
Foundation of Cloud IoT Edge ML

Professor Rajiv Misra

Department of Computer Science and Engineering

Indian Institute of Technology, Patna

Lecture 19

Design of Key Value Stores for IoT Edge Storage

Myself Doctor Rajiv Misra. I am from IIT Patna. the topic of this lecture is Design of Key-Value

Stores for IoT Edge Storage.

(Refer Slide Time: 00:25)

Content of this lecture. In this lecture we will look up the need for design of a data store, that is

databases for IoT applications. In this lecture, then we will discuss the design and insight of these

key value or NoSQL stores that is used for today's edge storage system. then we will also discuss

one of the most popular cloud storage system, that is Apache Cassandra, and the different

Consistency solutions which may be required for different IoT applications.

(Refer Slide Time: 01:10)

So, let us get started with the simple illustration of a data flow in an IoT system. So, initially, the

data is collected from Azure IoT sensor, that is shown over here as a representative figure of all

the IoT sensors. these IoT sensors used to pass through the IoT edge gateway and then we need

to pull the data from IoT edge using stream analytics and then stream that data to and from IoT

edge to the data store or the databases.

So, this particular IoT sensor is the source of this particular data in an IoT system. This particular

data will be now go through the IoT hub, that is the gateway or you can also say that it is an IoT

edge. After that it will be used for the stream analytics, and then this particular data will be

stored in the database for further actions on it. So, therefore for every IoT system, you may

require an appropriate data store or a database. And we have shown you that IoT sensor through

the edge, that is IoT edge, in this example we have taken Azure IoT hub, so Azure IIT hub is

having the edge offering also.

So, cloud and edge, both the offerings are there, and then there will be using that in stream

analytics. And finally, this particular data will be stored into the database whether this database

will be at the edge or at the cloud depending upon the situation. We will discuss this in more

detail how different technologies will provide this kind of sensor data storage.

(Refer Slide Time: 03:46)

So, this is an overall data flow diagram. So, you can see there is an edge, there is a public cloud,

two entity. And here we can say it is a things. So, you can see that the IoT sensor which is

embedded across all the things, will be the source of the data generation. So, the data will be now

either using the data ingestion technologies like Kafka or using telemetry that is MQTT protocol

and rest APIs will be used to pull the data out from the sensor source, and then it will be taken up

into an edge oblique public cloud system.

Now, you can see that this particular data often is called a time-series data and this particular

data sometimes require as the analytical data for the different purposes. So, this data, where once

it is inside the system, immediately if it requires the processing, they are called the hot data. And

for this hot data, there is a requirement that storage has to be scalable horizontally. So, therefore,

this particular type of situation is called the edge datacenter will provide the elastic data store at

the edge also and support the data locality.

Now, crossing this edge when the data moves into the public cloud system, this particular data

will be stored somewhere into the data store. And that is also using the technologies which is

called data lake. So, once the data is stored somewhere, it becomes the issue for cold data

analytics. So, cold data analytics also requires sometimes these Availability and horizontal

scaling. So, that particular data is stored also requires this kind of situations where you require

the enormous amount of resources somehow, because you can see that hundreds and thousands

of IoT devices are sending the data through the edge to the cloud. So, you require both at the

edge, a horizontal scale based the data store.

Similarly, at the cloud also you require that particular system. So, these kind of system which

supports is horizontally scaling or scalability is called the big data platform. So, big data

technologies are supporting this kind of data store which is used for an IoT edge system. Now,

then we can see different kind of connectors are very much needed. One is the connectors for the

public cloud store and the big data store. Similarly, for data ingestion also you require a

connector. Similarly, for big data store, you require a connector. So, all these are specified here

into the public cloud system.

Finally, these particular data which is stored can further be used for model training and

performing the analytics whether it is real time analytics if it is a hot data analytics or it is the

cold data analytics, where you can get the insights at later stage. And then after the inside actions

are to be derived for business intelligence. So, therefore let us get started into more detail about

this.

(Refer Slide Time: 08:00)

So, the most popular databases for IoT applications are InfluxDB, CrateDB, Riak TS, MongoDB,

then RethinkDB, SQLite, Apache Cassandra. To select the right storage for the Time Series data

and in the IoT domain use case, it depends upon the data access methods which is given as

follows. So, hot database means typically used for the data that is frequently being queried and

updated. And as the data enters into this system of edge and cloud these kind of queries are

analysis is to be supported instantly.

So, they are also good choice for storing the data as they provide read and write capabilities with

little latency at a low cost. So, when choosing the hot database, we have to consider several

important features such as querying ability, messaging/queuing capabilities tiered memory

models and so on. Now, the next important store is called cold databases.

So, they store the information in their original state with little to no changes made thereafter. So,

in contrast to the real time data store these kind of data which is called the cold storage requires

the huge storage volumes and often being used for model training of a machine learning models

at a later point of time.

(Refer Slide Time: 09:42)

So, now let us go into more detail about cold storage data. Cold databases will use the

technologies such as NoSQL with a built-in sorting. So, the examples of such technologies are

BigTable, HBase, Cassandra, DynamoDB, and they are often used to store the time series data

with a huge volume involved within it. So, this particular kind of storage which is required for

IoT system, they are extremely and well scaled for the writes. And these particular different

kinds of analytics are not supported and not efficient sometimes, but nevertheless it gives a way

for scalable writes in very efficient manner.

So, NoSQL purpose-build time series databases are also available. So, there are several engines

which supports for time series databases, and most of them are NoSQL. So, we are going to

discuss them in more detail. NewSQL in-memory databases. So, in-memory nature of SQL

databases increases their ability to handle fast data ingestion, SQL interface enriched by the time

bucket normalization support and so on. So, these are very much required for to supporting up as

the infrastructure for analytics capabilities.

So, the cloud time series platforms which different cloud vendors they support, such as Azure

and AWS, they have recently released their similar databases that is called Azure Time Series

Insights and Amazon Timestream. All these platforms supports time series data storing,

visualization and other capabilities for querying. Now, they have been built in separation of the

data between hot warm and cold storage to make the data store and retrieval well balanced from

the cost of ownership perspective.

(Refer Slide Time: 11:52)

Let us see this kind of example of such situations. So, in this continuation, we are considering let

us say a use case of IoT data analytics. And let us use a fitness tracker. Normally, it comes as an

IoT gadget which people can wear and then these particular sensors within it can send the data

which is now further processed as the IoT data analytics.

So, the data set consist of a set of observations such as this particular data will contain the metric

name generated by the sensor or edge such as heart rate, elevation, steps and so on. These metric

values which are generated by this sensor bound to the point in time. So, therefore timestamps

are also to be attached with these kind of fitness tracker generated data set. Now, the tags and the

context description in which a given sensor is generating the data such as device model,

geographic location, user, activity type is also to be included by these IoT devices.

(Refer Slide Time: 13:10)

Now, then, this particular data required some functional needs for data retrieval. So, let us see a

very basic level of data retrieval includes the random data access for a particular point in time

and return the proper metric value. Similarly, a small range also sometimes based query is

needed and return the sequential metric values.

(Refer Slide Time: 13:36)

Middle level, that is the time window normalization applied technologies or techniques to be

supported for the measurement events usually supported, supposed to be triggered on predefined

recurrence basis but they are always deviation in the data points timings. That is why it is highly

desirable to have these capabilities around and predefined time windows to normalize this time

series data.

So, mid level database capacities such as a flexible filtering and flexible aggregation, this is

sometimes needed. For example, when you say flexible filtering we mean that filter the data

point based on predicate on tags and context attributes. That is filtering data points by some

region, user or activity type flexible aggregation we mean that grouping and aggregation on tags

and context or their combinations. That is, maximum heart rate by region, activity type and so

on.

(Refer Slide Time: 14:47)

Whereas the advanced level requirement comes in the form of sequential row pattern matching

and checking if the sequence of events matches the particular pattern to perform the introspection

and advanced diagnosis. So, diagnosis includes some of these questions which require to be

answered during the analysis stage. Did some pattern of measurement proceeds specific event,

what measurements might indicate the cause of some events such as failure? So, all this is

required and analysis into the time series data.

(Refer Slide Time: 15:26)

And that requires the storage, which has this kind of querying very efficiently or retrieving the

data efficiently. So, therefore it requires stable storage ability to handle big volumes, it requires a

scalable writes, that is ability to handle the big amount of simultaneous writes. So, this is closely

related to the real time data access and then it is also to be supporting the scalable reads, that is

the ability to handle big amount of simultaneous reads, and high maturity that is in the presence

of market and community.

(Refer Slide Time: 16:05)

So, therefore let us discuss a particular design of databases which can support all these

functionalities, and that is called Key-value abstraction. So, what we mean by the key-value

abstraction? The key-value abstraction means that from the, there is a key associated with the

value that is the data stored is organized in this particular form, that is key-value store.

So, what do you mean by the key for a particular business? We will see that if it is a

flipkart.com, key means the item number and value means the information about those items.

Similarly, if it is a easemytrip.com, the key means that flight number and the value means the

information about the flight, availability and all other details. Similarly, twitter.com, the key will

become the tweet id and the information about the tweet. mybank.com is an account number and

the information about it.

(Refer Slide Time: 17:03)

So, this key-value store becomes a dictionary data structure which supports the operations like

insert, lookup and delete by key. And these typical examples are the hash table or the binary tree.

But this particular dictionary data structures, what is needed here in this particular situation of

supporting the IoT data store, and also of a big size that is a big data store, using supported by

the big data technologies. So, they are required to be distributed. So, that kind of data, dictionary

data structure which is centralized is not going to be used in the IoT data store. It has to be a

distributed one.

So, the distributed data store which supports this distributed technologies, is that the distributed

hash table implementation, but that is on the peer-to-peer system design. So, the design of these

data stores are quite different and they are called distributed hash tables. So, key-value store

reuse many technologies from the distributed hash table. So, that we are going to see.

(Refer Slide Time: 18:20)

So, it is a kind of database such as relational database management system, was there around for

the ages, and MySQL is a popular interface of accessing it due to the very close to all the

programmers around the world, using this MySQL interface. So, data is stored in RDBMS in the

form of table, schema-based it is, and each row in a table has a primary key that is unique within

that particular table and is queried using structure query language and supports the join. So, this

is the traditional RDBMS, we have talked about, but this is not going to be used or useful in this

IoT data store which requires a big data technologies for this databases.

(Refer Slide Time: 19:10)

So, in the relational databases you know that the tables, the data is organized in the form of a

tables and these tables are called, one of these attribute is called the primary key and one more

attribute is called the foreign key which will become the primary key of another table and it

supports the join operation.

(Refer Slide Time: 19:33)

But it will mismatch with the today's workload which is an IoT data store workload, which is

categorized as the IoT data which is a large and unstructured. That is comes from, come out with

the schemas where the data can fit. So, this particular type of workload has lot of random reads

and writes coming from millions of IoT devices. Sometimes they are write-heavy and the foreign

keys are rarely used and join is infrequent.

(Refer Slide Time: 20:12)

Therefore, the today's workload which is an IoT data is required say speed and avoid a single

point of failure and also it is a low cost of operation to the ownership, fewer administration and

incremental scalability scale out and not scale up. So, when you say scale out, that means it is

horizontal scaling. Horizontal scaling means as more resources are needed, a board system in the

form of nodes can be added, and this kind of requirement-based scaling is called horizontal

scaling.

Whereas scale-up means that if you have a system, let us say desktop, you require more

resources, then you have to replace the desktop with, let us say that, a bigger machine. So, that is

called scale-up technologies which is not required in support of today's workloads. Now, another

thing is about incremental scalability that is being supported by horizontal scaling.

And fewer administrations means most of the operations are automatic and the total cost of

operation, total cost of ownership is there and therefore lot of cloud providers, they provide this

kind of solutions. Let us say Azure and AWS are some of the popular services by the cloud

providers, avoid single point of failure and speed. So, IoT data store is this kind of workload

which requires this kind of features to be supporting.

(Refer Slide Time: 22:06)

So, scale up and scale out. So, scale up is not needed in these kind of workloads, which is an IoT

workload. Scale out is there. Scale out means the incremental grow your cluster capacity by

adding more COTS machine, that is Component off the Shelf machine. This is the cheaper way

of providing more resources for storage, and also it is, can work over a long duration and phase

in a fewer, that is the faster machines, as you phase out with the older machines. And most of the

companies who runs the datacenter and cloud they use, they follow this scale out technologies.

(Refer Slide Time: 22:52)

Now, this key value stores also supports a model which is called a NoSQL data model. Let us

understand what you mean by NoSQL. So, the full form of NoSQL is called Not Only SQL, and

this necessary API is to access this information is called get by key and put by key and value. So,

some of the extended operations are for example, CQL in Cassandra key-value stores.

So, in NoSQL, the tables are called sometimes Column Families in Cassandra and Table in

HBase and Collection in MongoDB. So, table has different names in NoSQL database systems or

in a data model. So, the again I am repeating, Column Families, that is nothing but a table in a

Cassandra, a Table as a table in HBase, a Collection as a table in MongoDB. So, all these are

some form of a table but with a different name in these kind of NoSQL database.

RDBMS has a table but here, these tables are to be for unstructured data. So, maybe the data is

unstructured, may not have the schemas and some columns may be missing and some rows may

be missing. So, this is not fit for the RDBMS. So, RDBMS type of databases is not the

requirement of supporting this IoT use case, and it requires this kind of data store which is called

NoSQL data store. Similarly, this NoSQL data store also does not support require the join or a

foreign keys and have the index tables like RDBMS.

(Refer Slide Time: 24:45)

So, these particular details are explained here in this following illustration. For example, if the

data is unstructured, you mean that no schema can be imposed and the data is organized in the

form of a key-value store. But let us take this example of a table, let us say Cassandra Column

Families. So, user table will have this following attribute, user id will become a key and all other

attributes will become the value. And here, since no schema is post, so some of the row entries or

column entries may be missing. So, here you can see these are the column, from some rows, they

can be missing and that is not a problem in NoSQL or unstructured data model.

(Refer Slide Time: 25:35)

So, these are all called column-oriented storage, NoSQL system often use the column-oriented

storage. RDBMS store the entire row together, that is row-oriented storage is RDBMS which is

not used much for IoT scenarios. So, NoSQL system typically store the columns together or a

group of columns together and entries within the columns are indexed and easy to locate given a

key and vice versa.

So, why this column-oriented storage are so useful? It is useful for doing the range queries

within the column or very fast, and you do not have to fetch the entire database. Only those

column entries are need to be fetched. For example, if you say that get me all the blog ids from

the block table that were updated within the past month. So, it will search in the last updated

column and fetch the blog id and so on.

(Refer Slide Time: 26:35)

Let us go and see the design of Apache Cassandra.

(Refer Slide Time: 26:40)

So, Apache Cassandra is a distributed key-value store. It is intended to run in a datacenter, also

called DCs and originally, this Cassandra is designed at the Facebook. It is open sourced later.

Today, very important Apache project, some of the companies that use Cassandra in the

production clusters are blue chip companies like IBM, Adobe, HP, eBay, Ericsson and newer

companies like Twitter and non-profit companies like PBS Kids. Netflix uses Cassandra to keep

track of positions in the videos.

(Refer Slide Time: 27:18)

So, how do you decide which server a key-value store resides on? So, that means you say that

this Cassandra data store is using the entire cluster and entire cluster means it will be having

hundreds and thousands of nodes in the cluster. So, the question is how do you decide which

server this key-value Store resides on? That is called key to the server mapping inside Cassandra.

(Refer Slide Time: 27:48)

So, key to the server mapping inside Cassandra is supported with the concept which is called a

ring based DST, without other details of DST uses like finger table or the routing table. So, key

to the server is mapping is called the partitioner in Cassandra. So, this is the example which you

can see that if let us say you want to read and write a particular key that is K13, so this particular

request goes through a client module and this particular ring will have a coordinator designated

coordinator. So, it will intercept this client request, which is running at the node N80 where it

gets the, to resolve the key K13 what it will do, that is what is shown over here.

So, K13 will be now put on a hash function. So, K13 will be now resolved for N16. So, the data

which is stored here in the form of a ring is replicated also. So, if it is K16. So, the primary copy

will be in the N16 node. And the next node, that is N32 will have its secondary replica.

Similarly, N45. So, there are three different entries. One entry will be given by hash function. So,

if you say that K13, if you apply to the hash function, it will give this kind of N16 entry, and it

will give N32, so which is shown over here. So, N32, and then maybe a backup replicas also will

be supported.

(Refer Slide Time: 29:40)

Now let us see if I say that a particular key-value store or a key-value entry is stored not at one

place, but it is replicated. So, what is that replication strategy which is also called the data

placement strategies and this is very much needed to avoid the single point of failure. So,

replication strategy which is followed, which is applied in Cassandra are of two types. The first

type is called simple strategy, the other is called network topology strategy.

Simple strategy uses partitioner of which there are two kinds of partitioner, one is called

RandomPartitioner which is called like hash partitioning. The other is called

ByteOrderPartitioner which assigns the range of keys to the server. So, ByteOrderPartitioner is

easier for the range queries. So, for example if the query is get me all the Twitter users starting

with A to B. So, this is a kind of range query, and ByteOrderPartitioner is very good in resolving

this range queries.

The other type of strategy is called the random topology strategy. This strategy is used for a

multi-datacenter deployment. So, it says that two replicas per datacenter and the third replica will

be on another datacenter. So, per datacenter, first replica will be placed according to the

partitioner, then you go around the clockwise ring until you hit a different track. So, therefore, if

you have three different replicas, so the first replica if it is pointed to a particular datacenter, so

this datacenter will have two replicas which is organized in the following manner.

So, it has to be stored on let us say, first rack and then it will be stored on another rack in the

same datacenter. So, the third replica will be stored on another datacenter. So, a particular key-

value store, key-value data will be stored in three different replicas which are explained here

with this particular rule. So, two replicas per datacenter and third replica will be in a different

datacenter. Now, per datacenter the first replica will be placed according to the partitioner that is

what we have seen.

And then you have to go around, go clockwise around the ring until you hit a different rack. So,

that will be in the same datacenter but on a different rack. So, if a rack is not working, even then

you continue to access the data if the entire datacenter is down, you can continue accessing the

data because it is available in the other. So, this is called NetworkTopologyStrategy and it is

quite different than the simple strategy.

(Refer Slide Time: 32:45)

Snitches means the map from IP to the racks and datacenter. So, this is the next level of mapping

which is needed from IP addresses to the racks and datacenter. So, let us see how that is done in

Cassandra. So, this kind of mapping is configured in configuration file that is called

Cassandra.yaml. Now, some options are there for the snitches. The first is called SimpleSnitch.

That is, this SimpleSnitch is unaware of topology, that is rack-unaware snitch.

Rack-unaware snitch assumes the topology of the network by octet of servers IP addresses. For

example, if the server IP address is 101.102.103.104, then you can understand that the first octet

is let us say x, but the second octet, 102 represents the datacenter and the third octet represents

the rack within the datacenter, and the fourth octet represents the node within the rack.

So, this kind of rack inferring is snitch. That means from the IP address you can know what is

the topology of that particular network where this particular mapping of IP will takes place into

the. So, this particular property file snitch uses the configuration file. So, let us say that you have

an EC2 snitch. EC2 is a particular service in AWS that is Amazon Web Service cloud offering.

So, EC2 snitch uses EC2, and EC2 regions is nothing but the datacenter and the Availability

zone is nothing but the rack. So, therefore EC2 snitch is an example of rack inferring snitches.

(Refer Slide Time: 35:00)

So, let us see about the writes. So, writes need to be lock-free and fast, no reads or the disk seeks

are needed. So, when a client sends the write to one of the coordinator node in Cassandra cluster,

then the coordinator may be per-key, per-client or per-query basis, that we have shown you in the

previous diagram. So, per-key coordinator ensures the writes for the keys are serialized and the

coordinator uses partitioner to send the query to all the replica nodes responsible for that

particular key.

So, when an X replica respond, the coordinator returns an acknowledgment to the client. So,

what is this X? So, to make it more understandable is that you know that every data is replicated

three times. Now, if the value of X is less than 3, let us say, 2, that means if the two replicas, if

they respond to the coordinator, if the two replicas respond not, but not three, even then if the

value of X is set as 2. So, this means the coordinator will return an acknowledgment to the client

and rest of the third replica will be handled later point of time by the coordinator.

(Refer Slide Time: 36:40)

Now writes, always writable, that is Hinted Handoff mechanism is used for the write operations.

So, if any replica is down, the coordinator writes to all the other replicas and keep the write

locally until the replica comes up. So, when all the replicas are down, the coordinator, that is the

front end buffers the write for the first few hours.

So, this is called Hinted Handoff mechanism. Now, then, we are going to see in the write one

data, one ring per datacenter is followed as the resources for data storage. So, per datacenter

coordinator is elected to coordinate with other datacenter and the election is done via the

Zookeeper which runs Paxos, that is a consensus variant protocol.

(Refer Slide Time: 37:40)

So, write at the replica node. On receiving the write, it locks it to the disk commit log for failure

recovery, make the changes in the appropriate memory table called memtable. So, in-memory

representation of multiple key value pairs typically, it is used the append-only datastructure, that

is very fast to support the fast write operations. Similarly, the cache that can be searched by the

key and write-back as opposed to the write-through. These are some of the important

implementation details which Cassandra uses to make this very fast.

So, later the memtable is full or old, then it will be flushed to the disk. For that, as far as the data

file is concerned, it is nothing but supported as the SSTable, which is called Sorted String Table,

that is a list of key-value pairs which are sorted by the keys. SSTables are immutable. That is,

once created, they do not change, and index file, that is an SSTable of the key and the positions

in the SSTable pair. It also uses the Bloom filter for efficient searching. Why? Because you

know that o many data files will be now stored, so many SSTables will be created.

(Refer Slide Time: 39:00)

So, we are skipping the Bloom filter, but nevertheless, Bloom filter will make it the retrieval of

that particular key very fast through the SSTable. So, Bloom filter is a compact way of

representing a set of items and checking for its existence in the set is quite cheap, and some

probability of false positives are there. So, that is that the item not in the set maybe check true as

being in the set, but it is supporting never the false negatives. So, false positives is doable in

most of the applications but not the false negatives. So, Bloom filter is good to support the fast

retrieval.

(Refer Slide Time: 39:45)

Now then, there is a operation which is called the compactation. So, data updates accumulate

over the time and SSTables and logs need to be compacted. So, the process of compactation,

merges the SSTable by merging the updates for a key. It runs locally and periodically at each

server.

(Refer Slide Time: 40:10)

The deletes. So, deletes of an item is not done right away but it will be add to the tombstone, to

the log and eventually when the compactation encounters tombstone, it will delete the item.

(Refer Slide Time: 40:20)

Reads. Similar to the writes, but except the coordinator can contact X replicas, that is in the same

rack. Coordinator sends the read to the replicas that have responded quickest in the past. So,

when X replicas respond, the coordinator returns the latest timestamp value among those X. So,

X is configurable. So, for example if you have three replicas and if let us say that the quickest

one has responded and the value of X is equal to 1, then this particular information will be

passed on to the client, and the read operation is completed.

Now, coordinator also fetches the values from other replicas. So, to check the Consistency in the

background, it will initiate the read repair if any two values are quite different. So, this

mechanism seeks to eventually bring all the replicas up to date. So, at a replica, the node may be

split across multiple SSTables. That is quite possible. So, reads need to touch multiple SSTables

and the reads may be slower therefore, than the writes, but is still quite fast in comparison to the

RDBMS.

(Refer Slide Time: 41:41)

So, membership. So, any server in the cluster could be the coordinator and we have seen how the

election of that coordinator happens. So, every server need to maintain a list of all other servers

that are currently in the server and the list to be updated automatically as the server joins leaves

or fails.

(Refer Slide Time: 42:00)

So, this cluster membership is done through the protocol which is called a Gossip-Style protocol.

So, Cassandra uses gossip-based cluster membership.

(Refer Slide Time: 42:10)

Cluster membership means that it has to keep a list of, or it has to update the operation such as

when a server joins, leaves and fails in this particular ring, that is done by the cluster

membership.

(Refer Slide Time: 42:25)

So, Suspicion Mechanism is also there in the Cassandra. Suspicion Mechanism to adaptively set

the timeout based underlying network and the failure behavior. So, Accural detector, means

failure detector outputs a value representing the suspicion and the application certain appropriate

threshold for that. So, we are not going in detail about PHI calculation. So, that is used for the

gossip protocol settings.

(Refer Slide Time: 42:55)

So, therefore let us compare the Cassandra versus RDBMS. So, MySQL is one of the most

popular at a while. So, if let us say that we want to compare the Cassandra versus RDBMS on

data which is called 50 GB data. So, what you will, what we have found out that MySQL writes

usually takes 300 millisecond on average. Reads in MySQL, that is in RDBMS takes 300

milliseconds, whereas in Cassandra, the writes will take only 0.12 milliseconds on an average.

So, write is much, much faster compared to the RDBMS. Similarly, reads is 15 milliseconds in

Cassandra whereas your RDBMS supports 350 milliseconds, that is much, much at a lower time,

that is very quick operation. So, magnitude of orders, of magnitude this Cassandra is faster. So,

what is the cache and what do we lose out of this particular fast access?

(Refer Slide Time: 44:15)

To understand this difference we have to understand the theorem which is called a CAP

Theorem.

(Refer Slide Time: 44:20)

So, CAP Theorem is proposed by the Eric Brewer from Berkeley, subsequently which is proved

by Gilbert and Lynch. So, in a distributed system you can satisfy two out most three guarantees.

So, what are these three guarantees which only two of them can be supported according to the

CAP theorem? So, the first one is called Consistency, that is, the node sees the same data at any

time or the reads return the latest written value by any client. That is called Consistency.

Availability means the system allows the operation at all points of time and the operations return

quickly, that is called Availability. Third one is called Partition-Tolerance, that is, the system

continues to work in spite of uh network partitions. So, these three are important factors, but

CAP theorem says that not three or not all three can be guaranteed, only two out of the three is

guaranteed in this distributed system situation.

(Refer Slide Time: 45:22)

So, let us see which is more important for different applications. So, let us see one by one.

Availability means that the reads and writes will complete reliably and quickly. So,

measurements have shown that 500 milliseconds increase in the latency for the operations at

Amazona.com or at Google.com can cause revenue 20 percent drop. So, why? Because at

Amazon, each added milliseconds of the latency will imply a revenue loss. Why? Because the

customers will churn and they will prefer some other website which is very fast responding.

So, Availability is most important that some of these e-commerce websites or let us say that for

IoT data also if the analytics is so important that is it is monitoring let us say this logistics of this

company called Amazon.com and let us say that this particular latency is added that is it is

showing, so Availability has to ensure at all points of time. Similarly, the user cognitive drift. So,

if more than a second elapse between the clicking the material appearing, and so users mind will

change.

So, this is governed by thing which is called service level agreements. So, the providers, they

have to predominantly deal with the latencies which are faced by. So, Availability again is an

important factor in running this particular business or on this data store, using the data store. So,

the functionality of the data stored is very important because all the data is to be fetched out of

this data store. So, Availability is a key aspect.

(Refer Slide Time: 47:16)

The second important aspect is called the Consistency, that is, all the nodes see the same data at

any time or the reads return the latest return value by any client. So, this is very important as far

as the banking applications are concerned. So, when you access your bank or the investment

account by multiple clients, whether it is a laptop or you are accessing through a mobile phone,

so you want these updates to be done from one client to be visible to the other clients.

So, whether, that means whether you are using the desktop or a laptop, all the updates has to

show the same data at any point of time. So, when thousands of customers are looking to book a

flight and all the updates from any client should be accessible by the other. So, this Consistency

also is sometimes important but in the situations like banking applications, reservation situation

and so on.

(Refer Slide Time: 48:01)

So, let us see the third aspect which is called a Partition-Tolerance. Partition can happen across

datacenter when the internet gets disconnected. That is due to the internet router outages or

under-sea cable cut or DNS is not working. So, these partitions can happen across the datacenter

due to these kind of disruptions. So, partition can occur within a datacenter also. For example,

when in the condition of a rack switch outage. You still needs a desirable system to continue

functioning normally under any of these situations of the outages.

(Refer Slide Time: 48:50)

So, the CAP Theorem Fallout says that the Partition-Tolerance is essential in today's cloud

computing and all the services which is supported whether it is a IoT system and so on. So, the

CAP theorem implies that the system has to choose between the Consistency and Availability.

So, once you fix that Partition-Tolerance is an indispensable characteristics, so therefore now

you have to choose between the Consistency and Availability.

Now, let us see the Cassandra. Cassandra chooses Availability over the Consistency and

Consistency, it does a compromise, and it is called eventual Consistency. So, therefore

Cassandra says that it compromises with the Consistency and the Consistency which Cassandra

provides is called eventual or the weak Consistency whereas Availability and Partition-Tolerance

is provided. So, traditional RDBMS has the strong Consistency over Availability under the under

a partition.

(Refer Slide Time: 49:52)

So, let us see the CAP Theorem Tradeoff. So, Consistency, Partition-Tolerance and Availability

is shown by this particular triangle. So, let us see any two, you can choose out of 3. So, let us see

about the Cassandra. So, Cassandra chooses Partition-Tolerance and Availability, which is

shown over here. Similar data base or NoSQL data store are RIAK, Dynamo, Voldemort. So,

these are all systems which are used in IoT data store.

Now, regarding Consistency. So, if the Consistency is important, the banking application. So, if

let us say Consistency is needed and Partition-Tolerance is a must, then it has to now

compromise with the Availability. So, therefore you might have seen in the banking online

application that the server is not available. But that means whenever it is available, it has to

ensure the Consistency and Partition-Tolerance. So, the example of a databases which stores or

which satisfies Consistency and Partition-Tolerance, they are HBase, then HyperTable, BigTable

and Spanner. So, most of these are from Google.

If Consistency and Availability, both are to be ensured, then it is RDBMS. So, therefore starting

point for NoSQL revolution is that it is a distributed storage system and can achieve at most two

out of three, that is called a CAP theorem. So, when Partition-Tolerance is important, you have

to choose between the Consistency and Availability. So, we have understood very details about

the CAP theorem tradeoff.

(Refer Slide Time: 51:40)

So, let us see how the eventual Consistency is supported in the Cassandra. So, eventual

Consistency that is if all the writes stop to a key all the writes to a key, then all its values, that is

replica, has to converge eventually. This is means that eventual Consistency. Now, if the writes

continue then the system tries to keep converging. So, there will be a wave of update values

which is lagging behind the latest value sent by the client, and eventually they are trying to catch

up.

So, eventually it will achieve the Consistency but not instantly. So, may sometimes written the

stale values to the client if many back-to-back writes are there, but it will work fine for this kind

of situation, let us say IoT and all when there are few periods of the low writes and system

converges quite quickly.

(Refer Slide Time: 52:30)

So, if you see RDBMS versus key-value store, so RDBMS supports the ACID properties for the

transaction, that is Atomicity, Consistency, Isolation and Durability. Now, in contrast, if you see

the Cassandra or a key-value store like Cassandra, it uses for the transaction, the property which

is called a BASE property. So, BASE stands for Basically Available Soft-state Eventual

Consistency. Means that it ensures the Availability, it ensures the Partition-Tolerance, but the

Consistency is eventual. So, BASE means Basically Available Soft-state Eventual Consistency,

which prefers Availability over the Consistency.

(Refer Slide Time: 53:10)

So, Consistency in Cassandra. If you see, Cassandra has the consistency levels. So, clients

allowed to choose the consistency level for each operation that is for the read and write. So,

consistency level, the client can choose, that is configurable. If it is ANY, that means any server

may not be, may not be the replica, that is the fastest one, if the coordinator caches the write and

quickly replies to the client.

So, ALL means all the, for all the replicas, the update has to be there. So, that means it is the

condition of Consistency, ensuring strong consistency, but it will be quite slow. So, ONE means

that at least one replica, it is faster than all, but cannot tolerate a failure. So, there is a QUORUM.

So, QUORUM across all the replicas in all the datacenters.

(Refer Slide Time: 54:06)

So, in a nutshell, so quorum means that a majority which is more than 50 percent. So, any two

quorums may intersect, you can see over here. So, this example shows the five different servers.

So, the majority among five is at a time, three. So, the Client 1 does the write in the red quorum.

So, this is the red quorum. Then Client 2 does the read in the blue quorum. So, at least one server

in the blue quorum returns the write. So, the quorum are faster than all but it still ensures the

strong consistency. Five replicas of a key-value store is shown in this example.

(Refer Slide Time: 54:48)

So, quorums, let us go in more detail. So, several key-values stores like NoSQL, Riak and

Cassandra use the quorums for the read operation. So, client specifies the value of R here in this

case which is less than or equal to N, that is the number of replicas of that key and R is the

consistency level. So, the coordinator waits for R replicas to respond before sending the result to

the client. In the background, the coordinator checks for the consistency of the remaining N

minus R replicas and initiate the read repair for eventual consistency.

(Refer Slide Time: 55:21)

So, as far as the writes are concerned, writes comes in two flavors. So, client has to specify the

value of W, which is less than or equal to N. So, at W means the write consistency level. So,

client writes a new value to W and to W replicas and returns in the write. So, two flavors are

there. So, coordinator blocks until the quorum is reached. Asynchronous means that it just writes

and returns. So, it depends upon these kind of settings.

(Refer Slide Time: 55:48)

So, R is the read replica count, W is the write replica count. So, two necessary conditions has to

ensure that read plus write should be greater than N and W is more than N by 2. So, we have to

select these values based on these applications when W is 1 and R is equal to 1, then very few

writes and reads are there. So, and when W is N and R is 1 then it is great for read-heavy

workloads.

When W is N by 2 plus 1 and R is also N by 2 plus 1, it is great for right-heavy workloads. And

when W is 1 and R is equal to N, it is great for write-heavy workloads with mostly one client

writing per key. So, these are all very much design issues which are needed to support the IoT

applications.

(Refer Slide Time: 56:40)

So, Cassandra Consistency Level. So, Cassandra is allowed to choose these consistency levels

which we have already, some of them we have already stated about the QUORUM and the

LOCAL_QUORUM quorum and EACH_QUORUM.

(Refer Slide Time: 56:53)

So, the types of Consistency which Cassandra offers is called Eventual Consistency. Now, you

may ask are there any other type of weak consistency models?

(Refer Slide Time: 57:03)

So, let us go ahead with the Consistency models which are supported across different NoSQL

data stores including the IoT data bases.

(Refer Slide Time: 57:06)

So, Consistency level, on one side is a strong consistency, the other side is called eventual

consistency. Sometimes, if it is closer to eventual consistency, then the reads and writes are

quite, then the faster reads and writes, it will support. If it is towards strong consistency, then

reads and writes are slower but it will support the strong consistency. So, it is a spectrum of

different consistency models between eventual and strong.

(Refer Slide Time: 57:40)

So, Cassandra offers eventual consistency. So, if the write to a key stops, all replicas will

converge. Originally from Amazon's Dynamo and LinkedIn's Voldemort systems supports that.

(Refer Slide Time: 57:54)

Now, let us see what are the other consistency model which are now available or evolving. So,

very close to eventual is called Causal Consistency, then Red-Blue, Probabilistic, Per-Key,

CRDT, there are many other models available. So, there are many more databases available in

the, by different providers. It depends upon the application.

(Refer Slide Time: 58:18)

So, Per-Key sequential is all the operations have a global order. CRDTs means Commutative

Replicated Data Types. So, data structures for which the commutated writes give the same

results. So, for example the integer values, if it is, then the operations plus 1 is allowed whether

A plus B or B plus A. So, commuted operations, so, commutative operations are very much

needed to support this type of consistency. So, eventually, effectively servers do not need to

worry about these consistencies.

(Refer Slide Time: 58:56)

Red-Blue Consistency, that it will rewrite the client's transaction to a separate operations in a red

operations versus the blue operations. So, blue means it can be executed in any order in any

datacenter. Red operations need to be executed in some order.

(Refer Slide Time: 59:11)

So, these are all, this is called Causal Consistency, that is the reads respect the partial order based

on the information flow. And this is developed by Princeton, CMU. It is shown over here.

(Refer Slide Time: 59:25)

So, Strong Consistency Model supports the options of property which is called Linearizability.

So, each operation by the client is visible or available instantaneously to all other clients. So, this

is called Linearizability. So, instantaneously is in the real time, so without any lag. So,

Sequential Consistency, which is supported by the Lamport is the result of any execution is the

same as if the operations are all the processors are executed in some sequential order and the

operations of each individual processor appears in this sequence in the order specified by the

program.

So here, the, to find out the value, the reasonable ordering of the operations can be, can reorder

operations that obey consistency at all the clients, across the clients. So, the transaction, that is

the ACID properties if let us say that you want to follow for NoSQL databases or then a new

kind of development which is happening around the cloud providers. So, they are calling it as

NewSQL.

So, this is, NewSQL means that it is the NoSQL data store and also it supports the ACID

properties. So, the examples are Hyperdex by Cornell, and Spanner by Google and Transaction

chains by the Microsoft Research. So, these are the newer developments called NewSQL. So, we

have so far seen the NoSQL and newer SQL is in line.

(Refer Slide Time: 1:01:14)

So, let us conclude this is that. So, we have started with the motivation of providing the storage

technologies for IoT workloads. So, what we have found out is that this hot data analytics, cold

data analytics, these are some of these and warm data analytics, the three type of analytics is

required to be supported, and for that storage system technologies are required in place. So, for

IoT, let me write down, IoT data stores requires hot data analytics, cold data analytics and warm

data analytics.

So, what we have so far seen to support that, we have seen here the design of IoT databases and

in that line, sometimes traditional databases or RDBMS can also be used which is having the

strong consistency property and offer the ACID properties. However, the, today's workload

which is so many number of sensors are sending the data to the cloud requires a time series data

to be stored somewhere. Do not require these strong guarantees but do but do need fast response

time, that is, the Availability.

Unfortunately, the CAP Theorem says that these all three, that is Consistency, Availability and

Partition-Tolerance is not possible for all three to be abide by. Therefore, we have seen a design

of a system that is the key-value in store that is called NoSQL system by the Cassandra, which

offers BASE property, Basically Available Soft-state Eventual Consistency.

And this kind of system which is widely used in many of the production clusters, and also is, can

be used here for IoT data store. So, it supports the eventual Consistency and a variety of other

Consistency models can also be tunable here in Cassandra, that we have seen. We have also

discussed the design of Cassandra and other different consistency solutions which is applicable

for IoT data store. Thank you.

