Foundation of Cloud lot Edge ML
Professor Rajiv Misra
Department of Computer Science and Engineering
Indian Institute of Technology, Patna
Lecture 04
Time and Clock Synchronization in 10T

(Refer Slide Time: 0:26)

Content of this Lecture:

* In this lecture, we will discuss the fundamentals of clock
synchronization in loT and its different algorithms.

* To understand how clocks operate on loT devices and how
they can be synchronized in an accurate and efficient
fashion.

Time and Clock Synchronization

Content of this Lecture:

* Internet of Things (loT) devices that are wirelessly
connected in mesh networks often need mutual clock time
synchronization, to enable chronological ordering of sensor
eventsmation of asynchronous processes across
devices, or network-wide coordination of actuators. _~

» We will also discuss the causality and a general framework
of logical clocks and present two systems of logical time,
namely, lamport and vector, timestamps fo capture
causality between distributed events of an Internet of things

as a distributed system.

Time and Clock Synchronization

| am Dr. Rajeev Mishra IIT, Patna. So, today’s lecture is on time and clock synchronization
in the internet of things. So, the content of this lecture is that we will discuss the
fundamentals of clock synchronization and the need in 10T and the different clock
synchronization algorithms. To understand how the clocks operate in the IoT devices and
how they are synchronized in an accurate and efficient manner is the main objective of this

particular lecture.

So, the content of this lecture is the motivation in the following way. So, the internet of things
devices are wirelessly connected forming a mesh networks often need for the mutual clock
time synchronization to enable chronological ordering of sensor events, coordination of
asynchronous processes across the devices or network wide coordination of actuators. So, this
is very much essential, why because you know that the sensors are the devices which are

deployed whether it is a smart city scenario or it is an industrial manufacturing unit.

So, these sensor networks or these sensors together will form a network and each particular
sensor device is having the timestamp with the event when this particular data is now send.
So, therefore there is a need of clock synchronization. In order to find out the chronological
ordering of the sensor events that data which sensor send should have the timestamp to have
the correct timestamp all the clocks need to be synchronized to find out the ordering of sensor
events coordination of asynchronous processes across the devices and network wide

coordination.

So, again | am summarizing the content or the motivation of this lecture is that internet of
things devices which are often deployed and form a connected wireless network or you can
also say it is a network of 10T devices. Now, these 10T devices require to send the data with a
timestamp. Therefore, the clocks are running in these 10T nodes or the devices and often to
have this correct ordering of the events of the sensor data they require to have the mutual

clock synchronization at all points of time.

Now, this coordination of asynchronous processes also sometimes requires the clock to be
synchronized in these loT devices. And also the network wide coordination of actuators also
sometimes requires the clock to be synchronized at the actuators. So, this particular need in
loT system which is a system of clocks running around IoT devices needs a clock

synchronization in a distributed system of internet of things network.

So, here in this lecture we will discuss also other than the physical clock synchronization we
will also consider that 10T devices may form a distributed system and therefore the logical
clock synchronization principles also very much essential in the 10T network. So, we will
consider the logical clock synchronization. And in that context we will talk about the lamport
clocks, vector clocks and these particular clocks will give a timestamp to capture the
causality between the distributed events which is captured by the internet of thing as the

distributed systems.

(Refer Slide Time: 4:22)

Need of Synchronization

Synchronizing clocks on Internet of Things (loT) devices is
important for applications such as monitoring and real time
control.

You want to catch a bus at 9.05 am, but your watch is off by 15
minutes

What if your watch is Late by 15 minutes?
* You'll miss the bus!
What if your watch is Fast by 15 minutes?

* You'll end up unfairly waiting for a longer time than you
intended

Time and Clock Synchronization

So, let us see the need for clock synchronization. So, synchronizing the clocks in the internet
of things devices is important for the application such as monitoring and real time control.
So, to understand the concept of the synchronization, you can see an example to make it
understand the need of clock synchronization in the internet of things scenario as well from

our life like examples.

So, you may want to catch a bus at let us say 9:05 am but your watch is off by 15 minutes. So
what if your watch is late by 15 minutes, then you will miss the bus what if your watch is fast
by 15 minutes then you will end up unfairly waiting for a longer time than you intended.
Therefore, if your clock is not synchronized, one of these two events may happen either you
are too late and you will miss the event that is to catch the bus or if let us say your clock is

fast then it will be unfair that, that event is waiting for a longer time to get executed.

(Refer Slide Time: 5:36)

Time and Synchronization

« Time and Synchronization

(“There's is never enough time...")

o Distributed Time

. The notion of time is well defined (and measurable) at
each single location

. But the relationship between time at different locations
is unclear

. Time Synchronization is required for:
, Correctness

., Fairness
Time and Clock Synchronization

So, therefore time and synchronization are very much essential. As far as the distributed time

is concerned the notion of time is well ordered at each single location, but the relationship
between the time at different location is not clear. So, therefore, there is a need of time
synchronization which we have seen in the previous slide the example that it requires for the

correctness and it requires for the fairness.

(Refer Slide Time: 6:13)

Synchronizationin an loT

Example: Cloud based airline reservation system:

/

e Server X receives, a client request, to purchase the last ticket on
2 flight, say PQR 123. o

.'~"'Server X timestamps the purchase using its local clock as
6h:2$r{:42.555. It then logs it. Replies ok to the client. /

« Thatwas the very last seat, Server X sends a message to Server Y
saying the “flight is full”.

e \i\)'enters, “Flight PQR 123 is full” + its own local clock value,
(which happens to read 6[\;2’0m:20.215)4

« Server Z, queries X's |,and Y's logs. Is confused that/a client
purchased a ticket at X after the flight became fullat Y. '

« This may lead to full incorrect actions at Z

Time and Clock Synchronization

So, to understand the synchronization in an 10T system we have to now understand the basic

principle of synchronization in a similar environment which is let us say a cloud based

reservation system. So, when you say cloud you mean that a lot of servers are now running

and now there is a need for the synchronization in let us say airline reservation system. So,

server X receives a client request to purchase the last ticket of a flight.

Now, server X timestamp the purchase during the using its local clock let us say 6 hours 25
minutes and locks it and replies okay to the customer that was the last seen the server X sends
a message to the server Y saying that the flight is full. So, Y enters the flight as full and puts
its local clock time as 6 hours 20 minutes because his clock is late. So, therefore 6:20 it will
detect that server Y will detect that the flight is full whereas server X has it is clock is 6:25
when he has booked the ticket.

So, therefore server Z when queries X server X and server Y’s log it is confused that the
client has purchased the ticket at X 6:25 and whereas Y has seen that the flight is full at 6:20
time of the server Y so therefore this is a problem of clock synchronization the server Y’s
clock is slower than the server X’s clock. So, it will not be able to reason why the seat is

incorrectly full showing at Z.
(Refer Slide Time: 8:25)

Key Challenges

« End-hosts in Internet based systems (like clouds)
+ Each have its own clock

« Unlike processors (CPUs) within one server or
workstation which share a system clock.

« Processesin internet based systems follow an
asynchronous model.
» No bounds on
— Messages delays ¥
— Processing delays /
+ Unlike multi-processor (or parallel) systems which follow
a synchronous system model

Time and Clock Synchronization

So, what are the key challenges? Key challenges is that the end host in the internet based

systems like cloud and similar system is there internet of things each have it is own clock and
unlike CPUs, unlike processor within one server or the workstation, which share a system
clock, this becomes a quite challenging in the distributed environment, because all the clocks

are running autonomously and they can only communicate through the messages.

So, the processes in the internet based systems follow an asynchronous model where there is
no bounds on the message delays and also there is no bounds on the processing delays and

unlike multiprocessor or parallel system which follows a synchronous model.

(Refer Slide Time: 9:17)

« An asynchronous distributed system consists of a number of
processes. —

« Each process has a state (values of variables).

« Each process takes actions to change its state, which may be
an instruction or a communication action (send, receive).

« Aneventis the occurrence of an action.

« Each process has a large clock — events within a process can
be assigned timestamps, and thus ordered linearly.

« But-in a loT system, we also need to know the time order
of events across different processes.

Time and Clock Synchronization

So, let us understand some definitions and then we will see the basic algorithms for the clock
synchronization in the distributed system where we are considering the loT also as an
asynchronous distributed system, where each 10T device which is a sensor or an actuator
running its own clock nearby in particular device in an embedded system. So, an

asynchronous distributed system let us say it consists of number of processes.

So, whether it is the system or a process, we can interchangeably be using the same notion,
which may mean the same thing. So, for the sake of simplicity, we will be using the term
processes. So, each process has a state that is number of that is the values of the variable,
each process takes the action to change it is state which may be an instruction or a command

action that is the send or a receive action.

So, event is an occurrence of an action. So, each process has a large clock which is an event
within the process and can be assigned a timestamp and then order linearly in 10T system we

need to know that the time order of events across the process is also in the same manner.

(Refer Slide Time: 10:48)

Space-time diagram

7 7 y
p— imemat/ Message
Message) event —

Process |

dévent

Figure : The space-time diagram of a distributed execution.
Time and Clock Synchronization
So, let us understand using time and space diagram the same concept that this time and space
diagram of a distributed execution. So, here let us say that there are three different processes
you can think of three different 10T devices running these processes, where there is a event
happening within that particular process or an loT system that is el, e2, e3 and so on of a

process 1.

Similarly, for a process 2 or a second internet device is also occurring, various internal events
happening at that particular 10T device that is event 1 at process 2, event 2 at process 2, event

3 at process 2, event 4 at process 2, event 6 at process 2, event 5 at process 2.

Similarly, for process 3 is also shown in this particular manner. So, as we have mentioned in
the previous slide that for a process 1 this event 1 is an internal event whereas, for process 1,
event 2 is the send of a message is an action event, which will send a message to process 2.
So, this event e3 for a process 1 is called internal event and where the two other events which
is shown what here in process 1 that is event 2 as a message send event and a message

receive event.

So, either there are that means the events are the internal events happening within the process
or within the 10T system or it is sending a message or it is receiving a message. So, there are
three different types of events only we are considering to understand this particular time

synchronization or a distributed execution for the sake of simplicity.

(Refer Slide Time: 13:06)

Clock Skew vs. Clock Drift

« Each process (running at some end host) has its own clock/

¢ Whenco ring two clocks at two processes. -
« /Clock Skew = Relative difference in clock values of two
rocesses. T

,,_//'m.d.’s%nce between two vehicles on road.
«(Clock Drift/, Relative difference in clock frequencies (rates)

rocesses

. Alke difference in speeds of two vehicles on the road.
« A non-zero clock skew implies clocks are not synchronized -~
« Anon-zero clock drift causes skew increases (eventually). -

v/ ——
. If faster vehicie is ahead,/jx will drift away.

. If faster vehicle is behind, it will catch up and then drift away.

Time and Clock Synchronization

Now, let us see the concept of a clock skew and clock drift. So, each process which is

running at some end host has it is own clock, let us assume that without loss of generality
now when comparing 2 clocks at 2 processes, then the definition of a clock skew says that the
relative difference in the clock values of the 2 process is called a clock skew. For example, if
one clock is saying 3 o’clock the other clock is saying 3:30. So, that difference of these 2

clock values that is 30 minute is called a clock skew.

Similarly, you can also understand that the distance between two vehicles on the road is
called a skew. Now, other concept is called a clock drift, the relative difference in the clock
frequencies or the rates of the two processes is called the clock drift. Now, you know that
there is a quartz crystal running the clock at different rates or the frequencies. So, that

difference that relative difference of the clock frequencies is called a clock drift.

So, that example is you can also see from the real life example that the difference in the speed
of 2 vehicles on the road is called a clock drift. So, the distance between two vehicles is
called a clock skew and the difference in the speed of the 2 vehicles is called a clock drift. So,
clock skew and clock drift there are two fundamental concepts which we will be using here in

the clock synchronization in the distributed system.

So, non-zero clock skew means that the clocks are not synchronized. For example, if the
clock is giving a time 3 o’clock the same instance the other clock is giving 3:30 that is there
is a clock skew of a non-zero value therefore these clocks are not synchronized. Non-zero

clock drift causes that skew increase eventually.

So, for example if a faster vehicle is ahead it will drift away or if a faster vehicle is behind it
will catch up and then drift away. So, therefore, non-zero clock drift causes the skew
increases eventually. So, these two non-zero clock skew, non-zero clock drift requires

adjustment and that is called a clock synchronization.
(Refer Slide Time: 15:44)

Clock Inaccuracies

e Clocks that must not only be
synchronized with each other but also o 3 !
have to adhere to physical time are . 1 S A
termed physical clocks. s T " ok

o Physical dlocks are synchronized to an i S pa :
accurate real-time standard like UTC ! =
(Universal Coordinated Time).

« However, due to the clock inaccuracy, a
timer (clock) is said to be working within =

its specification if (where constant p is the
maximum skew rate specified by the
manufacturer)

dc

1-ps—<1+p
dt

Time and Clock Synchronization

So, let us see what you mean by the clock inaccuracies. So, clock must not only be the

Figure: The behavior of fast, slow, and
perfect clocks with respect to UTC

synchronized with each other but also have to adhere to the physical time which is termed as
the physical clocks. So, physical clocks are synchronized to an accurate real time standard
called universal coordinated time. So, universal coordinated time is considered to be the

correct time and all the other clocks required to be synchronized with that time.

So, how are due to the clock inaccuracies a timer or a clock is set to be working within the
specification if there is a constant row is the maximum skew rate specified by the
manufacturer. So, with this particular notion and given the universal coordinated time and
also given the specification that is a constant row and maximum skew rate which is specified

by the manufacturer.

So, you can also understand the behavior of a fast, slow and the perfect clock in this
particular example shown in this particular figure. So, on the X axis you have a universal
coordinated time UTC shown on the X axis and the clock time you can see that is capital C
on the Y axis and for the perfect clock this particular rate that is dc by dt should be equal to 1
for a slow clock this dc by dt should be if it is less than 1 and for a first clock dc by dt is

greater than 1. So, these are all aspects are the clock inaccuracies.

(Refer Slide Time: 17:41)

How often to Synchronize

« Maximum Drift rate (MDR) of a clock ./~

« Absolute MDR is defined to relative coordinated universal
Time (UTC). UTC is the correct time at any point of time.

* MDR of any process depends on the environment.

« Maximum drift rate between two clocks with similar MDR
is 2*MDR.

« Given a maximum acceptable skew M between any pair of
clocks, need to synchronize at least once every:
M/ (2* MDR) time units.

* Since time = Distance//Speed.

Now, how to synchronize how often to synchronize the clock. So, the maximum drift rate
MDR of a clock that is MDR is defined to be the relative coordinated universal time UTC is
the correct time at any point of time and maximum drift rate MDR of any process depends
upon the environment. So, the maximum drift rate between 2 clocks with the similar MDR is
2 times MDR.

So, given a maximum acceptable skew M between any 2 pair of the clocks they need to
synchronize at least once every M divided by 2 times MDR time unit since the time is equal

to the distance by speed.

(Refer Slide Time: 18:26)

External vs Internal Synchronization

« Consider a group of processes _/

« External synchronization S Va

. Each process C{i)’s clock is within a bounded D of a well-
known clock S external to the group

. |cli-S|< D atall times. /
« External clock may be connected to UTC (Universal
Coordinated Time) or an atomic clock.

« Example: Christian’yalgorithm, P!T’g
« Internal Synchronization
« Every pajr of processes in group have clocks within bound D'/
° IC(i): C(j) | < D at all times and for all processesi,j. <~
. Example: Berkl/py Algorithm, DTP

Time and Clock Synchronization

So, having understood these concepts, let us see the external versus internal synchronization
methods of clock synchronization let us consider a group of processes in this scenario. So,
external clock synchronization where each process Ci’s clock is within a bounded D of the
well-known clock synchronization let us say S external to the group. So, the process says Ci
is clock Ci minus S that is the external clock if we see the skew that is the difference and if it
is less than D at all points of time which is a bound which is acceptable otherwise this

external clock may be connected to the universal coordinated time or atomic clock.

So, this particular type of synchronization with the external clock or universal coordinated
time is called external synchronization. Two algorithms, well known algorithms is based on
the external synchronization they are called Christian’s algorithm and network time protocol
whereas the internal synchronization is the synchronization among the pair of processes in

the group of processes that is called internal synchronization.

So, every pair of processes in the group have the clocks within the bound D that is given two
clocks within that particular system Ci minus Cj is bounded by D at all points of time for all
processes i and j. So, this is called the internal synchronization where in the above example,
we have seen for the external synchronization that every clock if you find out the skew with
the external clock has to be bounded by D at all points of time that is called external
synchronization. So, internal synchronization algorithms are called Berkeley algorithm and

data center time protocol.

(Refer Slide Time: 20:35)

External vs Internal Synchronization

« External synchronization with D => Internal
synchronization with 2*D.

P 4

« Internal synchronization does not imply External
Synchronization. S

* In fact, the entire system may drift away from the
external clock S!

Time and Clock Synchronization

So, external synchronization if you have achieved with a bound D this means that you have
already achieved the internal synchronization with 2 times D. So, internal synchronization if
you have done that does not imply the external synchronization is mat. So, in fact the entire

system may drift away from the external clock S that means that.

(Refer Slide Time: 20:59)

Basic Fundamentals
« External time synchronization -

k7, . Vv
» All processes P synchronize with a time server S.

. J
pv Setclocktot Time
. . T

-~ v J
. | -
Whattg, e time? Her% timet
s]

- ¥ —> AL
Check local clock 1o find time t

« What's Wrong:
« Bythe time the message has received at P, time has moved on

« P'stime settotisin accurate,

. Inaccuracy a function of message latencies e
« Since latencies unbounded in an asynchronous system, the inaccuracy

cannot be bounded. v/
Time and Clock Synchronization

Let us have understood the basic fundamentals of external time synchronization let us say
that all the processes P will synchronize their clock with a time server S which is a universal
time. So, how that is, how that is all done we are going to understand using this particular
diagram. So, a process P want to synchronize it is clock with a times server S what it will do,

it will ask with a server S through a message what is the time at your clock server.

So, the server after receiving this message check the local clock to find the time t and it will
send its time t back by a message and when the message is received the process P will set its
time to t and this is way this way the process P has synchronize it is clock with the external

clock but what is the wrong in this entire process.

So, you can see that by the time the message has received at P from S the time of S has
moved on. So, this particular time when the clock, when P is synchronizing its clock that time
of S has already moved from t to let us say some little delta t time so it is not same. So, this is
inaccurate. So, inaccuracy here is a function of message delays. So, this particular message
delay that is the time when it takes to reach the message that is called the message delay or a

message latency is the error here in this particular external synchronization.

Now, these latencies are unbounded in asynchronous system means that when the message
will be delivered that is not known in an asynchronous system the inaccuracy is also

unbounded in the asynchronous situation.

(Refer Slide Time: 23:07)

(|) Chrlstlans Algoruthm

= P measures the round- tn;}t:me RTT of message exchange
« Suppose we know the minimum P = S latency minl

« And the minimum S = P Iatency min2

— -~ ~”’
> Minl and Min2 depengds on the OS overhead to buffer messages, TCP
time to queue mesdages, etc

7

« The actual time at P when it receives response is between
[t+mm2 t+RTT- mml] T 4 7

AL \?
RTT : e 2
. o ?/
f, :) Set clock to t Time
What‘sthe
/gg,;thetlmet'
t‘\“f Ty | P
Check Iocalclod(to f nd time t

Time and Clock Synchronization

(i) Chrlstlans Algonthm

« P measures the round- trup-ume RTT of message exchange

« Suppose we know the minimum P - S latency minl

e Andthe mummum S = P latency min2

> Miniand MmZ depengs on the OS overhead to buffer messages TCcP
time to queue mesddges, etc

e The actual time at P when it receives response is between

; il -~
[t+#min2, t + RTT-min1] (pawey AR
RTT I
A >/ Time
P f V" Setclocktot

What’s the'time?
Here’s the time t!

L~ Ny
Check local clock to find time t
Time and Clock Synchronization

Christians Algorithm

« The actual time at P when it receives response is between
[t+min2, t + RTT-minl]
« P setsits time to halfway through this interval
. To:t+ (RTT+min2-min1)/2

e Erroris at most (RTT- min2- min1)/2

« Bounded / Gev_ - wota)
RTT = >
p r \ Setclocktot Time
What's thetyme?
PSR, Hgre’s the time t!

S

Check local clock to find time t
Time and Clock Synchronization

Let us see the Christian’s algorithm how it does this external synchronization algorithm. So,
here the P now measures the round trip time of the message exchange, round trip time means
that when the P has send a message it will note down it is time and let us say at time t of the
clock S it received the message and then it will send the message let us say at time t 2 back

and it has received the message let us say tpl tp2.

So, tp2 minus tpl becomes the round trip time the time when it takes to send to S and S gives
back the reply this is called round trip time. So, let us see that P measures the round trip time
of the message exchange. So, measuring the round trip time is by sending several message
and noting down RTT and finding the average of it this is how the Christian algorithm does

suppose we know that minimum of P to S latency is let us say minimum 1.

So, this is S to P latency, P to S latency similarly and the minimum from S to P this latency
let us say it is minimum 2. So, minimum 1 and minimum 2 latencies they depends upon the
operating system overhead also to buffer the messages and TCP also time to give the message
and so on. So, the actual time at P when it receives the response is between T plus T is the
time here. So, let us understand this. So, the actual time at P when it receives the message that

is the response is nothing but t plus minimum 2.

So, this is minimum 2 range from t plus minimum 2 to t plus this is time t, t plus RTT minus
minimum 1. So, that you can see from this particular figure so the Christian’s algorithm what
it does is that it will set the P it is time to the halfway through this particular interval that is
divided by 2. So, the error here is at most RTT minus min 1 min 2 minus min 1 divided by 2

that is half of this particular RTT minus of minimum 1 plus minimum 2. So, this is min 1 and

this is min 2 so RTT is this one so RTT minus of min 1 plus min 2 this becomes the error and

this is bounded here in this case in the Christian’s algorithm.

(Refer Slide Time: 26:45)

Error Bounds

/ server
server

client

Ta = fime
g] =
Earliest time Latest time

message arrives \ message leaves
_,(._J g

range = T;-T5-2T .,

accuracy of result =

Time and Clock Synchronization

So, here you can also understand through this particular example the Christian’s algorithm
error bound so the client will send the message let us say time T 0 and let us say that the
message is delivered to the server with a delay of T min of the T min time then the server will
give a time at that is called server time T and this particular message by which it is sending

the reply we will take T minimum delay to reach at time T 1.

So, therefore this particular time which is elapsed at the server is to be noted as T 1 minus T 0
minus 2 of T min considering that T min and so one-way latency is let us say T min in this
case. So, that particular in accuracy of a result is T 1 minus T 0 divided by 2 minus T min and
that is all bounded.

(Refer Slide Time: 27:53)

Error Bounds

~

5 /,
« Allowed to increase clock value but should never
decrease clock value

— May violate ordering of events within the same
process.

« Allowed toincrease or gecrease speed of clock

« Iferroristoo high, take/r_nu|tip|e readings and
average them v

Time and Clock Synchronization

So, error bounds here you can see that they are allowed to increase the clock values. For
example, if you know the clock synchronization how to synchronize the clocks. So, you are
only allowed to increase the clock value and you are not allowed to decrease the clock value
because the time never goes back. So, may violate the ordering of events within the same
process if let us say you want to decrease you are decreasing the clock value so you are
allowed only to increase but as far as speed is concerned you are allowed to increase or
decrease the speed. Here in this case if the error is too high, then you take multiple readings
and average them.

(Refer Slide Time: 28:36)

Christians Algorithm: Example

« Send request at 5:08:15.100 (T0) o If best-case message

time=200 msec

To=5:08:15.100

T1=5:08:15.900

« Elapsedtimeis T1-To Tserver=5:09:25:300
« 5:08:15.900 - 5:08:15.100 = 800 msec

e Bestguess: timestamp was generated

« Receive response at 5:08:15.900 (Tl)
— Response contains 5:09:25.300 (Tserver)

Tmin = 200msec

. 400 msec ago l"“
: - \ :
o Settimeto Tserver+ elapsed time ,
. 5:09:25.300 + 400 = 5:09.25.700 “‘“7/ i
300 - 100 ' — o . N
Error=t———-200= £ —~200= £20 L 7 T Tie
2 2 m =

30
Time and Clock Synchronization

(ii) NTP: Network time protocol

« (1991, 1992) Internet Standard, version 3: RFC 1305
« NTP servers organized in a tree.

« Eachclient = a leaf of a tree. S

« Each node synchronizes with its tree parent

¥

Primary servers

0 ol

Secondary servers

Tertiary servers

Time and Clock Synchronization

So, another example of a Christian’s algorithm is shown over here that we have already
explained. So, let us see the next protocol for external synchronization that is called network
time protocol NTP. So, NTP is used in the internet for time synchronization among their
servers or network devices. So NTP servers is organized in the form of a tree and each child
is a leaf of a tree that is shown and each node synchronizes with its parent in a tree. So, the
first server is called the primary server. Second level servers are called secondary server and
tertiary server and finally you have the client. So, this NTP servers are organized in a form of

a tree.

(Refer Slide Time: 29:23)

NTP Protocol

Message 1 recv tim@ A~
./ Message 2 send time'tsfz\

/ N Time
hitd) J oo /
_/ ! -

Let’s startprotocol | Message 2 12
Message 1 : LQ 5 ff
Parent A g A=
Message 2 recv tim"ej tr2)
Message 1 send time ts1 s
oo

Time and Clock Synchronization

Now, let us see the NTP protocol. Here the child will say let us start a protocol send a

message and the parent will receive the message and parent will reply the message at time t s

1 which message will be received at time t r 1 by the child and then child will send another
message to at time t s 2. So this message will be replied back by parent at time t r 2 and
which will be received here by the child 1. So, now you have several time stampsts 1,tr1

thentr2,ts2andalsotslandtr2isalso being send.
(Refer Slide Time: 30:10)

Why o = (tr1-tr2 + ts2- ts1)/2?

¥ IR
o Offseto = (trl-tr2 + ts2- ts1)/2
o Let'scalculate the error.
« Suppose real offset is oreal S
. Child is ahead of parent by oreal.
. Parentis ahead of child by —oreal.

« Suppose one way latency of Message 1is L1.
(L2 for Message 2)

« Nooneknows L1or 2! J

« Then
, tri=tsl+L1+oreal —\9
., tr2 =ts2 + L2 — oreal ‘{9

Why o = (tr1-tr2 + ts2-ts1)/2?

« Then
, tri=ts1+ L1+ oreal.
, tr2=1ts2 + L2 —oreal.

« Subtracting second equation from first
. oreal = (tr1-tr2 + ts2- ts1)/2 — (L2-11)/2

e p—

. =>oreal = & + (L2-L <
. => |oreal —o|<\|(L2-11)/2] < [(L2+L1)/2]) _
* Thus the error is bounde D timéj(R’T%

T

Time and Clock Synchronization

NTP Protocol

e
Message 1 recv tim¢'tr1 | =
-/ Message 2 send time ts2

v/

hild) J : /
_/] \
\ | ‘| .
Let’s start protocol | Message 2 Co5d)
Message 1 51',1"? ;
Parent i e
= =% Message 2 recv tinfe tr2 J\

Message 1 send tirr(‘e/ts/;\") ~
,// '_//

Time and Clock Synchronization

You have four different timestamps and using offset you can calculate the difference offset o
trlminustr2plusts2minusts 1andyou can calculate the error let us say that real offset
is oreal. So, child is ahead of a parent by oreal, parent is ahead by minus oreal, suppose one-
way latency of a message one is L 1 for L 2 is 1 message 2 no one knows for L 2 and L, L 2

and L 1. So, there are two equations. Now, using these two equations, you can solve oreal.

So, oreal value comes out to be this particular equation which is nothing but the offset o
which we have simplified so oreal minus o will become this particular value which is
bounded by the round trip time. So, if you want to understand again so you can see here that
this is the timestamp when server 1 has send, this is the timestamp of server 1tsland rt2,t

r 2 and child has send received this messageastrlandts 2.

So, these are the message let us see from this equation that what is the offset. So, what you
will formistrlisequaltots 1 plusL 1. So, tr1isequal toso, thetr 1 isequal to you can
see that the time when t s 1 has send plus this delay. So, that is what is being added over here
the same concept which we have seen L 1 plus oreal similarly, t r 2 is also given. So, these
equations you will solve here in this case and this particular equation is now can see that this

error is bounded in network time protocol.

(Refer Slide Time: 32:26)

) Berkley’s Algorithm

e Gusella & Zatti, 1989
« Master poll’s each machine periodically

. Ask each machine for time

— Can use Christian’s algorithm /fo compensate the network’s
latency.)

« When results are in compute,
« Including master’s time.

« Hope: average cancels out individual clock’s tendency to run
fast or slow

¢ Send offset by which each clock needs adjustment to each
slave

* Avocids problems with network delays if we send a time-stamp.

Time and Clock Synchronization

Now, you have internal time synchronization protocol called Berkeley’s algorithm here the

master poles each machine periodically asks each machine for the time now can use the
Christian’s algorithm to compensate the networks latency. So, Berkeley’s algorithm is given
by gusella and zatti in 1989. So, it starts with the master poles each machine periodically asks
each machine for the time for that it use it can use the Christian’s algorithm to compensate

the network latency.

Now, when the results are in compute which includes the masters time and here the average
cancels out the individual clock’s tendency to run fast or slow send the offset by which each

clock needs adjustment to each slave.

(Refer Slide Time: 33:21)

Berkley’s Algorithm : Example

2. Compute fault-tolerant average

325 4 Z‘SQ ' 300 305

3. Send offset to each client

Time and Clock Synchronization

You can understand the Berkeley’s algorithm working through this running example. So, as
we have pointed out that Berkeley’s is internal synchronization, algorithm, internal clock
synchronization here in this example, we are having 1 2 3 4 different clocks running out of

which one is the master which polls with all others clock values that is called slaves.

So, let us say that clock 2, clock 3, clock 4 they will send their timestamp values or clock
values to the master which is having the clock value 3. So, what it does is it will find out all
other clock values except the clock value coming from 4 which is detected as the anomaly it
will not be considered an averaging. So, excluding the clock value of clock 4 they will

compute the fault tolerant average of all other clock values.

There are 3 different clock values whose average is being calculated as 3 or 5. So, what it will
do it will adjust its clock while you accordingly and now it will calculate the difference for
this is a 20 minutes difference for this is plus 15 and this value also will be send as the
difference and it will no offset as the difference. So, it will send the offset to each client in

this case.

(Refer Slide Time: 35:16)

(iv) DTP: Datacenter Time Protocol

Globally Synchronized Time via Datacenter Networks

o RPOON

e ea, ACMSIGCOMM 2016

« DTP uses the physical layer of network
devices to implement a decentralized clock
synchronization protocol.

« Highly Scalable with bounded precision!
—~25ns (4 clock ticks) between peers

— ~150ns for a datacenter with six hops

— No Network Traffic

— Internal Clock Synchronization

Physical

« End-to-End: ~200ns precision!

Time and Clock Synchronization

* Runs in two phases between two peers
— Init Phase: Measuring OWD (one-way delay)
— Beacon Phase: Re-Synchronization

Time and Clock Synchronization

INIT phase: The purpose of the INIT phase is to measure the one-way
delay between two peers. The phase begins when two ports are
physically connected and start communicating, i.e. when the link
between them is established.

Each peer measures the one-way delay by measuring the time between
sending an INIT message and receiving an associated INIT-ACK message,
i.e. measure RTT, then divide the measured RTT by two.

e delay = (ty — ty — @) /2

— qxm3: Ensure delay is always less than actual delay

= Introduce 2 clock tick errors
— Due to oscillator skew, timing and Sync FIFO

Time and Clock Synchronization

DTP: (ii) Beacon Phase

Apglamtine = Jocal = max (local, remote+delay)
m = Frequent messages
m — Every 1.2 us {200 clock ticks) with MTU packets
m Every 7.2 us (1200 clock ticks) with Jumbo packets
“ = Introduces 2 clock tick errors e

“ Total 4 clock tick errors
[t | '

€

-y

=

BEACON phase: During the BEACON phase, two ports periodically exchange
their local counters for resynchronization. Due to oscillator skew, the offset
between two local counters will increase over time. A port adjusts its local
counter by selecting the maximum of the local and remote counters upon
receiving a BEACON message from its peer. Since BEACON messages are
exchanged frequently, hundreds of thousands of times a second (every few
microseconds), the offset can be kept to a minimum.

Time and Clock Synchronization

DTP Switch

* global = max(local counters)
* Propagates global via Beacon messages

But Yet...

/ 4
« We still have a non-zero error! {

. » ' &
« We just can’t seem to getrid of error " sC PAY
» Can’tas long as messages latepcies are non-zero.

« Can we avoid synchronizing clocks altogether, and
. T ——————
still be able to order events ?

Time and Clock Synchronization

Let us see another critical clock synchronization that is called internal synchronization which
is happening inside the data center that clock synchronization is called data center time
protocol. So, you know that in a data center or in a cloud data center hundreds and thousands
of the nodes they are sending the message with each other through the network that is called

cloud network.

So, these devices are running let us say the protocol and let us see that these particular
devices also need to be clock synchronized. And therefore, data center time protocol is an
essential requirement. So, that all those nodes or the server inside the data center are
synchronized. We are not going in detail but you will see that it uses the internal clock
synchronization and it runs in two phases between two peers that is they are running this

stack.

We are interested only in the physical layer because that is the hardware and that particular
message passed its time exchange its time and now then it will calculate this particular bound
of a precision and accuracy. Now, what we have so far seem is the physical clock
synchronization and there are two types of physical clock synchrony one is the external
synchronization with the universal time clock and this is the internal synchronization

algorithms which we have seen in the terms of data center time protocol.

And here we have seen network time protocol as external synchronization algorithms. In
every method we have seen a nonzero error. So, therefore, you know that you just cannot
seem get rid of these errors because of the message latency which are nonzero. So, how can
you avoid synchronizing the clocks all together yet you are able to use some other method for

ordering the events in the distributed system.

(Refer Slide Time: 37:35)

Ordering events in a distributed system

« Toorder events across proce¥ses, trying to synchronize
clocks is an approach.

« What if we instead assigned timestamps to events that
were not absolute time ? ;

e Aslongas those timestamps obey causality, that would
work =

« IfaneventA c‘ausally happens before another event B, then
timestamp(A) < timestamp (B)
« Example: Humans use causality all the time -
* | enter the house only if | unlock it

* Youreceive 2 letter only afterlsend it
/

Time and Clock Synchronization

So, ordering the events in a distributed system without physical clock synchronization is a

method which is widely used in the in various applications. So, let us understand this and it
can be applicable as well in the internet that is a network scenario, internet that is 10T
network scenario. So, in order to order the events across the processes so we consider the 10T

devices running these processes trying to synchronize the clock in an approach.

So, what if we have assigned the timestamp to the events that are not that were not absolute
time, absolute means not according to the physical clock time, as long as these timestamps

obey causality that would work. For example, if an event A causally happened before another

event B then any timestamp of A should be less than the timestamp of B. So, humans are

used the causality at all points of time for example, | enter the house only if I unlock it.

So, without knowing the clock values you know that which event has happened before which
other event. Similarly, if you have received a letter only after you send it so sending of a
letter happened before you receive the letter so without even having the physical clock
ordering the events is possible using the happen before relation and that is called causality

relation.

(Refer Slide Time: 39:13)

Logical (or Lamport) ordering

« Proposed by Leslie Lamport in the 1970s.
e Used in almost all distributed sysgems since then

o Almost all cloud computing systems use some
form of logical ordering of events.

o Leslie B. Lamport (born February 7, 1941} is an American computer
scientist. Lamport is best known for his seminal work in distributed
systems and as the initial developer of the document preparation
system LaTeX. Leslie Lamport was the winner of the 2013 Turing /
Award for imposing clear, well-defined coherence on the seemingly
chaotic behavior of distributed computing systems, in which several
autonomous computers communicate with each other by passing
messages.

Time and Clock Synchronization

So, using this concept of causal relation of ordering the events without physical clock without

physical time is the concept called logical ordering or this kind of ordering is called a
Lamport’s clock and given by a famous scientist, which is called Leslie Lamport. So, Leslie
Lamport has proposed this particular notion which is used almost in all distributed system

and a cloud computing system and even in the 10T systems.

So, about the Leslie Lamport he is an American scientist. And this work of time and ordering
in a distributed system was a seminal work and is being recognized as 2013 Turing award this

is the highest award in computer science any scientists can get.

(Refer Slide Time: 40:11)

Lamport’s research contributions

o Lamport’s research contributions have laid the foundations of the theory of
distributed systems. Among his most notable papers are
“Time, Clocks, and the Ordering of -Z'./rvts in a Distributed System”, which received the PODC
Influential Paper Award in 2000, W/
“How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs” which
defined the notion of Seguential consistency
“The Byzantine Generals' Problem”
“Distributed Snapshots: Determining Global States of a Distributed System”™ and
“The Part-Time Pariiament”™
e These papers relate to such concepts as logical clocks (and the happened-before
relationship) and Byzantine failures. They are among the most cited papers in the
field of computer science and describe algorithms to solve many fundamental
problems in distributed systems, including
the Paxos algorithm for consensus,
the bakery aigorithm for mutual exclusion of muitipie threads in 3 computer system that require
the same resources at the same time,
the Chandy-Lamport algorithm for the determination of consistent global states (snapshot), and

the Lamport signature, one of the prototypes of the digital signature

Logical (or Lamport) Ordering(2)

« Define a logical relation Happens-Before among pairs of events

« Happens-Before denoted as 2>

e Three rules: . i S "

1. On the same process: @ —b, if time(a) < time(b) (using thé
Iocal;:lock) 7 s \\

2. If pl sends m}o p2: send(m) —>receive(m

3. (Transitivity) Ifa —2band b —cthen a —¢ v’

« Creates a partial order among events

LN
« Not all events related to each other via >/

Example 1:

Time
;,';2, B : G
- [|
&) ° e

® Instruction or step

Message

Time and Clock Synchronization

Example 1: Happens-Before

AS B/ c D E
P1 —e - * -
S Time
v

P2 E F G
P3 L 2 ,J

« A9DB ® Instruction or step

« B2F

o RIE o ——> Message

Time and Clock Synchronization

So, these are some of this is the paper which has received this particular award the title of a
paper is time clock and ordering of events in a distributed system. Now, let us understand this
work in more detail to appreciate this work and how that is all done without having the
physical clocks synchronized yet you can order the events using the mechanism called

Lampert’s clock.

So, define the logical relation that is called happened before relation among the pair of events
and which is noted down by the that relation happened before relation. So, this happened
before relation follows three different rules, the first says that on any on the same process if
there are two events a and b. So, if you see the local time of a and the local time of b so the

time of a is always less than b this means that a has happened before b.

So, a happened before b if and only if the timestamp of a is less than timestamp b and this
time stamp is taken from the local clock. Similarly, when p 1 sends the message m to p 2. So,
in that case send a message has happened before the receive of a message. So, even without
having clocks synchronized. So, this event can be send and receive can order the event these
are external event and these two events you can also form a transitive relation that if a has

happened before b, b has happened before c, then c, a is happened before c.

Now, these three relations they create a partial order relation among all the events in the
distributed system and this particular relation is applicable in all the events happening in the
distributed system. Let us take this example in this example you have three different loT
devices let us say p 1, p 2, p 3, at different locations. So, p 1 is generating these events A B C

D E so Ais the internal event, B is send off a message.

Similarly, D is the received of a message, E is the sender of a message similarly, P 2 also has
the events happening. Now, you can see that A has happened before B why because it is
internal events. So, that is similarly B has happened before F and A has happened before F
why because A has happened before B is internal event B has send a message so received of a
message. So, sending of a message happened before the receive of a message using
Lampert’s clock rule two. So, if you include this A, B and F so A happened before using
transitive relation. So, likewise you can order the event in this particular manner. So, this is

called a Lampert’s timestamp.

(Refer Slide Time: 43:11)

Lamport timestamps
« Goal: Assign logical (Lamport) timgx‘famp to each event

« Timestamps obey cauyﬂty
« Rules :
e Each process uses a local counter (cl_o[k) which is an integer
« initial value of counter is zero

e A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the
event as its timestamp. /S

e Asend (mess‘iée) event carries its timestamp v/~

e Forareceive (mess/aée) event the counter is updated by

J J JS
max({local clock, message timestamp) + 1

Time and Clock Synchronization

So, the goal of Lampert’s timestamp is to assign the logical or a Lamport or timestamp to

each events and these timestamps, you know, that obey causality relations using these rules.
So, each process uses a local counter, which is nothing but an integer value initial value of
the counter is 0. So, a process increments it to counter when the send or an instruction

happens at it, the counter is assigned to the event as the timestamp.

So, this is called internal event rule, which we have seen in the previous happened before
relation, which is also defined here in the Lampert’s timestamp. Similarly, the send of a
message event carries its timestamp and receive event carries the timestamp and when the
message is received then the clock can be synchronized using the following rule. So that is

nothing but the maximum of local clock and the message time stamp plus 1 is done.

(Refer Slide Time: 44:16)

Lamport Timestamps
4

[P _ .
ts=1 :
Time
P2 0 Y »
i "‘51 <4t
Mesﬁége carries
ts=1
P3 0 =
ts=1 /
Message send ® Instruction or step
— Message

Time and Clock Synchronization

Lamport Timestamps

0 %
- : 2
P1 —01 2% 3
Message carries Time
ts>2

() = . £

0 E AN i’ / :

", & #
/ . P

P3 L 2

0 1

® Instruction or step

— Message
Time and Clock Synchronization
Take this example, that initially all three values are 0 clock values. So the timestamp of first
internal eventists 1 and here t s 1 at p 3 send off an event. So, when this particular message
is received at p 2 so it will carry the timestamp of p of p 3 as 1. So using that particular rule

the maximum of 0 and 1, 1 is coming from this particular message and 0 is the local clock

time so maximum of 0 and 1 is 1 so it will be the value as 2.

So, you can see that from 0, the clock value will be jumped to 2 directly. So, that will happen
here. So, that is what is shown here in this particular example, you can see another example,
that the clock value which is being carried by the send message that is t s 2, which is the

clock value of p 1 and p 1 when it received over here the clock value of p 1 is 2 and the local

clock is also 2. So, the maximum of 2 and 2 will become 2 plus 1 that is called 3. So, this

clock value will become 3.

(Refer Slide Time: 45:38)

Obeying Causality

3 A B C D E
S | 7 - @ s \6
Time
F G
P2 0 . :
2 3 4
P3 0 b A)\
1 2 7
® Instruction or step
*s ADB:l1<2
e B2Fu2<3 » Message
e« ADF:1<3

Not always implying Causality

0 A B C D E
P1 —01 AN 33 5 3
Time
= E F G
P
2 & 3 L.
H | : 1 J
P3 0 X
1 2 7
¢« 2COF?2:3=3 ® Instruction or step
e« H2>C?:1<3 Message
¢ (C, F)and (H, C) are pairs of —

concurrent events i
Time and Clock Synchronization

So, all of the clock values are calculated here in this case so you can see that this particular
logical clock obey the causality relation and you can order the event here in this case but this
causality is not always applicable on all the events. So, those events which do not obey these

relations then they are called concurrent events here in this case.

(Refer Slide Time: 46:11)

Concurrent Events

« A pair of concurrent events doesn’t have a causal path
from one event to another (either way, in the pair)

« Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events

« Ok, since concurrent events are not causality related!
« Remember:

E1l - E2 = timestamp(E1l) < timestamp (E2), BUT
timestamp(E1l) < timestamp (E2) =
{E1 - E2} OR {E1 and E2 concurrent}

Vector Timestamps

« Used in key-value stores like Riak ¥
« Each process uses a vector of integer clocks
« Suppose there are N processes in the group 1..N i

7

« Eachvector has N elements
7
« Processimaintains vector V;[1..N] ¥ /

o jth element of vector clock at process i Vilil, is s
knowledge of latest events at process; —

Time and Clock Synchronization

So, pair of concurrent event does not have the causal path from one event to another event.
So, Lamport’s timestamp does not guarantee to be ordered or unequal. Hence, the concurrent
event are not causally related events. So, therefore, with this drawback another time stamp is
being proposed in the distributed system which is called a vector timestamp and it is used in

the cloud databases which we have discussed as the no equal database in the lecture 1.

So, this particular database uses the vector time is time. So, each process uses the vector of
integer clock suppose there are N processes in a group so N elements will be there. So,
process i maintains a vector v i 1 to N so j th element of a vector clock at process i will be of

Vi of Jis i th knowledge of the latest event happened at process j.

(Refer Slide Time: 47:08)

Assigning Vector Timestamps

Incrementing vector clocks

1. On an instruction or send event at process/, it increments
only its ith element of its vector clock ./
2. Each message carries the send-event’s vector timestamp
Vi essagel M V4
3. On receiving @ message at process i:
Vil=Vi]+1 v

viil= ma?((Vmﬂ;,“[f]: Vi) foriii

Time and Clock Synchronization

Vector Timestamps

N Time

3 Message(o,o.i)
(0,0,0) (0,0,1)

Time and Clock Synchronization

So, implementing the vector clock so here you can see that on an instruction, on an
instruction or a send event of a process i it increments only it is ith element of a vector clock
and message when it receives a message. So, each message carries the send event send
event’s vector timestamp and both these events are used together to synchronize the clocks

for example on receiving the message at a process i.

So, it is internal event or it is internal clock that is called v i of i will be incremented by 1
whereas, all other clock values in the vector will be now synchronized using this particular
equation that is Vi’s knowledge of all other clock values is a maximum of the clock values

which is brought into by the process by the message and its own knowledge whichever is the

maximum will be taken up except for its own message. So, this is called vector clock and this

we will understand using this particular example.

For example, that p 1 initially all the clocks are 0 0 0. Why because this is the clock value of
p 1, thisisp 2, thisis p 3, so p 1’s knowledge of p 2 is 0 having it is timestamp 0 and here for
p 31is 0. Now, if p 1 will do its internal event, then this clock value will be incremented by 1
only. Similarly, when p 1 will send a message so send of an event will also increment the

clock value. So, it will become 2 0 0 and this value will reach over here.

Now, when the value will reach over here, what p 2 will do p 2 has these values 0 0 0 initially
when it receives a message and the message is 0 0 1. So, it will synchronize its clock as this
particular internal event will become 1 0 and this is being seen as the most recent values and

when the message is received over here then this particular value will be updated.

So, how it will be updated you can see that this is the receipt of a message. So, internal event
will increase. So, it will become 2 and what about 0 this particular message is carrying 2 0 0.
So, this is incremented to 2 whereas between 0 and 1 and 0 0. So, this 0 and 1 will be more

updated value over here.

(Refer Slide Time: 50:06)

Causally-Related

o VI, =VT,

iff (if and only if)

VT,[i]=VT,[], foralli=1, .., N

o VI, SVT,,

iff VT,[i]<VT,[i],foralli=1,..,N
e Two events are causally related iff

VT, <VT,, i.e,

iff VT,<VT, &

there exists j such that
1<jSN&VT[j] < VT, []]

Time and Clock Synchronization

... or Not Causally-Related

e Two events VT, and VT, are concurrent
iff
NOT (VT, £VT,) AND NOT (VT, <VT,)

Wwe'll denote thisas VT, | | | VT,

Identifying Concurrent Events

A B C D E

P1

(0,0, .0, 0.0 ,0,0) @31 |\ (531)

> Time

P2 E) f G/

(0,0,0) (0,1,1) /~ (2,2,1) (23,3)
P3 H I ‘1 J

(0,000 (0,0,1) 0,0.3) 5,3.3)
* C&F::(3,00)[]](221)
* H&C::(0,0,1) |]| (3,0,0)
* (C, F) and (H, C) are pairs of concurrent events

Time and Clock Synchronization

Conclusion

Internet of Things (loT) devices that are wirelessly connected in
mesh networks often need mutual clock time synchronization, to
enable chronological ordering of sensor events, coordination of
asynchronous processes across devices, or network-wide
coordination of actuators. _/~

Time synchronization: ./
Christian’s algorithm
Berkeley algorithm
NTP
DTP

But error a function of RTT
Can avoid time synchronization altogether by instead assigning
logical timestamps to events

Time and Clock Synchronization

So, that is what you know that vector clock. So, vector clocks follow the casually related. So,
if the 2 events are causally related, if and only if this particular vector condition holds for two
events, they are concurrent, then these less than relation does not hold so they obey the
causality and if two events are causally related, then you can think of it is happening the other

one.

So, therefore let us conclude with this discussion that internet of things devices that are
wirelessly connected in the mesh often needs the mutual clock time synchronization to enable
the chronological ordering of sensor events coordination of asynchronous processes across
the devices or the network wide coordination of actuators. So, this is very much required,

because when the sensor sends the data it also attaches its timestamp.

So, all the sensor locations all the sensor devices running at different location requires their
clock to be synchronized. So, therefore, different time synchronization algorithms we have
seen which is applicable in the internet of things as well. And we have seen the two
algorithms Christian’s algorithm, Berkeley's algorithm network time protocol, data center
time protocol and we have also seen that there is an error condition and therefore with these
error possibilities and synchronization very frequently and it is taking time in the internet of
things scenarios. So, we have also seen a method of logical clock synchronization in the

distributed system. Thank you.

