
Linear Programming and its Applications to Computer Science

Prof. Rajat Mittal

Department of Computer Science and Engineering

Indian Institute Of Technology, Kanpur

Lecture – 45

Rounding for Set Cover

Is giving an approximate solution right, what does this mean? Right. So, suppose I have

algorithm value correct and I have the optimal of ILP, this is the actual value which we

wanted, but we cannot hope for this, but you want to make sure that our algorithm value

is not too far, too far in which direction not too large, it is a minimization problem that is

what I want to emphasize here right. Since, it is a see you cannot get a smaller value, I

am not talking about the LP value, LP value will be large, LP value will be smaller, but

the final solution, final discrete solution which your algorithm will give cannot be

smaller than the optimal. So, what you want is that your algorithm is not bigger than C

times the optimal right. Now, C could be a constant, it could be a function of N or let us

say M or something, but we want to optimize this. A better approximation algorithm is

where the C is smaller, make sense and even the now for a complexity theory scientist

even this is a game when you can show that for any constant C this problem is still NP

hard.

Even that is this is called inapproximability, study of inapproximability people have got

a Godel price and many things on this. So, not just that your exact problem is hard, but

even showing that approximating up to some factor is still very hard right. That is still a

big, big open if you work in complexity theory you might get into that is called

inapproximability. So, approximately approximation algorithms inapproximability.

So, now this is our target for some nice that is what we want to, but now there is a small

nugget here which is that our algorithm is going to be randomized algorithm. And

thankfully we have seen randomized model in communication complexity. So, if you

remember randomization random randomness can come from in your randomness

randomized algorithm randomness come from two sources. One is you toss coin in the

algorithm and second the randomness is because of the input. Remember we talked about

this Yao's minmax lemma we said worst case complexity average case complexity in case

of average case average was over inputs right.

And I talked about the fact that mostly we care only about the worst case. That means

the randomness which pertains to us which we will care about is because of the coin

tosses in the algorithm. What it means is for every input whatever instance of set cover

you pick my algorithm should work with high probability. So, this is the goal. This is

important for all instances there is no randomness on the inputs for all instances this high

probability is over coin tosses in algorithm.

What does it mean work? What is the definition of work for us? Right, but now in our

case this is the definition for work right. For a general randomized algorithm it might be

saying give the exact answer. But now our definition of work is this right. So, we want

our algorithm to give the nice approximate solution most of the time for most of the coin

tosses this is our goal. So, now what we want to do is very clear we have a set cover

problem nice problem can capture many of the instances.

Can we make sure can we give an algorithm which solves this problem with the which

has an approximation factor small approximation factor and works with high probability.

And this we do not play around with high probability we say probability is let us say 2

by 3 or something because going from constant to constant is just constant factor. So, we

do not care about it. So, this high probability we can say greater than 2 by 3 or you can

pick your favorite constant here which is bigger than half. So, you would not worry about

that if this point is not clear I can convince you about this after the class we did the same

thing in the communication protocols also right.

Great so the task is clear. Now forget about all this let us focus on this. This is what we

have this is the LP for set cover and we know that we have algorithms to solve this

efficiently ellipsoid interior point we would not worry about how we solve it we have

those solutions and finally, we will get a solution in polynomial time. So, for every U

there should be at least one set which is covering it this is exactly what this is saying look

at all the sets which cover U they should this their sum should be more than 1. That

means at least whatever cover you have choose whatever set you sets you have chosen

one of the set should be over U otherwise this thing will be 0 right.

So, now for us the question is this LP close to the integer linear program on set cover.

So, can you think of an example when these two values are not equal the concept of you

should read about what uni modular matrices are I am not saying if the constraint

matrices are integers then the vertices are integers I did not say that. No uni modular is

not just saying that the entries are integer no no no that would have been great you would

have gotten a million dollars you would not for at least for that idea. So, it is you can if

you want you can read about it, but this is definitely this is not going to happen. So, my

question is now can you create a simple example of set cover where your fractional

solution right the solution here is going to be a fractional solution.

What problems should you choose so that the fractional solution is better than the actual

integer solution.

It is not hard, sorry I am not even asking you described in general right just give me a

simple example small example what is 1 2 2 3 3 1 good. This is set cover instance what

is the value of ILP I can assign half to each of these and then suddenly my value is

smaller right. So, this is not like min cut this could be away from this solution right good.

So, then what this means is when I solve this linear program it will happen many a times

that my values will be fractions it would not be integers and now I want to convert them

into integers right. So, what is my strategy I do not know whether it works or not, but my

strategy is convert ILP into LP but the good thing is even though these are three steps we

have already done this we have talked about.

So, done so this was relaxation what we want to do now is rounding correct. So, now,

suppose someone gives you this 3 by 2, 3 by 2 what to do sorry 1 by 2, 1 by 2 value on

these three sets how do we decide which sets to keep which sets not to keep in my

rounded solution how do we round generally fractions right. So, that the trivial rounding

in this case would be. So, this is the value of my LP right and my integer solution call it

small s i is equal to 1 this is the ILP solution this is how I can convert LP solution to ILP

solution there is one good thing about this solution. So, remember what do we want to do

we want to make sure that what we get is a set cover and second thing is that the value of

my solution is not far away from my LP solution.

So, now, if you convert it like this the good thing is one of these things is satisfied

which is it is not far it cannot most be twice what about the other quantity might simply

be empty right what about some other threshold t probably half is not good why right.

So, suppose I have M elements take all possible M choose 3 subsets of size 3 correct I

will need only M by M by 3 or something right, but what I can do is I can assign every

set 1 by M choose 2 and then as I increase M this becomes smaller than any threshold

and when you round you will not get any solution at all make sense this example again

the set cover instance is clear take M size M size universe take all possible 3 size subsets

there are M choose 3 many subsets I am giving you a solution which has value higher

than M which is just assign everything 1 by M choose 2 sorry the value is lower than M.

So, it is better than optimal, but if you are given this solution your threshold your this

rounding scheme will be very bad on it will not pick any set given a threshold I can pick

an M. So, that this instance becomes really bad for this rounding when I describe this

problem I also described approximation algorithm and. So, there is a reason for that

means we should yes we should introduce randomness.

So, this is another kind of a technique to another thing to learn I told you when you look

at a problem try to see if you can convert into linear program if you are creating an

algorithm you cannot try to introduce randomness. Now, there are courses offered in this

building whether this randomness is actually necessary or not if you want to learn that

you have to sit on those courses not in this, but at least what we have seen is that this

allows us to make simple nice algorithms for sure. So, this is this introducing

randomness is kind of powerful technique to create nice algorithms and this is the thing

which will help us here too. So, notice xi in some sense if it was 0 or 1 it was an

indicator if it is not 0 or 1 it is telling me somehow how strongly I believe that i is in set

cover sorry i should be included or not right this is the intuitive feeling from the linear

program. So, what could be the natural rounding take it with probability exactly right.

So, my rounding algorithm is take set i with probability xi no independently every set i

keep it in with probability xi, I do not keep it in with probability 1 minus xi. So, in a

randomized algorithm in a randomized trial I might not get any set at all that is also a

possibility, but I do not worry about it because chances of that happening is very small

right. So, this is a very good point there could have been two ways if I wanted to pick just

one set out of all of them then as you said I would have normalized xi summation xi

equal to 1 and then pick the set with the xi probability, but I am not going to do this here

what I want to do is pick multiple sets.

