
Foundation of Cloud Iot Edge ML

Professor Rajiv Misra

Department of Computer Science and Engineering

Indian Institute of Technology, Patna

Lecture 04

Time and Clock Synchronization in IoT

(Refer Slide Time: 0:26)

I am Dr. Rajeev Mishra IIT, Patna. So, today’s lecture is on time and clock synchronization

in the internet of things. So, the content of this lecture is that we will discuss the

fundamentals of clock synchronization and the need in IoT and the different clock

synchronization algorithms. To understand how the clocks operate in the IoT devices and

how they are synchronized in an accurate and efficient manner is the main objective of this

particular lecture.

So, the content of this lecture is the motivation in the following way. So, the internet of things

devices are wirelessly connected forming a mesh networks often need for the mutual clock

time synchronization to enable chronological ordering of sensor events, coordination of

asynchronous processes across the devices or network wide coordination of actuators. So, this

is very much essential, why because you know that the sensors are the devices which are

deployed whether it is a smart city scenario or it is an industrial manufacturing unit.

So, these sensor networks or these sensors together will form a network and each particular

sensor device is having the timestamp with the event when this particular data is now send.

So, therefore there is a need of clock synchronization. In order to find out the chronological

ordering of the sensor events that data which sensor send should have the timestamp to have

the correct timestamp all the clocks need to be synchronized to find out the ordering of sensor

events coordination of asynchronous processes across the devices and network wide

coordination.

So, again I am summarizing the content or the motivation of this lecture is that internet of

things devices which are often deployed and form a connected wireless network or you can

also say it is a network of IoT devices. Now, these IoT devices require to send the data with a

timestamp. Therefore, the clocks are running in these IoT nodes or the devices and often to

have this correct ordering of the events of the sensor data they require to have the mutual

clock synchronization at all points of time.

Now, this coordination of asynchronous processes also sometimes requires the clock to be

synchronized in these IoT devices. And also the network wide coordination of actuators also

sometimes requires the clock to be synchronized at the actuators. So, this particular need in

IoT system which is a system of clocks running around IoT devices needs a clock

synchronization in a distributed system of internet of things network.

So, here in this lecture we will discuss also other than the physical clock synchronization we

will also consider that IoT devices may form a distributed system and therefore the logical

clock synchronization principles also very much essential in the IoT network. So, we will

consider the logical clock synchronization. And in that context we will talk about the lamport

clocks, vector clocks and these particular clocks will give a timestamp to capture the

causality between the distributed events which is captured by the internet of thing as the

distributed systems.

(Refer Slide Time: 4:22)

So, let us see the need for clock synchronization. So, synchronizing the clocks in the internet

of things devices is important for the application such as monitoring and real time control.

So, to understand the concept of the synchronization, you can see an example to make it

understand the need of clock synchronization in the internet of things scenario as well from

our life like examples.

So, you may want to catch a bus at let us say 9:05 am but your watch is off by 15 minutes. So

what if your watch is late by 15 minutes, then you will miss the bus what if your watch is fast

by 15 minutes then you will end up unfairly waiting for a longer time than you intended.

Therefore, if your clock is not synchronized, one of these two events may happen either you

are too late and you will miss the event that is to catch the bus or if let us say your clock is

fast then it will be unfair that, that event is waiting for a longer time to get executed.

(Refer Slide Time: 5:36)

So, therefore time and synchronization are very much essential. As far as the distributed time

is concerned the notion of time is well ordered at each single location, but the relationship

between the time at different location is not clear. So, therefore, there is a need of time

synchronization which we have seen in the previous slide the example that it requires for the

correctness and it requires for the fairness.

(Refer Slide Time: 6:13)

So, to understand the synchronization in an IoT system we have to now understand the basic

principle of synchronization in a similar environment which is let us say a cloud based

reservation system. So, when you say cloud you mean that a lot of servers are now running

and now there is a need for the synchronization in let us say airline reservation system. So,

server X receives a client request to purchase the last ticket of a flight.

Now, server X timestamp the purchase during the using its local clock let us say 6 hours 25

minutes and locks it and replies okay to the customer that was the last seen the server X sends

a message to the server Y saying that the flight is full. So, Y enters the flight as full and puts

its local clock time as 6 hours 20 minutes because his clock is late. So, therefore 6:20 it will

detect that server Y will detect that the flight is full whereas server X has it is clock is 6:25

when he has booked the ticket.

So, therefore server Z when queries X server X and server Y’s log it is confused that the

client has purchased the ticket at X 6:25 and whereas Y has seen that the flight is full at 6:20

time of the server Y so therefore this is a problem of clock synchronization the server Y’s

clock is slower than the server X’s clock. So, it will not be able to reason why the seat is

incorrectly full showing at Z.

(Refer Slide Time: 8:25)

So, what are the key challenges? Key challenges is that the end host in the internet based

systems like cloud and similar system is there internet of things each have it is own clock and

unlike CPUs, unlike processor within one server or the workstation, which share a system

clock, this becomes a quite challenging in the distributed environment, because all the clocks

are running autonomously and they can only communicate through the messages.

So, the processes in the internet based systems follow an asynchronous model where there is

no bounds on the message delays and also there is no bounds on the processing delays and

unlike multiprocessor or parallel system which follows a synchronous model.

(Refer Slide Time: 9:17)

So, let us understand some definitions and then we will see the basic algorithms for the clock

synchronization in the distributed system where we are considering the IoT also as an

asynchronous distributed system, where each IoT device which is a sensor or an actuator

running its own clock nearby in particular device in an embedded system. So, an

asynchronous distributed system let us say it consists of number of processes.

So, whether it is the system or a process, we can interchangeably be using the same notion,

which may mean the same thing. So, for the sake of simplicity, we will be using the term

processes. So, each process has a state that is number of that is the values of the variable,

each process takes the action to change it is state which may be an instruction or a command

action that is the send or a receive action.

So, event is an occurrence of an action. So, each process has a large clock which is an event

within the process and can be assigned a timestamp and then order linearly in IoT system we

need to know that the time order of events across the process is also in the same manner.

(Refer Slide Time: 10:48)

So, let us understand using time and space diagram the same concept that this time and space

diagram of a distributed execution. So, here let us say that there are three different processes

you can think of three different IoT devices running these processes, where there is a event

happening within that particular process or an IoT system that is e1, e2, e3 and so on of a

process 1.

Similarly, for a process 2 or a second internet device is also occurring, various internal events

happening at that particular IoT device that is event 1 at process 2, event 2 at process 2, event

3 at process 2, event 4 at process 2, event 6 at process 2, event 5 at process 2.

Similarly, for process 3 is also shown in this particular manner. So, as we have mentioned in

the previous slide that for a process 1 this event 1 is an internal event whereas, for process 1,

event 2 is the send of a message is an action event, which will send a message to process 2.

So, this event e3 for a process 1 is called internal event and where the two other events which

is shown what here in process 1 that is event 2 as a message send event and a message

receive event.

So, either there are that means the events are the internal events happening within the process

or within the IoT system or it is sending a message or it is receiving a message. So, there are

three different types of events only we are considering to understand this particular time

synchronization or a distributed execution for the sake of simplicity.

(Refer Slide Time: 13:06)

Now, let us see the concept of a clock skew and clock drift. So, each process which is

running at some end host has it is own clock, let us assume that without loss of generality

now when comparing 2 clocks at 2 processes, then the definition of a clock skew says that the

relative difference in the clock values of the 2 process is called a clock skew. For example, if

one clock is saying 3 o’clock the other clock is saying 3:30. So, that difference of these 2

clock values that is 30 minute is called a clock skew.

Similarly, you can also understand that the distance between two vehicles on the road is

called a skew. Now, other concept is called a clock drift, the relative difference in the clock

frequencies or the rates of the two processes is called the clock drift. Now, you know that

there is a quartz crystal running the clock at different rates or the frequencies. So, that

difference that relative difference of the clock frequencies is called a clock drift.

So, that example is you can also see from the real life example that the difference in the speed

of 2 vehicles on the road is called a clock drift. So, the distance between two vehicles is

called a clock skew and the difference in the speed of the 2 vehicles is called a clock drift. So,

clock skew and clock drift there are two fundamental concepts which we will be using here in

the clock synchronization in the distributed system.

So, non-zero clock skew means that the clocks are not synchronized. For example, if the

clock is giving a time 3 o’clock the same instance the other clock is giving 3:30 that is there

is a clock skew of a non-zero value therefore these clocks are not synchronized. Non-zero

clock drift causes that skew increase eventually.

So, for example if a faster vehicle is ahead it will drift away or if a faster vehicle is behind it

will catch up and then drift away. So, therefore, non-zero clock drift causes the skew

increases eventually. So, these two non-zero clock skew, non-zero clock drift requires

adjustment and that is called a clock synchronization.

(Refer Slide Time: 15:44)

So, let us see what you mean by the clock inaccuracies. So, clock must not only be the

synchronized with each other but also have to adhere to the physical time which is termed as

the physical clocks. So, physical clocks are synchronized to an accurate real time standard

called universal coordinated time. So, universal coordinated time is considered to be the

correct time and all the other clocks required to be synchronized with that time.

So, how are due to the clock inaccuracies a timer or a clock is set to be working within the

specification if there is a constant row is the maximum skew rate specified by the

manufacturer. So, with this particular notion and given the universal coordinated time and

also given the specification that is a constant row and maximum skew rate which is specified

by the manufacturer.

So, you can also understand the behavior of a fast, slow and the perfect clock in this

particular example shown in this particular figure. So, on the X axis you have a universal

coordinated time UTC shown on the X axis and the clock time you can see that is capital C

on the Y axis and for the perfect clock this particular rate that is dc by dt should be equal to 1

for a slow clock this dc by dt should be if it is less than 1 and for a first clock dc by dt is

greater than 1. So, these are all aspects are the clock inaccuracies.

(Refer Slide Time: 17:41)

Now, how to synchronize how often to synchronize the clock. So, the maximum drift rate

MDR of a clock that is MDR is defined to be the relative coordinated universal time UTC is

the correct time at any point of time and maximum drift rate MDR of any process depends

upon the environment. So, the maximum drift rate between 2 clocks with the similar MDR is

2 times MDR.

So, given a maximum acceptable skew M between any 2 pair of the clocks they need to

synchronize at least once every M divided by 2 times MDR time unit since the time is equal

to the distance by speed.

(Refer Slide Time: 18:26)

So, having understood these concepts, let us see the external versus internal synchronization

methods of clock synchronization let us consider a group of processes in this scenario. So,

external clock synchronization where each process Ci’s clock is within a bounded D of the

well-known clock synchronization let us say S external to the group. So, the process says Ci

is clock Ci minus S that is the external clock if we see the skew that is the difference and if it

is less than D at all points of time which is a bound which is acceptable otherwise this

external clock may be connected to the universal coordinated time or atomic clock.

So, this particular type of synchronization with the external clock or universal coordinated

time is called external synchronization. Two algorithms, well known algorithms is based on

the external synchronization they are called Christian’s algorithm and network time protocol

whereas the internal synchronization is the synchronization among the pair of processes in

the group of processes that is called internal synchronization.

So, every pair of processes in the group have the clocks within the bound D that is given two

clocks within that particular system Ci minus Cj is bounded by D at all points of time for all

processes i and j. So, this is called the internal synchronization where in the above example,

we have seen for the external synchronization that every clock if you find out the skew with

the external clock has to be bounded by D at all points of time that is called external

synchronization. So, internal synchronization algorithms are called Berkeley algorithm and

data center time protocol.

(Refer Slide Time: 20:35)

So, external synchronization if you have achieved with a bound D this means that you have

already achieved the internal synchronization with 2 times D. So, internal synchronization if

you have done that does not imply the external synchronization is mat. So, in fact the entire

system may drift away from the external clock S that means that.

(Refer Slide Time: 20:59)

Let us have understood the basic fundamentals of external time synchronization let us say

that all the processes P will synchronize their clock with a time server S which is a universal

time. So, how that is, how that is all done we are going to understand using this particular

diagram. So, a process P want to synchronize it is clock with a times server S what it will do,

it will ask with a server S through a message what is the time at your clock server.

So, the server after receiving this message check the local clock to find the time t and it will

send its time t back by a message and when the message is received the process P will set its

time to t and this is way this way the process P has synchronize it is clock with the external

clock but what is the wrong in this entire process.

So, you can see that by the time the message has received at P from S the time of S has

moved on. So, this particular time when the clock, when P is synchronizing its clock that time

of S has already moved from t to let us say some little delta t time so it is not same. So, this is

inaccurate. So, inaccuracy here is a function of message delays. So, this particular message

delay that is the time when it takes to reach the message that is called the message delay or a

message latency is the error here in this particular external synchronization.

Now, these latencies are unbounded in asynchronous system means that when the message

will be delivered that is not known in an asynchronous system the inaccuracy is also

unbounded in the asynchronous situation.

(Refer Slide Time: 23:07)

Let us see the Christian’s algorithm how it does this external synchronization algorithm. So,

here the P now measures the round trip time of the message exchange, round trip time means

that when the P has send a message it will note down it is time and let us say at time t of the

clock S it received the message and then it will send the message let us say at time t 2 back

and it has received the message let us say tp1 tp2.

So, tp2 minus tp1 becomes the round trip time the time when it takes to send to S and S gives

back the reply this is called round trip time. So, let us see that P measures the round trip time

of the message exchange. So, measuring the round trip time is by sending several message

and noting down RTT and finding the average of it this is how the Christian algorithm does

suppose we know that minimum of P to S latency is let us say minimum 1.

So, this is S to P latency, P to S latency similarly and the minimum from S to P this latency

let us say it is minimum 2. So, minimum 1 and minimum 2 latencies they depends upon the

operating system overhead also to buffer the messages and TCP also time to give the message

and so on. So, the actual time at P when it receives the response is between T plus T is the

time here. So, let us understand this. So, the actual time at P when it receives the message that

is the response is nothing but t plus minimum 2.

So, this is minimum 2 range from t plus minimum 2 to t plus this is time t, t plus RTT minus

minimum 1. So, that you can see from this particular figure so the Christian’s algorithm what

it does is that it will set the P it is time to the halfway through this particular interval that is

divided by 2. So, the error here is at most RTT minus min 1 min 2 minus min 1 divided by 2

that is half of this particular RTT minus of minimum 1 plus minimum 2. So, this is min 1 and

this is min 2 so RTT is this one so RTT minus of min 1 plus min 2 this becomes the error and

this is bounded here in this case in the Christian’s algorithm.

(Refer Slide Time: 26:45)

So, here you can also understand through this particular example the Christian’s algorithm

error bound so the client will send the message let us say time T 0 and let us say that the

message is delivered to the server with a delay of T min of the T min time then the server will

give a time at that is called server time T and this particular message by which it is sending

the reply we will take T minimum delay to reach at time T 1.

So, therefore this particular time which is elapsed at the server is to be noted as T 1 minus T 0

minus 2 of T min considering that T min and so one-way latency is let us say T min in this

case. So, that particular in accuracy of a result is T 1 minus T 0 divided by 2 minus T min and

that is all bounded.

(Refer Slide Time: 27:53)

So, error bounds here you can see that they are allowed to increase the clock values. For

example, if you know the clock synchronization how to synchronize the clocks. So, you are

only allowed to increase the clock value and you are not allowed to decrease the clock value

because the time never goes back. So, may violate the ordering of events within the same

process if let us say you want to decrease you are decreasing the clock value so you are

allowed only to increase but as far as speed is concerned you are allowed to increase or

decrease the speed. Here in this case if the error is too high, then you take multiple readings

and average them.

(Refer Slide Time: 28:36)

So, another example of a Christian’s algorithm is shown over here that we have already

explained. So, let us see the next protocol for external synchronization that is called network

time protocol NTP. So, NTP is used in the internet for time synchronization among their

servers or network devices. So NTP servers is organized in the form of a tree and each child

is a leaf of a tree that is shown and each node synchronizes with its parent in a tree. So, the

first server is called the primary server. Second level servers are called secondary server and

tertiary server and finally you have the client. So, this NTP servers are organized in a form of

a tree.

(Refer Slide Time: 29:23)

Now, let us see the NTP protocol. Here the child will say let us start a protocol send a

message and the parent will receive the message and parent will reply the message at time t s

1 which message will be received at time t r 1 by the child and then child will send another

message to at time t s 2. So this message will be replied back by parent at time t r 2 and

which will be received here by the child 1. So, now you have several time stamps t s 1, t r 1

then t r 2, t s 2 and also t s 1 and t r 2 is also being send.

(Refer Slide Time: 30:10)

You have four different timestamps and using offset you can calculate the difference offset o

t r 1 minus t r 2 plus t s 2 minus t s 1 and you can calculate the error let us say that real offset

is oreal. So, child is ahead of a parent by oreal, parent is ahead by minus oreal, suppose one-

way latency of a message one is L 1 for L 2 is 1 message 2 no one knows for L 2 and L, L 2

and L 1. So, there are two equations. Now, using these two equations, you can solve oreal.

So, oreal value comes out to be this particular equation which is nothing but the offset o

which we have simplified so oreal minus o will become this particular value which is

bounded by the round trip time. So, if you want to understand again so you can see here that

this is the timestamp when server 1 has send, this is the timestamp of server 1 t s 1 and r t 2, t

r 2 and child has send received this message as t r 1 and t s 2.

So, these are the message let us see from this equation that what is the offset. So, what you

will form is t r 1 is equal to t s 1 plus L 1. So, t r 1 is equal to so, the t r 1 is equal to you can

see that the time when t s 1 has send plus this delay. So, that is what is being added over here

the same concept which we have seen L 1 plus oreal similarly, t r 2 is also given. So, these

equations you will solve here in this case and this particular equation is now can see that this

error is bounded in network time protocol.

(Refer Slide Time: 32:26)

Now, you have internal time synchronization protocol called Berkeley’s algorithm here the

master poles each machine periodically asks each machine for the time now can use the

Christian’s algorithm to compensate the networks latency. So, Berkeley’s algorithm is given

by gusella and zatti in 1989. So, it starts with the master poles each machine periodically asks

each machine for the time for that it use it can use the Christian’s algorithm to compensate

the network latency.

Now, when the results are in compute which includes the masters time and here the average

cancels out the individual clock’s tendency to run fast or slow send the offset by which each

clock needs adjustment to each slave.

(Refer Slide Time: 33:21)

You can understand the Berkeley’s algorithm working through this running example. So, as

we have pointed out that Berkeley’s is internal synchronization, algorithm, internal clock

synchronization here in this example, we are having 1 2 3 4 different clocks running out of

which one is the master which polls with all others clock values that is called slaves.

So, let us say that clock 2, clock 3, clock 4 they will send their timestamp values or clock

values to the master which is having the clock value 3. So, what it does is it will find out all

other clock values except the clock value coming from 4 which is detected as the anomaly it

will not be considered an averaging. So, excluding the clock value of clock 4 they will

compute the fault tolerant average of all other clock values.

There are 3 different clock values whose average is being calculated as 3 or 5. So, what it will

do it will adjust its clock while you accordingly and now it will calculate the difference for

this is a 20 minutes difference for this is plus 15 and this value also will be send as the

difference and it will no offset as the difference. So, it will send the offset to each client in

this case.

(Refer Slide Time: 35:16)

Let us see another critical clock synchronization that is called internal synchronization which

is happening inside the data center that clock synchronization is called data center time

protocol. So, you know that in a data center or in a cloud data center hundreds and thousands

of the nodes they are sending the message with each other through the network that is called

cloud network.

So, these devices are running let us say the protocol and let us see that these particular

devices also need to be clock synchronized. And therefore, data center time protocol is an

essential requirement. So, that all those nodes or the server inside the data center are

synchronized. We are not going in detail but you will see that it uses the internal clock

synchronization and it runs in two phases between two peers that is they are running this

stack.

We are interested only in the physical layer because that is the hardware and that particular

message passed its time exchange its time and now then it will calculate this particular bound

of a precision and accuracy. Now, what we have so far seem is the physical clock

synchronization and there are two types of physical clock synchrony one is the external

synchronization with the universal time clock and this is the internal synchronization

algorithms which we have seen in the terms of data center time protocol.

And here we have seen network time protocol as external synchronization algorithms. In

every method we have seen a nonzero error. So, therefore, you know that you just cannot

seem get rid of these errors because of the message latency which are nonzero. So, how can

you avoid synchronizing the clocks all together yet you are able to use some other method for

ordering the events in the distributed system.

(Refer Slide Time: 37:35)

So, ordering the events in a distributed system without physical clock synchronization is a

method which is widely used in the in various applications. So, let us understand this and it

can be applicable as well in the internet that is a network scenario, internet that is IoT

network scenario. So, in order to order the events across the processes so we consider the IoT

devices running these processes trying to synchronize the clock in an approach.

So, what if we have assigned the timestamp to the events that are not that were not absolute

time, absolute means not according to the physical clock time, as long as these timestamps

obey causality that would work. For example, if an event A causally happened before another

event B then any timestamp of A should be less than the timestamp of B. So, humans are

used the causality at all points of time for example, I enter the house only if I unlock it.

So, without knowing the clock values you know that which event has happened before which

other event. Similarly, if you have received a letter only after you send it so sending of a

letter happened before you receive the letter so without even having the physical clock

ordering the events is possible using the happen before relation and that is called causality

relation.

(Refer Slide Time: 39:13)

So, using this concept of causal relation of ordering the events without physical clock without

physical time is the concept called logical ordering or this kind of ordering is called a

Lamport’s clock and given by a famous scientist, which is called Leslie Lamport. So, Leslie

Lamport has proposed this particular notion which is used almost in all distributed system

and a cloud computing system and even in the IoT systems.

So, about the Leslie Lamport he is an American scientist. And this work of time and ordering

in a distributed system was a seminal work and is being recognized as 2013 Turing award this

is the highest award in computer science any scientists can get.

(Refer Slide Time: 40:11)

So, these are some of this is the paper which has received this particular award the title of a

paper is time clock and ordering of events in a distributed system. Now, let us understand this

work in more detail to appreciate this work and how that is all done without having the

physical clocks synchronized yet you can order the events using the mechanism called

Lampert’s clock.

So, define the logical relation that is called happened before relation among the pair of events

and which is noted down by the that relation happened before relation. So, this happened

before relation follows three different rules, the first says that on any on the same process if

there are two events a and b. So, if you see the local time of a and the local time of b so the

time of a is always less than b this means that a has happened before b.

So, a happened before b if and only if the timestamp of a is less than timestamp b and this

time stamp is taken from the local clock. Similarly, when p 1 sends the message m to p 2. So,

in that case send a message has happened before the receive of a message. So, even without

having clocks synchronized. So, this event can be send and receive can order the event these

are external event and these two events you can also form a transitive relation that if a has

happened before b, b has happened before c, then c, a is happened before c.

Now, these three relations they create a partial order relation among all the events in the

distributed system and this particular relation is applicable in all the events happening in the

distributed system. Let us take this example in this example you have three different IoT

devices let us say p 1, p 2, p 3, at different locations. So, p 1 is generating these events A B C

D E so A is the internal event, B is send off a message.

Similarly, D is the received of a message, E is the sender of a message similarly, P 2 also has

the events happening. Now, you can see that A has happened before B why because it is

internal events. So, that is similarly B has happened before F and A has happened before F

why because A has happened before B is internal event B has send a message so received of a

message. So, sending of a message happened before the receive of a message using

Lampert’s clock rule two. So, if you include this A, B and F so A happened before using

transitive relation. So, likewise you can order the event in this particular manner. So, this is

called a Lampert’s timestamp.

(Refer Slide Time: 43:11)

So, the goal of Lampert’s timestamp is to assign the logical or a Lamport or timestamp to

each events and these timestamps, you know, that obey causality relations using these rules.

So, each process uses a local counter, which is nothing but an integer value initial value of

the counter is 0. So, a process increments it to counter when the send or an instruction

happens at it, the counter is assigned to the event as the timestamp.

So, this is called internal event rule, which we have seen in the previous happened before

relation, which is also defined here in the Lampert’s timestamp. Similarly, the send of a

message event carries its timestamp and receive event carries the timestamp and when the

message is received then the clock can be synchronized using the following rule. So that is

nothing but the maximum of local clock and the message time stamp plus 1 is done.

(Refer Slide Time: 44:16)

Take this example, that initially all three values are 0 clock values. So the timestamp of first

internal event is t s 1 and here t s 1 at p 3 send off an event. So, when this particular message

is received at p 2 so it will carry the timestamp of p of p 3 as 1. So using that particular rule

the maximum of 0 and 1, 1 is coming from this particular message and 0 is the local clock

time so maximum of 0 and 1 is 1 so it will be the value as 2.

So, you can see that from 0, the clock value will be jumped to 2 directly. So, that will happen

here. So, that is what is shown here in this particular example, you can see another example,

that the clock value which is being carried by the send message that is t s 2, which is the

clock value of p 1 and p 1 when it received over here the clock value of p 1 is 2 and the local

clock is also 2. So, the maximum of 2 and 2 will become 2 plus 1 that is called 3. So, this

clock value will become 3.

(Refer Slide Time: 45:38)

So, all of the clock values are calculated here in this case so you can see that this particular

logical clock obey the causality relation and you can order the event here in this case but this

causality is not always applicable on all the events. So, those events which do not obey these

relations then they are called concurrent events here in this case.

(Refer Slide Time: 46:11)

So, pair of concurrent event does not have the causal path from one event to another event.

So, Lamport’s timestamp does not guarantee to be ordered or unequal. Hence, the concurrent

event are not causally related events. So, therefore, with this drawback another time stamp is

being proposed in the distributed system which is called a vector timestamp and it is used in

the cloud databases which we have discussed as the no equal database in the lecture 1.

So, this particular database uses the vector time is time. So, each process uses the vector of

integer clock suppose there are N processes in a group so N elements will be there. So,

process i maintains a vector v i 1 to N so j th element of a vector clock at process i will be of

V i of J is i th knowledge of the latest event happened at process j.

(Refer Slide Time: 47:08)

So, implementing the vector clock so here you can see that on an instruction, on an

instruction or a send event of a process i it increments only it is ith element of a vector clock

and message when it receives a message. So, each message carries the send event send

event’s vector timestamp and both these events are used together to synchronize the clocks

for example on receiving the message at a process i.

So, it is internal event or it is internal clock that is called v i of i will be incremented by 1

whereas, all other clock values in the vector will be now synchronized using this particular

equation that is Vi’s knowledge of all other clock values is a maximum of the clock values

which is brought into by the process by the message and its own knowledge whichever is the

maximum will be taken up except for its own message. So, this is called vector clock and this

we will understand using this particular example.

For example, that p 1 initially all the clocks are 0 0 0. Why because this is the clock value of

p 1, this is p 2, this is p 3, so p 1’s knowledge of p 2 is 0 having it is timestamp 0 and here for

p 3 is 0. Now, if p 1 will do its internal event, then this clock value will be incremented by 1

only. Similarly, when p 1 will send a message so send of an event will also increment the

clock value. So, it will become 2 0 0 and this value will reach over here.

Now, when the value will reach over here, what p 2 will do p 2 has these values 0 0 0 initially

when it receives a message and the message is 0 0 1. So, it will synchronize its clock as this

particular internal event will become 1 0 and this is being seen as the most recent values and

when the message is received over here then this particular value will be updated.

So, how it will be updated you can see that this is the receipt of a message. So, internal event

will increase. So, it will become 2 and what about 0 this particular message is carrying 2 0 0.

So, this is incremented to 2 whereas between 0 and 1 and 0 0. So, this 0 and 1 will be more

updated value over here.

(Refer Slide Time: 50:06)

So, that is what you know that vector clock. So, vector clocks follow the casually related. So,

if the 2 events are causally related, if and only if this particular vector condition holds for two

events, they are concurrent, then these less than relation does not hold so they obey the

causality and if two events are causally related, then you can think of it is happening the other

one.

So, therefore let us conclude with this discussion that internet of things devices that are

wirelessly connected in the mesh often needs the mutual clock time synchronization to enable

the chronological ordering of sensor events coordination of asynchronous processes across

the devices or the network wide coordination of actuators. So, this is very much required,

because when the sensor sends the data it also attaches its timestamp.

So, all the sensor locations all the sensor devices running at different location requires their

clock to be synchronized. So, therefore, different time synchronization algorithms we have

seen which is applicable in the internet of things as well. And we have seen the two

algorithms Christian’s algorithm, Berkeley's algorithm network time protocol, data center

time protocol and we have also seen that there is an error condition and therefore with these

error possibilities and synchronization very frequently and it is taking time in the internet of

things scenarios. So, we have also seen a method of logical clock synchronization in the

distributed system. Thank you.

