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Max Flow = Min Cut

So, now we have LP for max flow, we have ILP for min cut. And we have an LP for

min cut, we know this, just because the feasible region has expanded. And if you want to

relate these problems, because this is the actual solid min cut solution. If you want to

relate these problems, we want to say how are these two related. And how approximately

equal are these two quantities right. And what I am saying is that this ILP to LP

conversion is very generic, we always ask that question.

But first let us look at the easy thing, the thing which is actually easy is to show that this

is equal right. And this is your intuition, these programs are going to be dual of each

other. Not a surprise now, almost most of you might have guessed it, I do not have time

for it, I wanted to make you convert this program into this program as a dual. So, what I

will do is probably sneak this into an end sem or a quiz.



So, make sure you know how to take this, convert this and get this exactly. This is

another conversion, generic another conversion where lot of constraints create variables

and you can already see right. When you look here right, there will be variables for

vertices PUs, there will be variables for right. And you can simplify lot of things here

right. For example, what can you say about duv, do I want to constrain it between 0 and

1 or I can say something more.

Do I need to enforce the constraint duv less than equal to 1, why? So, we already have

enforced that duv is bigger than Pu minus Pv, it is a minimization problem. So, it will

always be it will never be bigger than like bigger than Pu minus Pv right. So, that means

if this is less than 1, this will automatically be less than 1. So, actually I can do not need

to enforce this constraint, this will automatically be enforced. Now, with these things in

mind you can actually check things work out very nicely.

There is just a single variable here fuv, there is only 1 constraint here. This is a

constraint for another edge right. So, things match up you see that things match up right.

Whatever variables I wanted same appear here, whatever constraints I wanted the

numbers. Those are exactly the constraint, they are exactly the constraint which few with

few simplifications.

So, that you should be able to make and if you do not learn it then you lose marks in

either a quiz or a answer. So, make sure that you can take the dual of this. If you cannot

post it on hello have a discussion, but make sure that this dual you can take. And this is

generally easy part, ok. Looking at two problems people guess oh yeah these seems like 



dual of each other.

And then you write a linear program for one, write a linear program for another they

match up. It might be hard for you, because you are not taking enough duals, but it is a

easy part in general. So, this is fine. Most of the time the difficult part is this. How to

relate these two quantities? We are going to relate this now and we are going to see this

is actually easy in this case.

For Min-cut ILP = LP. So, let me prove this. Once I prove this then we will see the

consequence of it. But once again a very simple property will be very helpful. What is

generally easy for primal and dual? Weak duality, right. So, what does weak duality tell

us? Even if we did not know anything about this, it tells us that max flow is less than min

cut, right.

This is a proof of a very intuitive thing, right. You kind of can say that if you look at the

graph, you look at the cut, the water has to flow has to pass through that cut at some

point of time, right. I am not giving mathematical proof. The mathematical proof is here.

But intuitively you can prove it mathematically also in different ways, but it is a very

nice intuitive statement, right.

If you have a min cut, you cannot push more flow than the value of min cut. In some

sense it has to pass through it at some point of time, right. So, then that means max flow

is less than min cut. This just follows from weak duality. Simple nice proof of that.

What we will prove is that this is actually equal. The best flow is equal to the smallest

cut. So, min cut is obviously a constraint, but in some sense that is the only thing which

constraints you from putting more and more flow. Once again strong duality part is the

interesting part. It is the more surprising part.

Weak duality comes out intuitively. Even the equality proof is kind of nice. We are

going to look at complementary slackness conditions using the best solution for max

flow and the complementary slackness conditions. We will consider a we will form an

integer  min cut solution,.



So, this is the idea. Using optimal max flow, construct integer cut. Integer cut means

either one or zero. We are not assigning a wave a vertex. It is not saying that the value of

the cut is integer. It is saying either the vertex given to the cut or not given to the cut.

I cannot give 0.5 of the vertex to the cut. So, construct integer cut satisfying

complementary slackness. Then this integer cut and this max flow since they satisfy

complementary slackness they are feasible. That means they are both optimal. That

means even the LP has an optimal integer solution.

That means these two are equal, right. You should be very clear about the relationship

of these two. What is happening is we are saying that this has much bigger feasible

region as compared to this. So, when you want to relate them you want to say either that

the optimal here also is a solution here or we want to say that if you take any optimal

here you can modify it a bit make it a solution here and remain close to the objective

value. In this case we are going to show that there is an optimal solution here which is

actually a solution here.



Let us write down the complementary slackness condition. Again by star I mean the

optimal solution, ok. If this is 0 then the corresponding constraint should be tight. The

corresponding constraint was correct. Or equivalently these are equal probably this was

a better way to write.

So, this has to be 1 because we assume the flow from S to T has to be positive. Just

give me a second, right. So, one thing which I did not mention probably I should have

mentioned when you take the dual you might get stuck there. Remember this was our

flow conservation constraint. If this is the constraint what is the equivalent variable?

What is the variable for this? P V.

If this is equality, P V will turn out to be unconstrained. My claim is in my linear

program for max flow I can replace this by less than equal to. Can you tell me why? So,

you remember this is the constraint for all vertices in the max flow. I am saying I can

remove equal and I can just say less than equal. It will still be the same linear program.

You have the intuition. So, just to make your intuition precise if at every vertex the flow

if incoming flow is less than outgoing flow and the overall flow has to be conserved then

everything has to be equal. And if you want to mathematically prove it you sum up this

side you sum up this side you get the same quantities they are equal. If the sum of these

quantities is equal then everywhere there should have been an equality, ok. Actually

when you take the dual in the flow conservation constraint will have less than equal to.

That is why I am writing this condition.



But this is useless for us because we know this will automatically hold true, correct. So,

this will always be true. So, this does not give you a solution, clear. So, once again what

we are going to do is construct a Pu star, P v star given f u v star so that it satisfies

complementary slackness condition. This is done through what we call a residual graph.

And this probably this idea was also introduced to you. What we say is that and this

kind of emerges clearly if you want to look at a flow and you want to maximize the flow.

You push the flow if you can still find a path where you can push more flow, right. Then

the flow is not optimal. So, what do I do? I keep the edges. Oh sorry. If this is the case

then that means I can push more flow through the edges.

So, I will keep them as edges u v. If I find the path of such edges clearly my flow is not

optimal. Remember this residual graph is defined with the flow in mind. Once I have a

flow I define the residual graph to improve that flow.

This is one. This is another thing. It could also be that I am going the opposite way with

some positive thing. So, if f u v is strictly greater than 0 then I include v1u what do I

know? Then can I improve the flow, right. If there is a path in residual graph then f u v

is not optimal, ok. Other way to say this if f star uv is optimal implies, what is does

implies? Other ways st are disconnected in residual graph, correct. What does this mean?

This is specifying a cut.

This is what you wanted to do. Given an optimal flow you want to construct a cut. This

gives us the cut. What do you want to check? It is an integer cut which is by definition.

We are taking a cut and we are saying whatever is in the cut assign it 1. Whatever is the

edge going from s to s bar assign it 1.



Everything else 0. But to show that it is optimal you want to make sure. That is much

harder. What is the easier? What have been whatever I have been trying to do?

Complementary slackness. I am going to tell you that this required cut satisfies

complementary slackness condition.

This is what you wanted to do. This was the idea. Using optimal flow construct integer

cut satisfying complementary slackness. What is the cut? You take the optimal flow look

at the residual graph. The residual graph has to be disconnected. It specifies a cut the set

of vertices which are connected by s.

I just need to show that it is a it is satisfies complementary slackness condition. What is

the easiest condition to satisfy? By definition since s and t are in the different 1 p s will

be 1, p s star will be 1 and p t star will be 0. What about this? If d star u v is greater than

equal to 0 that means in the residual graph there is no edge between u and v. That means

f u v must have been equal to zero. This implies it also implies f u v is equal to 0, but we

do not care about it.

This also implies another thing it implies f u v if f u v was more than 0 then also I will

get this edge, but I do not care about that condition. I only care about this, ok. Then now

this condition this I gave it as an exercise. The thing to remember here is I can give you

the idea.

Now if I want to show that this is verified, right. This means I want to show that if this

is true this should definitely be true, right. This is Boolean logic a implies b is always

correct except  if A is true and B is false, correct? That is the only problem there. Now 



look at this quantity. This will all whenever u and v were very nice if s was in if u was in

s and v was in s bar this will be 1, I will take it in the cut, fine.

If both of them were in s this is by definition of this thing. This will only be false

irrespective of this condition this will only be false when this is in s bar and this is in s,

ok. So, this is something which we have seen multiple times initially when we construct

the linear program we said we can put greater than equal to for this case. But for this

case again you can use the property of residual graph to show that in this case if this was

the case then this would have been false because the property of residual graph.

Sorry, this should be greater than 0, and. This is complementary like this condition,

good. So this proof you can do on your own, right. I have almost shown you everything

last part also similar argument like this. So, again you might have seen this in algorithm

course in different worlds. But what I am saying is by writing a problem in the form of

linear programs it already gives us lot of information.



For example, directly we got, this came from weak duality, correct? Is equal to min cut,

ok, right. Another very interesting thing we get is if all capacities are integers implies,

righ, because if all capacities are integer then min cut is definitely going to be integer

and this is not easy. This seems intuitive, but this is not easy from this we even get this.

And notice here nowhere have we solved an LP yet. All these properties are just because

of the structural properties of linear program.

This is something which I am highlighting from the beginning I am saying do not

always think of LP as oh I can solve it efficiently that is one part of it. Most of the

applications derive from the fact that LP has this nice structure. We know a lot about its

feasible region. We know a lot about duality that gives us lot many interesting

properties.

Solving it is I think a probably a very small part of it,ok. And now so this is one, but

actually for this one we will actually see a solution. So, obviously you can solve it using

lipside rather than everything. But in this case there is a nice solution which is called the

Primal dual approach of solving a linear program. It works in some LPs we will see how

this is done. And this will give us a known algorithm probably you have seen that

algorithm in some other language we will write it in the linear programming language

for the next class, ok. See you in the next class.  Thank you.  .




