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So, last time we did more about valuations. So, we proved this proposition that I mean 

essentially when you look at the germs at a non-singular point at a smooth point on a 

curve then that germs ring call it R. these three things are equivalent. It is a discrete 

valuation ring, it defines a valuation on the function field and it is integrally closed inside 

the function field. Integral closure being the main defining concept I would say because 

you can think of it as there are field elements in K for which there is a monic  defining 

polynomial over the ring R. So, you just introduce that element in the ring and make it 

bigger and you keep doing this till you cover all the integral elements in K inside R. 

 
 

 So, at that point you will have a DVR that is the thing you do when you have a singular 

point and we characterize the DVRs. of the affine line which is this theorem in blue. So, 

the distinct DVRs for the function field essentially you have one variable attached k (x), 

kx. So, for that function field we showed that the DVRs they essentially correspond to 

valuations where you either  you take a irreducible polynomial f. 

 

 So, for example x - 1 and then look at the valuation with respect to x - 1. So, that 



corresponds to the DVR R sub x - 1. So, you can do this with x - 1, x - 2, x - 3 so on or 

you can do it with quadratic irreducibles in case your base field k was not algebraically 

closed. Otherwise you will only have x - α. So that type and the second type is 1 / x. 

 

 You can also define valuation with respect to 1 /x. So that is the new unusual valuation. 

and that is all. So, we prove that and then we can extend this to curves from k x we can 

go to K that is only a finite algebraic extension and there is a way to do this. It is 

basically again by this you have a local domain you take an integral closure inside K that 

will give you the DVR. 

 

 It is easy to see that a curve has only finitely many singular points. because a curve is 

defined essentially by a single constraint in two variables and singularity is another 

constraint. So, if you intersect your curve with that then you get dimension 0. So, 

essentially you only get finitely many singular points. You want to remove all of them 

and get a equivalent  non singular curve. 

 

 So, a curve which should have no singular point. So, in that direction we have started. 

So, we defined this abstract curve. So, our thing of interest is this function field K which 

is given. I mean it is basically of any field it has transcendence degrees 1 over the base 

field k. 

 

 okay so you get this basis so somebody gives you a curve which has singular points so 

you look at the function field of that curve call that k of c so that that is this K and now 

from here you want to define a different model  of a curve which has no singular points, 

every point there should be non-singular. So, we will make basically we will now give a 

model which is non-singular for this big field K. So, in that direction we first define a 

very abstract curve which is C sub K. So, this C sub K is what are the points here, the 

points are actually valuations. okay so we call it abstract curve because it is very abstract 

the points are actually not real points they are not in the affine space they are actually 

functions so you are looking at the set of all valuations of the field so the valuation will 

define will have an equivalent DVR RV and its maximal ideal will be unique we are 

calling it MV okay so look at the valuations as the new kind of abstract points, but this 

itself would not be interesting unless you define a topological structure on this. 

 

 So, we will define open sets, closed sets. Closed sets will simply be the finite subsets of 

this or Ck itself, the whole of Ck and open sets will be complement of this. So, open sets 

are simply complement of finite sets or empty set. yeah even here we don't want to stop 

because actually we want to define functions on open sets right to get proper geometry 

which we had seen in the case of curve before so for that we have to define what are the 

regular functions on an open set u so u essentially has infinitely many valuations inside as 



points which we are calling points abstract points and on that you want to define a 

function right so functions will come from a big field the field K in particular they will be 

this an element of the field which is present in all these RVs for all the valuations that is 

the definition of regular functions on U now why does it make sense so the physical 

interpretation is as follows so each function in OU function f defines, each f defines a 

distinct function which maps u to the base field k.  

 

How? So, it will take a valuation v contained in u and it will map it to  So, the valuation 

corresponds to a maximal ideal and you should just look at f mod that maximal ideal and 

this you can read as an element in the base field k right because what was k. 

 

 So, k was its isomorphic to rv |mv|. So, if you take an element in RV remember that F 

ϵRV right because F ϵ OU which is the intersection of all the RVs. So, F is in this 

particular RV also in this DVR and when you look at it |mv| you get a field element base 

field element. So, if K was FP actually F |mv| is just a number from 0 to P - 1. So, this is 

a natural way to evaluate a valuation at a function. 

 

 So, a function can be evaluated at a valuation. So, this is why we can call it an abstract 

curve and abstract functions because actually the function is being evaluated at a point. 

This is what we are simulating here and functions. No, no f is an element, f is a field 

element in K. K has these DVRs which are sub which are rings and you have taken 

intersection of the rings. 

 

 So, f is simply a element in the function field you can think of it as x1 /x2. So, you have 

to define how to evaluate x1 /x2 at a valuation. That's a complicated thing. But the only 

way to define it is by taking |mv| because you want to get a field element. So the 

valuation will actually give you a field element for a fixed f. 

 

 So think of this as the new meaning of f at a point. This is what we have defined. How to 



evaluate a regular function at a point? which happens to be a valuation here and functions 

fg are the same functions, we will call them the same if and only if they are the same |mv| 

for all v. So,  if you take two element two functions two regular functions which are 

regular on u of course by the definition they are the same if and only if for every 

valuation they give the same answer which is the same as saying f - g ϵ  f - g is in every 

m v intersection over all the v's. So, do you see that? So, f - g is present in each of the m 

v's  which is what. 

 

 So, you are saying that valuation of f - g is positive for infinitely many valuations. But 

they could perhaps still differ on the complement of the, but if this holds true for a cover 

u i. No, see f and g you know that these are actually fractions. in the function field. So, it 

is a finite fraction, f - g is a finite fraction and this is saying that it has infinitely many, 

your v of this is positive for infinitely many v's. 

 

 I think it means that it has to be 0, f has to be equal to g in k, but I do not want to jump to 

that, let us see this later, no actually I need it right here. Yeah, okay, it will follow from 

MV being principle, that's the trick. Since MV is principle, you are actually getting an 

element dividing f - g for every v. So, you are getting an infinite product dividing a finite 

object. So since MV is principle, this means that actually f - g is 0 in K. 

 

 Is that clear? Yeah, so this is being used. It is not just by valuation positive, it is actually 

by the division. You take every uniformizer and their product divides f - g. That's an 

infinite product. 

 

 So yeah, this can be done. This probably should be done more formally. I will not do it. 

You can prove it as an exercise. Yeah, but most of the important ideas now you already 

have. But still, you should try to do it in proper notation. 

 

 So since mv is principal and u is infinite, that also we used. Let every open set is infinite. 

So, you are taking an infinite product. So, which is perfect you have defined regular 

functions on open sets containing valuations and the notion of equality exactly matches 

that of the function field. different elements in the function field actually are giving you 

different functions on any open set. 

 

 So this means that you are on the right track. This abstract curve is a natural object. And 

similarly, you can also prove that any function field f that you take, it's defined on some 

open patch. so there exist an open U on the abstract curve such that f ϵ  OU why is that so 

this proof actually you have seen the ideas the main idea is that f = g / h for gh 

polynomials  in the coordinate ring no sorry in what I guess in the polynomial ring let me 

not say where. So, f is just a fraction of comprising two polynomials g and h is the 



denominator where is it defined. 

 

 So, it is defined whenever h is non-zero, but that defines an open set. So F is not defined 

at a valuation if and only if H is 0 which means that H ϵ  MV or in terms of congruence 

this. because you will be going f |mv|. So, if h vanishes then this function is not defined. 

So, you have to basically now check, you have to exclude these valuations, these so 

called points in your abstract curve. 

 

  

So, how many are they? This again is I mean since h is a finite object, there will be only 

finitely many v's. So, that is a closed set. So, complement is open. This implies that these 

bad points v form a closed set which means that f = g /h defined on open u. okay so every 

rational function is defined on some open patch and two different functions will give you 

will actually be looked different on some open patch so we have a good interpretation of 

every element of the function field of this field K yes yeah yeah that's an equivalent thing 

but you don't need to think in terms of that no you just see that then H ϵ  the intersection 

of MV for all bad bad V's no no what is the meaning of H at V  it is this that is the 

definition right I mean f at v is f |mv|. 

 

 Say that again. That we are identifying every polynomial just by f |mv| like a sequence or 

infinite sequence. Yeah, so these are the values of f at places v. And since these places 

are infinitely many, in a way you can say that they define f. If you have all the 

information you define f. It makes sense because we have shown here that  only way f 

and g can be the same on an open patch if they are indeed the same in the function field. 

 

 So if you have value at all the places then you have in a way the function uniquely 

defined. there is just some h (x) is 0 like does it also relate to that definition here. Which 

one? It is not defined on this set if there is just a point h (x) is 0. Yeah, but the point is v 

right, now the meaning of point in the abstract curve is. 

 



 I am doing the actual field elements. Yeah, so what you are asking is the abstract curve 

real, so we will show that it is, that is not trivial. that is yeah that involves beginning of 

modern algebraic geometry, we will skip some of that part, but we will give the main 

proof. Now, for now let us just develop one more thing for the abstract curve which is 

morphisms. So, we call Ck  together with the regular functions and k. So, in fact this is 

the regular functions functor and function field k. 

 

 So, we are defining the functor  and we are defining its function field and ck as a set is 

just set of valuations, but it has all this data attached to it, it is not just a set, it is a data 

which has open set, close set concepts, it has this regular function functor and it has the 

function field. This everything we together we call it an abstract curve. and we can define 

now morphisms between two abstract curves. or they can even be variety, let me not go 

to variety. So, between abstract curves it is a continuous map such that the same thing 

which we had I mean we just copy paste the definition you had before of morphism. 

 

 The definition you had for variety is the same thing you will use for abstract curves that 

for every open set v (y) and function there. f composed with φ is a function pulled back to 

x. So two things are happening here. This is open. So for every open set of y, when you 

look at the pre-image or the fiber, it is open. 

 

 Φ -1 v is open. and any function there can be pulled back like this. So, such maps 

between abstract curves are now called morphisms between abstract curves. This is not 

surprising, it is the same thing as you saw for real curves. So, let me add  curves slash 

abstract curves, you can mix and match. You can take X to be a curve and Y to be an 

abstract curve and so on. 

 
 

 And with this definition, you can now see easily that every non-singular curve is 

isomorphic  to an abstract curve what is the proof of this so let x be a non singular curve 



so you want a morphism two way morphism  from x to an abstract curve, the option is, 

what is the candidate for y? Well, you take, you look at the function field of this non-

singular curve and take the abstract curve for that. okay and you show that this there is a 

morphism which also has an inverse right so what will you do where should a point go 

point should be mapped to the valuation corresponding to the point  So the forward map 

will be a real point. You map it to the valuation that it defines. And it defines a valuation 

because it's a smooth point. 

 

 So its ring of germs is a DVR. As OXP is DVR. if and only if P in X is smooth, is non-

singular. So, because of the non-singularity you immediately get DVR which 

immediately gives you a valuation, use that valuation on the big field, the function field. 

So, all the valuations of the function field correspond to points. Well, but there was also 

this 1 /x thing, which point will that correspond to? There seems to be one extra 

valuation, right? It does not correspond to a point. 

 

 Yeah, so that will be more complicated now. So, you are saying that we should look at 

projective curve. We cannot do this with a fine curve. No, you are now looking at all the 

valuations of the field Kx, the function field of the curve. In that function field there is an 

extra valuation which is when we characterize we got that, this one. I mean here we took 

the kx field, but then what it shows is that for any field of transcendence degree 1 either 

you take valuations by a polynomial. 

 

 So, which will basically be x - α in the algebraically closed case, but there is one extra 

one which is 1 /x. So, 1 /x does not really correspond to a point, x - α corresponds to x = 

α point. but 1 /x corresponds to as he said point at infinity. So, you have to now embed 

point at infinity. So, should I correct that to non-singular projective curve. 

 

 But then it is not clear what is the point in field of projective curve. So I think the 

forward map is clear. For the converse, you have to do something with this extra 

valuation, which I don't remember it off the top of my head. So let's leave that to 

homework. So what is the converse of this? What's the inverse of φ? So it's clear on 

infinitely many on everything except the extra valuation 1 /x that you get. 

 

 That's what to do with the point at infinity. R 1 /x. That's such a thing you have to handle 

in this setting. V of 0, you mean if 0 is a point, no any point like if you have two 

coordinates x1, x2, so you are saying x1 and x2 both are 0. What does 0 mean in the 

curve? In VP what does that mean? I guess order dividing that. 

 

 Yeah, yeah. 0. No, no. So the point 0 , 0, if it is a point on the curve, then the maximal 

ideal you are looking at is x1 , x2. So corresponding to that, you get the germs that are 



vanishing. That's the unique maximal ideal. So modulo that ideal, and since this is a non-

singular curve, it's actually a principal ideal. 

 

 So you'll find a y which generates both x1 and x2. So you have to define valuation with 

respect to y, the uniformizer. So that's the same thing we have done till now. You just 

copy that, put it here. But in the inverse, yeah, I forgot that there is an extra 1. 

 

 extra valuation is there. So, that has to be handled carefully. Anyways, now we will do 

the more important thing which is existence of non-singular models. I also want to know 

what you like, what does it mean like two curves are like have a morphism between them. 

Like when we had rational glass, it was a way of comparing their function fields. So, 

what does morphism between two curves even imply? Oh, it's an abstract morphism. 

What do you mean? What does it imply? As long as it is well defined, it's there. 

 

 No, no. So, if you had y to be a curve instead of an abstract curve, then whatever 

property you had there, the same property you are trying to study in abstract curve. The 

same thing. So, you look at the function field of X and Y. I forgot when we define 

morphism what is related to coordinate ring or coordinate ring that was related to 

coordinate ring. So, just the single morphism that is related to the coordinate ring, which 

actually we have not defined for an abstract curve. 

 

 So, that connection is missing. But if this morphism is invertible, so if it's an 

isomorphism, then you can just directly talk about the function field. What it is doing is 

that k (x) = k (y). And I mean all this has been done for a purpose. So what we will do is 

we will actually realize now the abstract curve via a non-singular actual curve, which I 

am calling non-singular model. 

 

 So that is the major theorem of this geometry part. So, let base field be k and this general 

field be K of transcendence degree 1. So, think of this as k and k x, that is the case of the 

affine line. but that is non singular. So, maybe you were given some singular curve 

defining the function field K and from there now you want to resolve the singularities. 

So, what the theorem says is then  as we have defined there is an abstract curve Ck, the 

unique abstract curve Ck, this is isomorphic to a non singular projective curve. 

 

 Yes, you see that this projective will be needed. So I think in the previous claim also you 

will need a projective curve. So ultimately you will have an equivalence between non-

singular projective curves, actual curves and abstract curves. Yes, as Madhavan pointed 

out, for a projective curve, if you look at the function field on the whole curve, you'll 

only get the base field constants. So we can't make a statement about the full function 

field because in the projective curve case, it's trivial. 



 

 Of course, it is not equal to K. But there is still this regular function functor. So you can 

talk about that. And you can talk about the functions. Or what did we call that? Yeah, I 

mean, basically you can look at functions with their open patch. 

 

 and also the equivalence relation we had. So we say that two functions with their open 

patches are equal if they are equal on the intersection. So keep those things in mind 

because now we have moved to projective from affine. So I will try to quickly sketch the 

proof of this without going into the real algebraic geometry details. So the idea will be 

that we will glue the finitely many smooth curves  one for each singular point. So we are 

thinking of the function field currently given as via some model which was not good 

enough. 

 

 X was the model which was defining the function field K. If X was already non-singular, 

then we were already done. We didn't have to construct anything. But the real problem is 

that X was a curve which had singular points. We know that the singular points are 

finitely many. 

 

 And we know how to resolve each one of them. So the problem is that resolutions will 

be giving you different models. So you will have finitely many non-singular models, one 

for each singular point in this input model x. So you have to glue them by  via some 

Cartesian product, let us say. So, you essentially want to take these non-singular models 

each resolving a unique singular point, look at the Cartesian product and may be that gets 

you closer to a actual non-singular model which works  for the hole. So, how do we 

implement this? So, first is let us recall how do we resolve a single singular point. 

 

 So, well for a point v in the abstract curve  we have the maximal ideal, the unique 

principle maximal ideal or the unique max ideal which is principle this MV and we have 

the DVR RV and we have the big field K that is the DVR. So that is defined as before. So 

we will do this, I have to I think switch between x and ck. So I mean everything except 

finitely many valuations are already modeled in x. 

 

 The only things which are not modeled, they are because of the singular points in X. So 

let us go one by one through these singular points. So let us consider the first one, call it 

V1. that is unresolved in curve X and for that you have the RV1 DVR. See this DVR  as 

the germs for some curve V1 at some point of some non-singular point P1 in a quasi-

affine  P1. So, how will you do that? What I am saying is that for a valuation, this is…  it 

was singular in the input model it was singular. 

 

 So, somehow we have to resolve it. So, what you do is you take this first singular point, 



consider the valuation of it, it is defining RV1 DVR. So, you should look at this basically 

construct a curve V1 and a point there which corresponds to RV1. O should be 

isomorphic to R . So, I leave it as an exercise to realize this V1 and the point P1. 

 
 

 This basically, I mean we have done it many times in examples. You basically have to 

just reverse what we saw in those examples. So, for example, let us just go back quickly. 

Yeah, the standard example that we had, when we define germs I guess, this one. So RV1 

is a DVR. 

 

 So it's the first case, kx1y modulo y 2 - x1 localized at this principal ideal. So what I'm 

saying is that if somebody gives you this as RV1, then the curve that you should consider 

is y 2 = x1. So the polynomial ring modulo the ideal, that ideal will actually give you the 

curve definition. and the point there will be 0, 0. So as soon as you are presented RV1, 

you will see what the model is. 

 
 

 That's the curve V1 I'm talking about. So I'll not go into the intricacies of this because it's 



pretty obvious in a computational wave of what's happening. Just from the presentation 

of the DVR, you will be able to get the defining ideal of the curve V1,  and also the point 

P1 such that RV1 is isomorphic to OV1 P1. So, that is basically resolving the first 

singular point. So, how does this help? So, now what are the properties that we have  we 

have got R V1 isomorphic to O V1 P1 and if you look at the zeros that this max ideal 

defines inside V1 that is just one point P1. 

 
 

 So, the max ideal  since I mean RV1 is the ring of germs at P1. So, the 0 set of the max 

ideal inside V1 is a unique point only P1, there cannot be two points. So, we just record 

that. So do this for finite steps to get the vi's let us say m many and the points. So get the 

curves and the points on the respective curves with all these properties in orange 

satisfied. 

 

 So that's the individual realization but this wasn't the problem. The problem was that you 

have to find a global curve which works for all these simultaneously. So now we will do 

that. Now we will glue this. I think I need one more thing. 

 

 there exists an open UI in X that is realized by U1 that is realized by V1. Since P1 is 

contained here and the way we will do this  the connection between X and V1 will be that 

on an open patch, they agree. So basically you also have UIs here. So I need all this data 

for the gluing step. 

 

 So you have these patches. Actually do I want x? No, I think I should rather work with 

ck here. Yeah, so I have these vi's which have realized parts of the abstract curve like v1 

has realized u1 and each vi has been defined via the point pi that it contains. So, vi is the 

resolution of that point. In fact, the point you can also see as a valuation now, the 

valuation v1. So, the immediate properties are that Ck is being covered by these. 

 



 Okay, the union of all these, I mean we did this for finitely many steps so that we get a 

cover. So, these M open sets have covered the abstract curve and  So you're choosing ui 

so that it covers the finitely many ui's? Yeah, you can cover it in finitely many steps 

because they basically correspond to the singular points on the given model, input model 

x. So just those singular points you have to resolve them into vi's. The other things you 

do not care because they were already non-singular to begin with. 

 

 So, the connection in this data is actually a morphism. The morphism is from Ui to Vi. 

That is actually an isomorphism. Okay so we have till now what we have done let's say 

algorithmically is we have covered CK into finitely many open patches and each patch 

we have realized by completely different curves, VIs, isomorphic on that patch and for 

some strange reason I want this embedded in a projective curve. so this is projective in a 

non singular projective curve so by vi here you mean valuation corresponding to it or ui 

is an open set oh vi is no vi is a realized curve  Like the example which I showed you, in 

there the curve was y 2 = x1. 

 

 It's just that. And on y 2 = x1, the point P1 is 0, 0. So that's all. You just look at our V 

definition or the presentation and from there recover the curve and the point as an actual 

curve. Yeah, so UIs were abstract points. VI set of actual points. 

 

 It's a curve. And since it was affine, we have embedded it into a non-singular projective 

curve. Because VI was a non-singular affine curve. Are you fine with this or do you want 

to see how you can embed an affine curve into a projective curve? It's the trivial 

embedding, you just introduce a new variable x0. So, you can see an affine curve always 

as a projective curve and it will also be smooth. 

 

 If you started with smooth, you end with smooth. So, just embed it into this projective 

curve. Can you explain that line once more? Which one? The first line, V1 is in a quasi-

affine curve V1. Yeah, the explanation was by the example. I am not going to the details. 

Because in general, if you go into the details, it will be tricky. 

 

 Basically, what you have to see is how is this RV1 presented to you. So only sensible 

presentation is it's a polynomial ring modulo ideal localized at something. So that ideal 

already gives you the curve definition. Yeah, so I think that example if you remember it's 

fine. I don't want to set up that whole machinery here. The issue is that you actually RV 

is coming from, I mean the root to RV is pretty long, right? You are given a model curve 

X and from there you have picked a singular point. 

 

 For the singular point, you take integral closure of the germs that gives you RV. and 

from this integral closure the DVR RV you get the model. So, that part we have done in 



the previous classes. So, I do not want to repeat that because it is too much. 

Computationally is it I mean can you describe this integral closure fast. 

 

 So, I am not going into the complexity of that. What you are asking is even more. I 

haven't even given the proper algorithm, so complexity will be more complicated. But I 

think it's, especially if you are given everything in two variables, you can do it fast. 

 

 It's only hard when you have multivariate presentation. I don't think there is any problem 

with bivariates. Yes. Yes. Why? I just added a free variable. Yeah. No, but if you just add 

z there. So, what do you want to do there then? what is the correct way? So, if you had y 2 

= x 3, you go from here to z y 2 = x 3, that is already. 

 

 So, let us take the simple example. and now what what is the problem in this okay x is to 

5 + x so you get this  okay and because of Z you are saying the only new point you add is 

because of Z = 0 right so Z = 0 X = 0 Y = 1 that's the only new point that's a singular 

point how do you correct this ok so let me leave that as an exercise for now but this 

believe me is not the hard part  So make this smooth projective. Yes, there might be some 

obstructions with the obvious homogenization like I did with  And Madhavan isn't happy 

with that. But I mean you can believe that there will be some way to make this smooth 

affine into smooth projective. 

 

 So that's yi. Yeah, so now we have the setting. We have to now do the actual gluing 

process. How do I glue these yi? So let's say y1 and y2. How do I glue them into a single 

smooth projective curve? which is which should realize as promised C k the abstract of C 

k. So, what we will do is make this observation that C k - u i is finite  that this is fine UI 

was open so complement is closed which is by definition finite and what I claim is that 

because of this finiteness this φ i uniquely extends I do not think I need uniqueness, φ i 

extends to φ i ‘ on the whole of CK. 

 

 So, I have a map φ i which is from ui to yi. And using the projective nature, I can 

actually prove. There is a geometric proof that any morphism to a projective curve from 

ui to yi, I can add another point in ui and still extend the map. It's extension of the 

morphism point by point. so why is that possible so ui to yi extends uniquely to φ i ‘  in 

ui i add another point let's say p and there will be a way to define φ i ‘ at the new point p 

so this actually is simply the following idea you take let φ i be mapping points to these 

functions f 1 to or f 0 maybe because it is projective n a bar.  



 

Okay so here I will use the fact projective, so hopefully the idea will be clear why we 

needed a projective curve in the range. So the reason is that morphism has this property 

that you will wherever you see around the neighborhood of a point A bar, the image will 

be these fractions, there will be rational functions, so these are F0 to Fn. 

 

 Now you are introducing a completely new point P. Idea will be that you actually 

continue to use the same functions, f0 to fn. So on the new point, you continue to use 

these functions. That will be the obvious thing to do. you had function before so you can 

just evaluate those functions at the new point what could be the problem well the problem 

can be that this goes to a forbidden point which is the 0 all 0 coordinates right so p may 

be a common root of f0 to fn  So this may fail. 

 

 In all other cases, it is fine. You have extended φ i to φ i bar. Only problem is that these 

could all be 0. Then what do you do? What's the solution then? Yeah, so at this point, we 

will use the fact that actually what p is is a valuation. CK was the abstract curve. So, the 

new point that you are adding is always a valuation. So, if you think in terms of valuation 

then what is happening is that FIP is simply the valuation of Fi. 

 

 I mean it is not simply, there is an associated valuation that you can study the valuation 

of Fi. so consider the valuation that this point defines of fi and what do you see so you 

see that these are integers you pick the minimum one let us say fk i = k gives you the 

minima  And you normalize the above by fk. And what do you see has happened? 

Exactly. So now you have f0 / f, sorry, this is fk. I should not use k that is not good, let us 

say s. 

 

 So, f0 /fs dot dot somewhere you have a 1 and in the end you have fnp /fsp and this is in 

the projective coordinates. So, this is all ratio. Right, so I have now given you a valid 

point in the projective space. Right, so if I use the same functions then I will get the zero 

point which is illegal but then I realize that actually I have a valuation available which is 



kind of sorting the functions. So in the sorted functions you pick the minimum one and 

just make it one. 

 

 Okay, so this is why the projective space is so beautiful that it actually allows you to 

grow a morphism point by point. You can keep adding points as long as these points 

come from the valuation space of course. This argument needs that. 

 

 Right, so what we have done is, so now you can repeat this. This can be repeated for 

more p's. So that's the full proof. 

 

 It was important because you want to see why we go to projective space. It's not 

artificial. No, no, no. Vi was actual. Yi is also actual. Only you can think of the starting 

point as being abstract. ui is covering ck, so that was abstract. But subsequent things are, 

so φ i is what makes the abstract actual. 

 

 And we can actually grow φ i to the whole abstract curve. That is what the claim is 

saying. Here you use the fact that you are in projective space. Oh, how is it resolved? So, 

y was everything 0, FIP was 0. So, it means that, I mean say the point P is the 0 point. 

 

 So, it's like looking at the valuation by x1, think of x1 - 0. So, you are looking at how 

many powers of x1 /  F0, F1, Fn. Yeah. So, say you had x1 , x1 2. So, if you substitute 0 

there, you will get 0 , 0. But then you can realize that you can be clever, you can 

normalize it first by x1 and you get 1 , x1. 

 

 

 So, that's the beauty of projectivization. So, once you have this, you are pretty much 

done. with some more algebraic geometry that I will skip. So, what you do next is, now 

use these φ i bars to define the common morphism  φ on the whole of CK. So what it will 

do is it will basically as promised do this Cartesian product. So where should a valuation 

go? So a valuation or a point which was abstract, you realize it into this tuple. 



 

 So, the initial idea was that you get these smooth models and then you take a Cartesian 

product to get one curve. So, this is how you will do it. You have an image of arbitrary v 

into yi, you just make this tuple. and define finally y to be the closure of the image of φ c 

k in projective space. big enough okay so in the some projective big M space a fine space 

projective big enough space you have these tuples you have these points which are actual 

points their set may not be closed yet so you close it and that will give you the  the 

variety y which happens to be a curve. 

 

 So, that is the actual curve. So, here I need to define the seg ray embedding. it maps, I 

think this… No, I think the notation I am using is not correct. This m tuple thing I do not 

want this. I think this has to be the Segre product of these points. I have to write here 

Segre. the segre embedding basically takes two projective points let's say x0 x1 y0 y1 and 

it maps it to how many coordinates four coordinates so you get x0 y0  So it's a map from 

the projective line cross itself to the projective three space. 

 

 So it blows up quite fast. So for M =2 , you will basically have two points in their 

respective projective spaces and you will have to then multiply them via this Hegra 

embedding. so you will get four coordinates in general it is if you have n projective 

projective n space projective n ‘ space you will get what exactly n + 1 n ‘ + 1 - 1 okay so 

this is the Zachary embedding  What is the purpose of this? How do you define Cartesian 

product? If you want to say honestly that I have a point in a projective space, big space, 

what is that big space? So that big space is the following. You have a projective line, 

point in a projective line, another point in a projective line. 

 

 When you take Cartesian product, you actually go to projective three space. which is 

given by that all possible products. Yes, Segre was an Italian geometer who defined this. 

So, that Ck goes to product over i to where yi that you means that. Yes, so it's not just an 

m tuple, it's not just m copies, you actually have to take Segre product. So, Cartesian 

product in this category of curves,  projective curves is actually this product, it's the 

Segram product. 

 

 Yeah, otherwise you can see that you can't generally define product because the issue is 

that x0, x1 are not two values, you are interested in the ratio. So, it's actually x0 /x1, y0 

by y1, but then you don't know which one is 0, which one is non-zero. So, it's actually 

either x0 /x1 or x1 /x0 or both. 

 

 So, we are including all possible. Yeah. So, the only way to write this algebraically is to 

actually consider all products. Whichever works will give you the correct value and if all 

of them work, all of them will give you the correct value. up to ratios. So, you can I mean 



trust Segre he has thought about this centuries ago. 

 

  

So, we just use that and yeah. So, then ultimately y is that big projective space where 

Segre lives and now where your curve is actualized. So, that is the realization. has been 

realized as or we use non-singular projective curve with the same O functor. Okay, so 

you shouldn't think of the function field because function field will be trivial. 

 

 But if you look at patches, then these patches are isomorphic to CK, those in CK. And in 

the patch, you have actually an isomorphism of functions. Okay, so this is an honest 

realization of the abstract curve. 

 

 And hence, you have made... any curve x that you started with, you come to Ck and from 

there you go to this. So, each of the things that we defined these complicated things they 

were actually necessary. For a general curve, because of singularity you need to look at 

abstract curves. So, all these DVRs and all these DVRs you resolve them into smooth 

projective curves and then you take their Segre product. So, this is I think completely and 

this is I think practically infeasible because you multiply every time. 



 

  

So, even if it is finite ultimately the projective space you get is huge. So, you do not want 

to do this in practice. This is just for proving theorems. So, ultimately the zeta function 

the Riemann hypothesis that will prove  It will be true for any curve because any curve is 

actually a smooth curve. And we'll prove Riemann hypothesis for smooth curves. 


