  like the 

cornerstone of whatever happens in arithmetic geometry, which is the divisor class. 

 

 Uh, before that I have to correct some things I said last time. Uh, yeah, last time I ha- I 

was talking about the degree definition of a point, what is degree, right? Uh, that have- 

that I have to correct. So maybe you can correct in your notes the base field small k we 

would now like to think of it as a finite field. It may not be fp ‘, it may just be some fq. 

So in that case what is a point and a point will always be a DVR for us. 

 

 We will not think in terms of point as x, y. We will actually think of it in terms of DVR. 

So, you have to ask the question what is the DVR or what are the DVRs of this function 

field k. In the algebraically close case DVRs actually correspond to an actual point. In the 

finite field case  DVRs will actually correspond to irreducible polynomials. 

 

 So it will not be an actual root, it will be a root with all its conjugates. So for example, if 

you don't have √ 2 available, then point cannot be √ 2, then point will be actually √ 2 and 

- √ 2. So they will be clubbed together, so your polynomial will be x 2 - 2. Okay, this we 

had seen also when we classified the valuations of the affine line. There we saw that the 

valuations come from irreducible polynomials. 

 

 So, it is the same thing. Now, we are just making it more explicit and we will measure 

this how many conjugates are there. So, but think of a point always as a DVR. It is 

always a valuation for us a DVR and hence the stock. that's what a point is, it's a cluster 

of conjugates. 

 



 And how many conjugates that is measured by degree of the point P. Okay. So, D of P is 

just the number of conjugates in that cluster. Is that clear? So, I am just correcting what I 

said last time. Yeah, so example is like an FQ 2 finite field. What may happen is that you 

have a point P which is √ α coming from x1 = √ α. 

 

 It is not present in the base field FQ, it is present in FQ 2. So, the point P that you will be 

looking at  it cannot have √ α so what it will actually have is it will be given via this 

irreducible polynomial x1 2 - α that prime ideal so when you look at ocp mod mp you will 

actually go to an extension from fq you will go to fq 2 so we will say degrees 2 is that 

clear this was always 1 in the algebraically close case the degree was always 1 because 

you actually got a real point. Now you may not you will generally not get that. So, you 

have to talk about degree because you are representing it like you can also think of 

computation about this. So, you will actually represent the point via an irreducible. 

 

 So, how much do you have to store? So, that storage space is given by degree. okay it's 

not an actual point but this irreducible the bigger the irreducible is the bigger the degree 

is bigger your storage is so yeah just remember this part if you have any questions you 

can ask so for the rest of the course the goal is to study  the set of all functions from the 

approximation that appear in the approximation theorem the use only for curves of 

course. So, in transcendence degree one function field what are the functions whose zeros  

are at least that in the set S. Zeros and poles come from the set S with specified 

multiplicity  So, we want to look at the set of all those functions, it should be easy for you 

to see that the set of those functions is of vector space, because if f1 and f2 their 0s come 

from S with the specified multiplicity then f1 + f2 also satisfies that condition. So, you 

can add these functions, so you actually get a vector space. 

 

 



 

 

 Vector space is obviously infinite in size. Yeah, it will always will may not always be 

infinite, but usually it will be infinite. So, we definitely do not want to talk about size, we 

want to talk about dimension. Why is the dimension finite? I am not sure about that, that 

we will see. Yeah, so the formal construct for this is the divisor class or divisor group. 

 

 

 

  

So, this will be divisors of a curve, maybe I start next. So now focus on divisors which is 

unfortunately seems to be an overused concept, I mean you have divisors of integers, but 

as we develop the theory you will see that it is exactly mirroring that, just like integers 

have divisors, function fields also have a concept similar to that, which we will again use 

the term divisor for it. yeah but it may be too early right now to get into that comparison 

let us just develop the algebra for now so it is the free abelian group  generated by the 

points which is the DVRs, this is called the group of divisors. of a smooth projective 

curve which we have seen is every transcendence degree one function field. So, any 

transcendence degree one function field respectively smooth projective or equivalently 

smooth projective curves you can look at the DVRs or respectively the points and just 

take a linear combination of the points in a formal way. 

 

 Okay, so for now there is no relationship. So, if the points are p1, p2 you can just look at 

2p1 + 3p2 or p1 - p2 and so on. These are all just formal objects living in this free abelian 

group. The points no, no, no I just gave a whole prelude to that. The points are if you 

have a problem with algebraic closure just work with DVRs, P is just a DVR. 

 

 So, equivalently. No, no, no by P in C, P in C we mean DVR. No, no, I just, so in my 



notation, the big P is a DVR. You think of, so you can remove the geometry completely, 

don't work with smooth projective curve, just work with the function, some 

transcendence degree one field k,  go over the DVRs or if it is a curve then go over the 

stocks. Over the algebraic closure definitely that is what we have proven. But over finite 

field I have gone fast and I do not want to get into those details what exactly is the 

correspondence. 

 

 But I mentioned I hinted that the correspondence is essentially by irreducible 

polynomials. So, to think to think of a DVR. let us say when you are in a finite field to 

think of a DVR you have to think about not just an actual point but the cluster of its 

conjugates. So it is actually a cloud, it is a cloud of the point with its conjugates that is 

what a point is, it is a cloud. If you really want to think about the point but it is actually 

we will just go with DVRs because what we want is the valuation and all that we want to 

talk about degree of the point. 

 

 So in this case you have to remember that degree of P may be may not be equal to 1. 

What do you mean by free abelian? Oh, free is just take all possible combinations. If you 

are not, there is no relationship. So, it is not that p1 and p2 are equal or 2p1 = 3p2. 

 

 There is no relationship. These are all, just think of p1, p2 as symbols. So, you have, you 

can take any combination, they are all,  So, you go over the points in the curve or the 

DVRs in the function field and you are allowed to take any combination. The only way 

two combinations will be equal if they are equal for every coordinate. 

 

 That's the only content here that. What is the operation in this group? Addition. 

Addition. It's an abelian group, it's the addition, yeah. So, p + p is to that. Yeah, exactly, 

yeah. 

 

 So, for example, so p1 + p2 and p2 - p1 + p3. So, this will be 2p2 + p3, fine. Yeah, and 

of course, what is P1 - P1? Yeah, so there is also a 0 in this group, but this 0 is not any 

point. It will not correspond to any point. It is a formal object in the group. 

 

 Point is just P1 but if you subtract P1 with itself you get basically empty. So it is the 

empty point. What is the use? There is a valuation and there is a degree and this degree is 

related to the Frobenius action. So it will count everything correctly when we reach zeta 

functions which will be next month. So we want to keep a count of how many points are 

there in a finite field. So for that count you need the degree to be working well with 

divisors. Otherwise, the same conjugates if you throw, if you separate them, then you 

have to keep track of them across summations in the divisor group. 

 



 I do not want to do that. Correct, yeah. Yeah, I again hinted that in that example, the √ α 

example. So look at the orange example, so base field is small k is Fq, you took a point 

which is essentially point like √ α. √ α is not in the base field, it is in the bigger field Fq 2. 

So when you will look at Kp, the residue field of that point, residue field will actually 

come out to be Fq 2. And the point that we are talking about the DVR, the DVR is 

basically given by the prime ideal x1 2 - α. 

 

 Because the prime ideal has a base representation, but the roots do not have a base 

representation, roots have a representation in the residue field. So we take, basically we 

keep account of the storage space for us because we will say in computers we will only 

store x1 2 - α. 

 

 We can't store √ α. It doesn't exist in FQ. So we keep a track of the degree, dp is 2. And 

all this pain is being taken to keep the counting of points in the finite field correct on the 

curve because Riemann zeta function is supposed to count it exactly. We do not want to 

go into approximation. So, we want to keep track of that exactly. So, I mean as you can 

imagine we cannot keep working with the algebraic closure because ultimately we are 

interested in finite fields. 

 

 So, at some point there has to be a bridge built between finite fields and infinite fields. 

So, this is the point this is the divisor group that we are defining for any finite field 

including also algebraic closure. So, the other thing is. Yeah, I think this is the notation 

here is a bit bad. The notation seems to suggest that you can take infinitely many points. 

 

 But when I say ∑, I mean the support is finite. have finite support by definition I am not 

deducing this. So, you should think of ∑ as just summing up finitely many points for all 

the other points it is understood that the coefficient is 0. okay, the non-zero integral 

coefficients will appear only finitely many times, because I mean we do not have yet a 

way of summing up infinitely many things, like these are discrete points. So, you cannot 

do a infinite sum, it is only a finite sum. So, that is already inbuilt in the definition. 



 

 

 

 

So, which also means that, this ∑ p i  i >= 1 is not allowed, okay. These kind of sums will 

not be allowed because this is infinite support, okay. Continuing with the definition any 

element in diff c  is a divisor of K. Yeah, so I mean if you want to really set up an 

association with integers, the integer ring that you studied in school, you should think of 

Diff C as the integers for your curve and any element in diff c is called a divisor. In fact, 

diff c you should think of as a set of divisors of the curve and the points pi's you should 

think of as prime numbers. 

 

 So, divisor is nothing but a product of primes. So, what was in school product of primes 

here it is actually a sum of primes. Okay, so there is this philosophical shift from looking 

at products of numbers to sum of, sum of primes. That is why this comparison is, could 

be confusing in the beginning. 

 

 Just take logs. Yeah, so you did log in class 10th, so with product of primes and log, now 

you have divisors. Who defined this structure first? Yeah, I credit for everything Vail, but 

I am not sure. I think the biggest, I mean the most impactful results I think are due to 

Vail, because this is remember we are doing this for any curve. General curves were not 

studied before Vail over finite fields. Yeah, but I think Hassa  must have also developed 

something, which we will generalize to curves. 

 

 Yeah, needless to say these things people had done for complex curves, like Riemann 

proved things only for complex curves. So, we will be giving Riemann's proof for the 

divisor group after the mid sem. That was for complex, but then we will generalizes it to 

any field. I we can now immediately define the order map. So, order at a point of a 



divisor  should do what? So, it should send a divisor to the number a p such that d is a p 

times  So, the coefficients we will call them orders of the respective point or prime. 

 

 No, no, no, no for a point this order is for a point. So, for p 1 it is 2 and for p 2 it is 3, 5 is 

what you are calling 5 will be the degree we will define that I mean obviously, order is a 

group homomorphism. it is a group with respect to addition, group homomorphism with 

respect to addition, right. div c is with this is an additive group and integers obviously 

here an additive group. 

 

 So, this is just a group homomorphism, sums go to sums. we can also similarly define 

degree. So, degree is yes slightly more complicated than you would think. So, this will be 

you would think it is ∑ But what it should be? Exactly. The degree that we have defined 

for a point before. Okay, so for a divisor ∑ AP times P. 

 

 degree is basically ∑ AP but you have to weigh on the degree of the point itself as well. 

Because the point as I said it is actually not a real point it is a cloud of conjugates. So 

how big the cloud is you have to put that weight there because you want to keep track of 

the count of finite field points properly. So, that is the motivation of course, you may not 

be able to see that immediately, but there is some intuition for this. This is also a group 

homomorphism. 

 

 Is that clear? So, when you add two divisors, if you are looking at the same point in D1 

and D2, then the degrees will be equal. So A of P1 and A prime of P1 you can simply 

add, right? And if the points in D1 and D2 that you are looking at are different, then they 

will contribute in different places. So this again is a group homomorphism almost 

trivially with respect to addition. Yeah its kernel is an important object. So, kernel of D is 

called the group of divisors of degree 0. 

 

 I mean obviously they are degree 0 and they form a additive group again. So, those 

elements are called degree 0 divisors. For example, it could be p1 - p2, if p1 and p2 are of 

equal degree or if they were actual points then their degree is just 1. So, in that case p1 - 

p2 is a degree 0 divisor. and this has a special respect that we give, it is called, it is 

denoted by div 0 C. Okay, most of that all, almost all the time we will be actually 

working with this div 0. 



 

 

 

 

Yeah, there are other small things we have to define, let us do that on Friday. Any 

questions? Actually, let me continue and define two things. There are lot of keywords. 

So, support of D. this I kind of already mentioned it is the points that actually appear 

whose order is actually which are actually appearing in the divisor D that is the support 

set. 

 

 So, D will be called  integral or positive or effective depending on the literature that you 

use. If for all the points on the curve the order is what? Non negative. Okay, so the 

integral divisors I mean again you can think of integers right. So, integers which have 

prime factors with exponents non negative they are called integers. So, similarly integral 

divisors positive or effective you can define. 

 

 Based on this you can define when does a divisor divides another divisor. So, d 1 divides 

d 2 just like numbers if d 2 - d 1 >= 0 that  So we say that a divisor D is >= 0 if and only 

if it is integral or positive or effective. And we say that D1 divides D2 if the difference is 

that which in other words every order that you see in D2 is at least that in D1. Then you 

can define divisibility like this. 

 

 and unsurprisingly this can be written as D2 > D1 or D1 <= D2. There is no, this is well 

defined. So we can, we are, remember we are defining these inequalities now in our own 

way. We are comparing these formal sums. It is not automatically defined. Oh and what 

happens if D1 <= D2 and D2 <= D1? If D1 divides C2 and D2 divides C1 then what 

happens? Yeah then they are equal right. So, this is not a stupid notation it actually 



follows what you think it should. Okay I think yeah this maybe we can continue next 

time. 

 

 


