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Analysis of Rounding

And now once again there are two questions. What is the thing which I want to ensure?

So, I should get a set cover, my set should my solution should be feasible and the set

cover should have small size, right. Simply put for my ILP, do I have feasibility, do I

have nice objective value. This is what I want to figure out. So, which one do you think

is going to be easy? How about for 2? Ok. So, this was a trick question both of them are

going to be hard.

So, I win all the money, both of you, all of you lose, ok. What I mean to say is again

both of them are not very difficult, both of them are not very easy. There is going to be

error or error in probability. There is going to be probability mass when this is going to

be a problem, there is going to be a probability mass when this is going to be a problem.

But those error probabilities are small in both the cases, right. Then by what bound can

I say that I am done. If this also has a small probability of happening, this also has a

small probability of happening. I can say none of this occurs with very good union

bound and people have taken probability course with me should know this, right. So

with union bound I can say that none of this will happen.

If this happens with probability 1 by 100, this happens with probability 1 by 100, then

none of this happens with probability 1 minus 2 by 100. Correct? Is this hard to believe?

This is fine right. So, in this case I am not using anything. Are they independent? Are



they whatever? The worst case is this can happen plus this can happen. I can remove all

those bad cases and still I am good.

What I am going to do is show the two and then I assume you are convinced that it is

fine with the entire case, ok. So let us start with 1, ok. What is the probability that U is

not covered? Some element U in U is not covered, right. So, U is not covered if none of

the sets which cover U are picked. What is the probability that x i is not picked? 1 minus

x i.

What is the probability that none of the set is covered? Multiplication of that again

because we are doing this experiment independently. And this almost looks like what I

have a rose. Remember the condition was summation x i was more than 1. I should keep

a marker here. Let me, you remember the LP.

Correct? Agreed? So, now this and this look almost the same except this is a product

and this is a multiplication. Any ideas have you seen these bounds where I can convert

this into something so that AMGM will not help much. You know that 1 minus x i is log

or exponential. So when you do this you realize that this probability is going to be less

than 1 by e. Did I get it? e to the minus 1 I assume.

This is because you will get e to the power minus summation x i. And I know that

summation x i is 1, ok, right. How do you prove this? Taylor expansion. Or as Soham

says do not say it once you go to a university or a company to work by graph. All your

theory teachers will be crying here.

You say such things. That is why I said theory teachers will be crying. Systems people

will be happy. But ok, so you got 1 by e. But then now suppose one element is not

covered, other element is not covered, right.



What is the probability? Now if I want to put a bound that all elements are covered.

The best I can get is 1 minus size of u. Correct? Again this is right. So the probability

that one element is not covered is 1 by e. What is the probability that there is at least one

element which is not covered? The bound I can, I do not know what is the exact thing,

but the bound I can give is only u times e to the minus 1.

That means my success probability is going to be this. This is bad. I cannot hope if I

have to solve set cover instances which have only two elements, things would not be that

interesting. So what should we do? Very nice, very nice. What I can do is I can repeat.

Since there is high probability that I do not get a set cover, I keep repeating my

experiment. I pick with probability x i, once more do this, once more do this. What you

can show is, t three times probability that u, a particular element is not picked is right. It

is less than e to the minus t. Every iteration is independent.



You fail with e to the minus 1, e to the minus 1, e to the minus 1, you will fail with e to

the minus t, agreed? Now, what you want to make sure is that this is around 1 by 100.

Sorry. This error probability is size of u multiplied by e to the power minus t and you

want it to be really small. This is the first case there. What t should I pick? Very good.

So I will pick the nicely probably 100 times log u, I do not know whatever or log 100

times log u or whatever and then this goes like 1 by 100. This probability is very small

that I do not get a set cover. And now comes the second part. I want to show, so what is

the error when u is not picked in all the t iterations. In the first experiment you fail with

probability 1 by e, second 1 by, last 1 by, what is the probability you fail in? Yes, so

what is the probability that I fail in all the t? It is e to the minus t because they are done

independently.

Oh, you can assume that you put multi sets in the objective value where I will do, you

can even assume that your set cover. If now what can his question is which is an

obvious question, what happens if I get two successes right for a set? Do I keep it once,

do I keep it twice? Like in your actual algorithm you will keep it once but the way I will

analyze the cost I will assume you keep it twice. Still my factor would be close. Now, I

want to analyze what size I am getting for this set cover. What I want to show is with

high probability my set cover has small size right.

But my size is not a value it is a random variable agreed. So when you have a random

variable you study its expected value. So the question is what is the expected size of my

I am calling it a set cover it need not be a set cover or I should say what is the expected

size of my algorithm output. Sounds good. So, let us not worry about t times repetition.



If I just repeat it once what would be my expected size or summation Wi xi if you are

taking the weighted version. So I will just call it the value of the LP right. So, expected

size with just one repetition is equal to value of LP is this clear. This is summation x, ok.

This is by definition the expected size everyone is clear about this right.

The expected size this is the expected size this is the probability with which you are

picking the set 1. So probability times the value this is the expected size. And now if I

make t repetitions of the algorithm this will become t times value of LP. I see that many

people have taken course of probability with me, ok. So if you say linearity of

expectation and you smile that means you have taken probability course with me right.

Because I think this is one of the most fundamental results in probability theory. Just to

explain this what has happened here. Let us say S1 is your variable which tells you what

is your output of the first repetition for all the n values right, ok. I need new variables. I

have called S t with t repetitions I will just call it x 1, x 2, x 3 right.



So good since you mentioned this what is going to happen is going to come out like this

right. So what do I know? What is S t? But not just that actually what will happen is

less than equal to because this is the point which Dev pointed out. It might happen that

I have already picked the set. So second time when I when I toss a coin it comes out to

be head I will say oh I already have the set. But this is definitely an upper bound.

And value of these are all copies of random variable x, good. So now what I know is

that my expected value is less than t times value of LP. What was my t? What did I want

to show? What was the definition of approximation? Whatever I the true value the value

of ILP or the true set.  Why is this true?  It is a minimization problem.  We have 



increased the feasibility set, ok.

Good we have got an approximate algorithm. No exactly right. So what we have

shown is that the in expectation we will get a high enough value. But that is not

sufficient. Remember our notion our end goal was different.

Actually to be fair there are two kinds of end goals when you talk about randomized

algorithm,ok. One is called the Las Vegas notion and one is known as the Monte Carlo,

ok. I am not saying which one is better which one is worse. But in one case we just say

that in expectation our solution will be nice, ok. If I want the value to be 20 my value

will be less than 20 in expectation.

And people are happy this is one notion of happiness. Another notion of happiness

slightly more complicated. It says at least with 2 by 3 probability I should get at least

more than 20. And we started with that end goal.

Remember that is what we talked about. So if my end goal is the Monte Carlo version

right. This is succeed in expectation right. Says with high probability we succeed right.

We want to convert it. So do you know what tool do we use to do this? What how will

you apply Chernoff here? What is Chernoff bound? You need some independent.

You do not have to go into the complicated notion here. You do not have to worry

about Chernoff. Even the Markov will work here. How many people know what

Markov inequality is? ok. So I will remind you if you do not you should know it.

Especially if you have taken a probability course.

And this is made tailor made for such kind of a thing. Our point what is Markov

inequality used for? So suppose my expectation is close to what I want. Can I say that

with high probability I will get that value. This is what Markov inequality is for. It says

if I have a positive random variable this is important.

Sorry I should not say expectation. Probability that X is greater than, ok. So now you

must seems like something and the proof of this is ultra easy. You just write down the

expectation. Remember expectation is kind of collecting mass. And this will say that the

mass over aEx is enough to give already give me the expectation.



There is no negative mass because my X is greater than equal to 0. So it will be a

contradiction. If I assume that my probability is higher than 1 by A then just this part

will give me X more than E of X. What about the rest? And as very nicely put many a

times this is not enough this is weak. But then if we have nicer conditions or random

variables then we can prove stronger bounds like Chernoff, ok.

We have Chebyshev inequality, Chernoff bound all that. If our random variables are very

well. Good. So now what can we say now? We have this inequality.

We can say the probability sorry. Log U times, right. So my expectation is order of log

U times value of LP. C. Sorry. So ok a this is the a correct.



Am I confusing this is fine right? This is less than,ok. And now comes the power of U

notation, right, sorry. Confusion right? So I can just absorb this constant in this order of

notation. So this was all the analysis. Yes? So your expectation is bigger than is smaller

than this right? What do we know? So your expectation is smaller than this right? So

what you know is that probability Algo greater than. This is just good this is the thing

which I always get confused in what direction, but this is in the right direction.

What do I know? I know that this is let us say 100. Now if I put a bigger number this

probability has to decrease right? So this definitely implies right. So this is saying

probability greater than 100. This is saying probability greater than 200. Now

probability greater than 200 is clearly greater than probability.



So let me just write it if this is confusing. Thank you. That is just because this quantity

is smaller than this right? So I will give a graphical proof of this right? This is A e x this

is order log U whatever A times order log U. So this sum is going to be this. This was a

major result in our premier conference. So I do not think we have a constant sized thing.

So you will start with you know square root of U or something or any approximation

algorithm.

So log U is much better than anything. So you give me an algorithm in log U. So this

was like a major result after a long time people could give an approximation factor of log

U right? But U is a parameter in the algorithm right? Is it de-randomized? I can take a

look you can ask on hello and I can take a look and tell you what is the current node. So

what I am trying to do. So this is good you have raised this point. So the technique

seems very simple right? The analysis seems kind of loose and that is the power of

relaxation in rounding.

That very simple clear idea gives you something which nobody knew before. So a nice

clean technique which gives you a great result. And same thing you will see with SDP.

With semi definite programs you will relax and round and will get this approximation

factor of 0.85 which people did not dream of. And now with other evidence we kind of

believe that that is the tightest possible. So the technique is once I have told you the

technique it is very crisp. But to come up with this technique it took people 50s of years.

So that is the point. So the Math is not hard. The idea is not complicated. But still you

get lot of reward for it. And that is why I was so excited to say relaxation in rounding.

This has been like there are so many results if you look at my PhD career and now like

last 20 years.



So many results on this relaxation rounding. And you get like there are actually there

was a result which said for a host of problems that the best thing is to take the natural

SDP, natural relaxed SDP and round it in a natural way. For combinatorial particular

max cut kind of problems for any of those the best solution is take the SDP, take the

relaxation rounding. This will give you the best algorithm under some assumption which

is close to P not equal to NP.

Not exactly P not equal to NP. It is called unique games conjecture. I am going off

topic. But yeah so this technique again looks simple but is very very strong. Lot of lot of

work has been done on it. So all this analysis seems like array yeah yeah yeah follows

follows follows.

In one class I could cover this. But 50 years of work did not produce this result. So that

is the beauty of these ideas, ok. Good. So where was I? Yeah we got we get that with A

equal to 100 probability that my algo gives this value  is less than 1 by 100 right.




