
Foundation of Cloud IoT Edge ML

Professor Rajiv Misra

Department of Computer Science and Engineering

Indian Institute of Technology, Patna

Lecture - 16

Hot Data Analytics for Real Time Streaming in IoT Platform

I am Doctor Rajiv Misra from IIT Patna. The topic of this lecture is Hot Data Analytics for

Real Time Streaming in IoT Platform.

(Refer Slide Time: 0:24)

In this lecture, we will discuss real time data processing in IoT Edge platforms with Spark

Streaming and Sliding Window Analytics, you will also discuss the case studies based on a

particular use case that is with Twitter sentiment analysis using the streaming.

(Refer Slide Time: 0:46)

Let us give you IoT platform and overview which we have already covered. So, it is a recap

that this particular IoT platform is divided into the things that is then coming the IoT platform

and after that this edge on IoT Edge is being added. So, therefore, these sensors and actuators

are part of these things and when they will ingest the data it goes into the cloud through the

edge. So, the connectors which are there for data ingestion, so, data ingestion will happen

using the Kafka connector or MQTT streams, this particular data stream is put into the system

that is the cloud IoT platform.

Now, then that this is the routine that is called Real Time Data Processing, if it is the hot path

data analysis, it will be performed using the stream analytics which we are now covering up.

So, for this there will be the tools which are called Kafka, which we have covered. So, this

will ingest the data for an enabling this real time data processing. So, we are going to cover

for this part, which will be performed in the cloud that is using the Spark Streaming this data

analysis will give the insight and this in turn further be used by business intelligence for the

action part.

So, therefore, finally the end use is with the consumers who will be the beneficiary for

making all the decisions which is taken by. So, therefore, there are three types of data flow

which we will cover here. The first one is called hot path data analysis. So, data streams as it

comes, it will put in the real time data processing using Spark Streaming which we will cover

besides this hot path, let me tell you about that, we are also having two more type of data

analysis that is called cold path that is a form of batch processing.

When you say batch processing that means, data will be put at the rest in one of these

database technologies. And then, using this particular data at a later point of time, we will be

performing various kind of insights and business intelligence called cold path. Warm path is

to do the small batch processing in the batches of a small part will be taken up for this

particular analysis comes in between the hot path and the cold path analysis.

(Refer Slide Time: 3:57)

So, the topic which is kept here in this lecture is dealing with the hot path analysis. So, data is

routed to three different paths. One is called hot path or cold path or a warm path. So, hot

path data is the data that is processed as it is ingested into the system, that is the stream

analysis is to be done for hot path data. And that is to be done in the real time. So, as it gets

processed within the seconds of it is happening. So, when the message hits the hot path, it is

processed and is presented to something in the consumption layer.

So, consumption layer will consume that processed information and this is called the hot

path, the output of the hot path to the cold storage system or let us say that storage system to

make it persistent and is consumed by these API’s. So, the data which is written in the real

time, but API’s might be coding that particular data that was written an hour ago in the batch

mode for this hot path analysis.

So, the main thing about the hard part is that when you are processing the data in the real time

it is happening however, when it is consuming that might be acquiring old data that was

processed an hour ago. So, that means the processing is to be done in the real time and that

result will be displayed into the dashboard, that is the insight will be available and will be

given to the consumption layer.

(Refer Slide Time: 5:46)

So, let us discuss about the traditional stream processing and then we will go and discuss

more advanced versions. So, streaming data that is received from various data sources such as

live log and system telemetry data, IoT device data. So, these streaming data now is ingested

using some of these tools, which we have already covered that is Apache Kafka or Amazon

kinases. So, this particular is streaming so, that is ingested into the system and is then

processed in parallel on the cluster.

So, you can see that this particular source will give the continuous stream of data into the

system, which is then put in the process under this platform which is called a cluster. So, the

details are given to the downstream systems like HBase or Cassandra. And so, here you can

see that the results are now put in the data base like HBase, Cassandra and Kafka et cetera.

So, now, there are set of worker nodes, each of which runs one or more continuous operations

that is what is shown. So, each continuous operator processes the streaming data one record

at a time and forwards the record to the other operators in the pipeline that is the sink

operator.

So, data is received from that ingestion system via the source operators and given as the

output to the downstream systems via these sync operators. So, continuous operators are

simple and natural model however, this traditional architecture also has met challenges with

today’s trend towards larger scale and more complex real time analytics.

(Refer Slide Time: 7:45)

So, therefore, this traditional stream processing which we have covered in the previous slide

has the following limitations. First is that it is having the fast failure and the straggler

recovery. So, in the real time system must be able to fastly and automatically recover from

the failure and stragglers to provide the result which is challenging in the traditional system

due to the static allocation of continuous operators to the worker nodes. So, due to these

issues, this is the limitation of traditional stream processing.

The other limitation is in the form of load balancing. So, in a continuous operating system,

uneven allocation of the processing load between the worker can cause the bottlenecks and

the system need to be able to dynamically adapt to the resource allocation based on the

workload. So, therefore, load balancing is again another limitation of traditional stream

processing system.

Third one is unification of streaming batch and interactive workloads. So, in many cases, it is

also attractive to query the streaming data interactively or to combine it with a static data set

in most of the application that is called pre-computed model. But this is hard in continuous

operator system, which does not designed to the new operator for ad-hoc queries. So, this

requires a single engine that can combine both batch streaming an interactive queries and that

is unification of streaming batch and interactive workload is again a limitation of traditional

systems.

Then the fourth one is advanced analytics with the machine learning and SQL queries. So,

complex workloads requires continuous learning and updating data models or even querying

the streaming data using SQL queries however in the common abstraction across these

analytics makes the developer job much easier.

(Refer Slide Time: 9:45)

So, let us take the example of the streaming data processing. So, let us say that the bank

transactions are continuously flowing and coming in the form of the streams and this

particular stream data need to be processed as the data is entered into the system that is called

hot path analysis. Now, similarly the sensor data now sensor data also comes in the form of a

data streams.

So, this streaming data need to be analyzed to find out the anomalies which is arising in this

particular sensor data. So, anomalies is the deviation from the specified state of the system.

So, this particular anomaly is to be detected in the streaming data in the real time. Similarly,

the tweet data is also coming in the streams. So, tweet data is also come in the streams need

to be analyzed as it is ingested into the system.

(Refer Slide Time: 11:03)

Now, the question is how to process this streaming data? Now, this processing of the

streaming data requires to be completed within a particular time window before the next

batch of the extremes arrives in the system. So, therefore this particular processing which is

in the real time needs to scale even to the hundreds of the nodes so, that in parallel they will

be able to complete the execution of the streaming data otherwise, the application may miss

the insights which is there inside that streaming data which is ingested into the system.

Similarly, this is one aspect called scale to hundreds of the nodes. Second is that it achieves a

low latency, low latency means that this particular processing of the streaming data has to be

completed very fast. So, it has to achieve the low latency otherwise, it might miss the batch

and a new batch of the data will come and the previous batch will remain unprocessed.

Third one is to efficiently recover from the failures. So, failures in the sense if the nodes are

down even then the system has to work irrespective of the node failures. So, therefore

redundancy and all that are becoming a norm and you know that in a big data system, the

number of clusters where the nodes are maybe considered as a commodity nodes they may

fail. So, the system has to ensure that it will efficiently recover from the failures.

Fourth important thing is the requirement that sometimes it has to be integrated with the

batch and the interactive processing. So, your stream analytics or analysis has to be integrated

also with the batch and interactive processing for better insights sometimes. So, all these four

requirements is bringing up or is making the specification for streaming data analytics.

And you can see that as you have seen the first requirement that it has to be scalable,

therefore the streaming processing system, it has to be a distributed processing system where

it can be scaled to hundreds of the nodes depending upon the pace in which the data is

coming. So, this will have something called a fast data processing. So, fast data processing

requires the skills to the hundreds of the nodes here in this case.

(Refer Slide Time: 14:04)

Now, what people have been doing so, far, let us see how these particular four requirements

will be able to solve. Let us people use it, they build two different stacks, one for the batch

and one for the streaming often both process the same data. So, existing framework cannot do

both, because either the stream processing of hundreds of megabytes with the low latency or

the batch processing of terabytes of data with a high latency do both cannot exist in the

system.

(Refer Slide Time: 14:36)

So, it is extremely painful to maintain two different stacks and different programming models

doubles the implementation cost so much issues are there in this mode of combining batch

and stream with the two different stacks.

(Refer Slide Time: 14:52)

Therefore, next issue is the fault tolerant stream processing how that is being done. In the

traditional processing models so, there is a pipeline of nodes and each node maintains a

mutable states and each state records the updates the state and a new records are being sent

out. So, now maintaining the states in this fault tolerant stream processing in a traditional

mode, where the mutable state is lost if the node is failed making this stateful stream

processing fault tolerant quite challenging in this particular case.

(Refer Slide Time: 15:30)

Now, let us understand about the data streaming. So, data streaming is a technique for

transferring the data so, that it can be processed as a steady and continuous stream. So,

example is that streaming technologies are becoming increasingly important with the growth

of the internet. So, here you can see that the streaming sources such as the YouTube, Netflix

Twitter will give a live stream of data and without stream processing, there is no big data and

no internet of things. So, people have to now deal with this streaming system.

(Refer Slide Time: 16:05)

Now, let us see about the Spark ecosystem. In the Spark ecosystem, you have to now see that

there is a Spark core engine and over the Spark core engine there are different libraries for

different types of application. And one such application is called Spark Streaming for

streaming data analytics, and this is also called the fast data processing. So, this particular

Spark is streaming enables the analytical and interactive applications for the live streaming

data.

Now, this particular platform which is provided by the Spark ecosystem is integrated over the

Spark core. So, the Spark is streaming that is the streaming data analytics, you can apply the

machine learning library, which is also supported in the Spark core over the Spark Streaming

and therefore, you can gain insight by applying the machine learning libraries which are built

on top of that Spark. Sometimes, using this particular Spark Streaming and the graphics you

can construct a graph computation engine and combine the data parallel in the graph parallel

operations.

Similarly, the Spark Streaming also can be converted or can be put into that format called

Spark SQL and it can be used for the structured data and various queries thereafter. So, the

core engine for the entire Spark framework provides the utilities and architecture for different

components.

(Refer Slide Time: 17:41)

So, let us go in more detail about this component which is called the Spark Streaming

supported over the Spark core engine. So, this particular Spark Streaming this extends the

Spark for doing big data stream processing. So, this particular Spark Streaming project is

started in 2012 with alpha released in spring 2017 with Spark 0.7. Moving out of this alpha

Spark 0.9 is now used. So, the Spark Streaming has support for built in and they will

consume from Kafka, Flume, Twitter and other socket for data ingestion into the system. So,

Spark 2.x is separate technology based on the data sets called structured streaming. So, that

has a higher level of interface and is also provided to support the streaming.

(Refer Slide Time: 18:41)

Now, the framework for the large scale is stream processing. Now, we required to scale to

hundreds of nodes and achieve a second scale latency and has to integrate with the Sparks

batch and interactive processing provides a simple batch like API for implementation of the

complex algorithms and can absorb the live data streams from Kafka, Flume, ZeroMQ and so

on.

(Refer Slide Time: 19:08)

So, let us see about the Spark Streaming. So, a Spark Streaming technologies will receive the

data stream from the input source. So, that is what is shown were here, a process done in the

cluster that is called the Spark Streaming which is running under the Spark core and the

Spark core runs on the cluster, push out to the database here that is all shown.

So, therefore, it supports scalable, fault-tolerant and second-scale latencies that is the

requirements we have seen set for stream processing. So, therefore Spark Streaming engine

will now support the data ingestion from different sources, Kafka, Flume, HDFS, kinases and

Twitter. Now, this will be processed in the Spark Streaming and then it will be stored either

in HDFS, database or a dashboard.

(Refer Slide Time: 20:07)

So, many big data application need to process the large data streams in the real time for

example, the IoT applications. So, sometimes it is also used for website monitoring, fraud

detection and ad monetization, which is happening on the fly.

(Refer Slide Time: 20:24)

So, many important application that process large streams of live data and provides the

results in near real time. So, when we say near real time is that that means, the data comes in

the batches and the processing takes a little delay, but it is almost real time for example,

social network trend, website statistics, intrusion detection system and they require large

clusters to handle the workloads and require latencies of the few seconds in this particular

example.

(Refer Slide Time: 20:57)

So, let us see why Spark Streaming? So, we can use the Spark Streaming to stream the real

time data from various sources like Twitter, Stock Market, Geographical Systems and some

IoT data and IoT and perform the powerful analytics to help the business. So, Spark

Streaming that is used to stream the real time data from various sources, where IoT is one of

that source and it will perform the powerful analytics to help the business by gaining the

insight from that particular data into the system.

(Refer Slide Time: 21:33)

So, there is a need for the framework for this kind of analytics, that is the big data or stream

processing that can scale to hundreds of the nodes, achieve second latencies and efficiently

recover from and it has to integrate with the batch and interactive processing.

(Refer Slide Time: 21:49)

So, let us see the Spark Streaming features. It is scaling. Scaling is easy to scale speed, it

achieves low latency, fault tolerance, integration and business analytics. So, all these are the

features of Spark Streaming.

(Refer Slide Time: 22:06)

Now, let us consider the stream processing versus the batch processing. So, batch processing

is the ability to process the data, analyze the data at the rest that is the data is stored in the

database is and it will be retrieved the data from the database. So, the data is first stored in the

database and then it will be analyzed at a later point of time and this is called the stored data

processing or the batch data processing.

So, this batch data processing is request based, data is available or at the rest into the database

or in the storage system and whenever the request comes a bulk evaluation is to be performed

on the stored data and this particular type of processing called a batch processing is a short-

lived processing on demand or a request based.

Now, this batch processing enables for retrospective, reactive and on-demand analytics. Now,

other types of processing is called a stream processing. So, stream processing is the ability to

ingest, process and analyze the data in motion or in the real or a near real time. So, that is

called the stream processing. So, events or the micro batch driven continuous evaluation and

long-lived processing. So, stream processing is the enabler for real time prospective,

proactive and predictive analytics for the next best action. Therefore, if you combine this

stream processing and batch processing together, then it will become the all data analytics.

(Refer Slide Time: 23:44)

Now, let us see that how you can integrate your stream processing with the batch processing.

So, many environments require the processing the same data in live streaming as well as in

the batch post processing. So, existing framework cannot do both and therefore requires a

new kind of modern applications. So, let us see there are two ways of doing the analytics.

One is that the traditional way of doing analytics structured and repeatable structure being to

store the data that is you should having the question or the queries which need to be

performed on the data.

So, therefore the hypothesis will pose the number of questions and based on these questions,

the entire analytics pipeline is designed. So, you have to start with a hypothesis then you have

to test against the selected data and analyze after the landing. So, this kind of technique is

called traditional analytics.

Whereas the next generation analytics starts with the iterative and exploratory data that is the

structure. So, data is now processed and a correlation or a linear regression is established out

of that particular pattern or data and then using this particular model later on this (())(25:00)

of explore all the data and identity correlation and analyze the data in the motion that is the

next generation analytics, which we will talk about.

(Refer Slide Time: 25:10)

Now, existing streaming systems are storm and trident. So, these follow different kinds of

semantics. So, at least one semantics is used in the storm. So, processes each record at least

once and trident use the transaction to update the status and the processes and each record

exactly once. So, both of them have a different kind of ways.

(Refer Slide Time: 25:37)

So, how does the Spark Streaming work? So, let us see that you have to run the streaming

computation as a series of very small and deterministic batch jobs. So, livestream jobs will

come into the system for that it divides the batches of X seconds and this particular live

stream is divided into X seconds and Spark treats these each batch of data as RDDs and

process them using RDDs. So, RDDs full form is Resilient Distributed Data. So, this is the

unit of processing into the Spark core engine. So, Spark reads each batch of the data as RDDs

and process them using RDD Operation. Finally, the process result of RDDs are returned in

the batches.

So, you can see that this is the live stream. Live stream is divided into the batches of X

seconds and each particular batch of X second is called an RDD at the rate let us say one-time

unit, this is RDD at the rate two-time unit and so on. So, this particular batches of RDDs

which is the batches of X second is given to the Spark Streaming for doing this computation.

Now, Spark Streaming in turn, this gives these batches called RDDs to the Spark and they

will process the result and give it back the results in this manner.

(Refer Slide Time: 27:12)

So, run the stream processing as the series of very small deterministic batch jobs. So, batch

sizes are half a second, latency is about 1 second and potential for combining the back end

the stream processing is possible in this platform.

(Refer Slide Time: 27:29)

So, let us see how you can do the word count with the Kafka. So, you can see this Kafka will

ingest take the data and perform this word count program in this particular case using map

and reduce by the key.

(Refer Slide Time: 27:44)

So, let us see any Spark application. It starts with the Spark driver. These tasks are sent for

processing this particular data through the Spark execution. So, the user core will run in the

driver process.

(Refer Slide Time: 27:59)

So, Spark Streaming application this example shows how to receive the data. So, data will be

received by the driver. Driver runs the receiver as long as it is running the task through the

executor will receive the data stream and it will divide the data blocks and give it to the other

executors to execute in this manner and keep it into the memory after the execution.

(Refer Slide Time: 28:25)

So, this is the processing. Once the executor completes the processing the results are given to

the database and it will be stored in these particular batches.

(Refer Slide Time: 28:34)

So, Spark Streaming architecture is the following. So, it is called the micro batch architecture

where the receiver will receive the batch blocks and these batch blocks are given to the

executors that is different servers and these different servers will do the computation and that

is shown what here. So, this particular micro batch architecture operates in the interval of

time. New batches are created at regular time intervals divides the time batch into the blocks

for parallelism. Each batch is a graph that translates into multiple job and is able to create

large size batch window as it process over the time.

(Refer Slide Time: 29:12)

Now, Spark Streaming workflow has four high level stages. The first is to stream the data

from various sources. These particular sources can be streaming data sources like Akka,

Kafka, Flume, AWS, and so on. The second type of source includes HBase, MySQL, and so

on. Once this happens, Spark can be used to perform machine learning on the data through

the machine learning MLlib API. Further Spark SQL is used to perform further operations on

this particular data. Finally, streaming output can be stored into the various data storage

system like HBase, Cassandra and so on.

So, this is the typical overview which we have given you about the Spark Streaming

processing. So, here you can see that once the data is ingested out of this Kafka and then

through the Spark Streaming, what you can perform is the machine learning using MLlib or

with using the Spark SQL you can convert into the data frame and then use it to the further

level.

(Refer Slide Time: 30:17)

So, Spark Streaming workflow if you see that data from a variety of sources to the various

storage systems, it will be transformed so, Kafka, Flume, they will ingest the data and put for

the Spark Streaming and finally, the result will be put in different storage system like HDFS,

databases dashboard and so on. So, here in this particular figure, it is shown that incoming

stream of the data is divided into the batches and that will be done by the Spark Streaming

and the batches of input data will be processed by the Spark engine and the batches of the

process data will be put as a result.

So, this particular processing, which is shown what here is further detail is given. So, you can

see that discretized stream is the proper data structure which is used. So, these are the batches

are called D streams and D streams are nothing but the micro batch RDDs which are for a

particular time interval they are being chopped off or being divided into that batches of

different times. So, data of different timings is being broken up by Spark Streaming and give

to the Spark engine for doing the computation.

Now, once these D stream is given to the Spark engine, then different commands and the

operations will be applied for example, flatMap, flatMap here in this example, a line in a in a

particular document is now divided or is applied using a flatMap operation and from the line

it will now it will divide into the words and the words are being extracted from the input

streams between this so, this is how the Twitter data analytics can be performed.

(Refer Slide Time: 32:04)

So, you can see that in the tweets you can twitter stream will be nothing but in the form of D

stream that is a sequence of RDDs representing the stream of the data. And this will be

handled with the help of Twitter API. Now, this particular Twitter API will give the micro

batches of different time intervals and they are called tweet D streams. Tweet D streams are

stored in memory as an RDD that is immutable distributed data types.

(Refer Slide Time: 32:37)

Now, then on this particular micro batches, the operations like flatMap will be applied. So,

flatMap will be a transformation will modify the data in one D stream to create another D

stream. So, this particular transformation will happen using this new D stream it will create

using flatMap. So, new RDDs will be created for every batch. So, this is how the stream

processing will take place.

(Refer Slide Time: 33:05)

So, the output of this particular transformation will be pushed to the external storage and so,

that is what is shown over here and that will be stored either on HDFS or in some any other

database.

(Refer Slide Time: 33:21)

Now, this particular use case, so, this particular Spark is streaming programming can be

either done in a scalar or in the Java. So, you can see that flatMap and saving into the file,

there are three lines of core written in the scala similarly, you can write in the Java also.

(Refer Slide Time: 33:41)

So, let us see about the other aspect that is the fault tolerance aspects. So, RDDs remember

the sequence of operation that it created it from the original in original fault tolerant input

data. So, these input data is now replicated in the memory like this, and when the flatMap is

applied and if any data is lost, then you know that that replication will be used to process this.

So, the batch of input data is replicated in the memory of the multiple worker node therefore,

it is fault tolerant. So, data loss due to the worker failure can be re-computed from the input

data.

(Refer Slide Time: 34:23)

So, these principles are already well established in the Spark core same is used for the fault

tolerance. So, let us see the key concepts which we have quickly used up let us review that.

So, D stream is a sequence of RDD is representing the stream of data such as Twitter, Kafka,

HDFS, Flume and so on. Transformation is to modify the data from D stream to another

standard RDD functions and stateful functions such as windows and count by value and a

window output operations is to send the data to the external entities such that HDFS.

(Refer Slide Time: 35:02)

Another example is to count the hashtags. So, this particular example is shown that hashtags

are counted by the value. So, here after the flatMap, another operation is to be performed the

map and reduced by the key, which will be doing that particular count operation that is

reduced by key.

(Refer Slide Time: 35:25)

So, third operation is to count the hashtag over the last 10 minutes. So, you can see that you

have to create a sliding window of 1-minute time. So, this is the 1-minute time, 1-minute

interval of a sliding window and that particular window will now shift after every 5 seconds.

So, this is called sliding window and it now, this particular hashtag counting count the

hashtag will be performed inside this particular window of 1-minute time so, sliding window

you know that it is window operation window length and sliding interval that I have already

explained. So, after 5 seconds, it will shift to another shift to the right in this manner over the

data.

(Refer Slide Time: 36:31)

So, therefore, if you see this kind of complete details, so, this is the hashtag using the sliding

window of 10 minutes it can have 1, 2, 3, 4, 4 different micro batch RDDs and after 1 second

it has to shift. So, it will count over the data in that sliding window and this will be performed

an action and after 1 second you know that it will be now shifting its values.

(Refer Slide Time: 37:00)

So, smart window based reduce operation is being supported here in Spark Streaming and

also will be arbitrary stateful computation is also supported here, which is nothing but update

state by the key.

(Refer Slide Time: 37:16)

So, arbitrary combination of batch and stream computation is shown here in this particular

example, the joint incoming tweet with the spam HDFS file to filter for this is you know that

it will be joined here with the tweet data that is the stream data.

(Refer Slide Time: 37:33)

So, Spark Streaming, D streams and batch and RDDs are the different data type or data

structures of a Spark Streaming is being followed here in this Spark Streaming. So, input

streaming after going through Spark Streaming it will divide into the different micro batches

and these are all RDDs of different time duration and they have to be processed by the Spark

engine in the batch. So, these particular it will repeat for each batch and because we are

dealing with a Spark Streaming data the streaming has the ability to remember the previous

RDDs to some extent.

(Refer Slide Time: 38:11)

So, D streams plus RDDs will become the power of computation for doing the analytics and

you can see that from D stream to the Spark jobs, you can create the, for each interval RDD

graph is computed for D stream graph. So, this is called a D stream graph and this D stream

graph will contain all the operations which are to be performed on the micro batch RDDs,

and the output operation Spark action is created based on this particular RDDs.

(Refer Slide Time: 38:49)

So, input source are that out of the box, the input sources which are being supported here in

Spark Streaming is Kafka, HDFS, Flume, Akka Actors, Raw TCP sockets. So, input streams

input sources, it is very easy to write a receiver for your own data source also generate your

own RDDs from the Spark and push them in the stream.

(Refer Slide Time: 39:12)

So, the current Spark Streaming input output, you can see that it is supporting various input

sources like Kafka, Flume, Twitter, ZeroMQ and MQTT and so on. And the basic sources are

the socket, files, akka actors and so on. Output operations are also supported over here.

(Refer Slide Time: 39:30)

So, D stream classes are different. That is different classes for different languages are being

supported scalar, Java and D stream has 36 different values and multiple type of D streams

are supported through and separate Python API is there.

(Refer Slide Time: 39:46)

Now D stream Spark Streaming operations are listed over here. So, all the Spark RDD

operations are applicable some available through the transform operation for example, map

flatMap, count, join that we have already seen. Spark Streaming window, operations window,

count by window, reduced by window all these operations are there Spark output operation

sources that print and so on, save as a file.

(Refer Slide Time: 40:10)

So, fault tolerance, you can see here in this particular slide the batches of input data are

replicated in memory for fault tolerance. So, data loss due to the worker failure can be

recomputed from the replicated data. So, all the transformations therefore, are fault tolerant

and exactly once transformations.

(Refer Slide Time: 40:29)

So, fault tolerance means receive the data, received data is replicated among multiple Spark

execution default factor is 2. So, it must product the driver program and if the driver node

running the Spark fails, then the driver must be restarted on another node requires the check

pointing directory in the Spark context. So, check pointing saves the data, save the state on a

regular basis that is typically every 5 to 10 batches of the data, a failure would have to replay

5 to 10 previous batches to recreate. The RDDs and checkpoints is done to HDFS or

equivalent streaming back pressure is enabled.

(Refer Slide Time: 41:08)

So, performance if you see it can process up to 6 million records per second that is 6 GB per

second on 100 nodes at the sub-second latency that is shown here in this particular graph and

comparing with the other systems is also shown that is Spark Streaming that is 670 k records

per second per node is there compared to the storm is able to do only 115 k records per

second per node and commercial systems often requires 100 to 500 k records per second per

node.

(Refer Slide Time: 41:43)

Fast fault recovery recovered from the faults and stragglers within one second that is shown

here in these performance metrics.

(Refer Slide Time: 41:50)

So, real time applications, let us say that Mobile Millennium Project, so traffic transit time

estimation using online machine learning on a GPS observation. So, you can see here these

particular nodes in the cluster, which is also scalable and even very compute intensive CPU

intensive also requires the machine and it scales linearly with the cluster size.

(Refer Slide Time: 42:18)

So, vision - one stack to rule them. So, you can see that the Spark Streaming supports also the

ad hoc queries and also with the help of integration with a batch processing.

(Refer Slide Time: 42:33)

So, a Spark program versus a Spark Streaming program. So, Spark Streaming on the Twitter

data stream is shown over here and it applies the Spark Streaming function like flatMap and

on a Twitter log.

(Refer Slide Time: 42:48)

So, advantage of unified stack here is to explore the data interactively to identify the problem

and same code the Spark for processing the large logs and use the similar code in the Spark

Streaming for the real time processing.

(Refer Slide Time: 43:04)

So, the roadmap is that we have already covered that Spark 0.8.1 marked alpha and it is being

stable and the master fault tolerance is a manual recovery is enabled.

(Refer Slide Time: 43:18)

Now, let us see the sliding window analytics. So, Spark Streaming, windowing capabilities

are one of the most powerful way of performing the real time analytics or a stream analytics.

So, for that, it requires the two parameters, one is the window length that is the duration of

the window. So, here you can see that this is the duration of the window and then the sliding

interval that is after what interval it has to move to the right over the stream data that window

operation. Both the parameter must be in the multiple of batch intervals. So, a window creates

a new D stream with a larger batch size.

So, here you can see that the original stream of the data is divided into the micro batches,

time 1, time 2, time 3, time 5 and over which you have to now define your window

operations windowing capabilities, so it is windowed D stream, you start getting as far as the

operation which you perform at time 3 and then this particular time interval will shift it and

you will get the next particular result after this. This is called windowed D streams.

(Refer Slide Time: 44:33)

So, Spark window functions for data frames and SQL is introduced in Spark 1.4, Spark

window operations improved the expressiveness of Spark data frame and Spark SQL. So,

with the window functions, you can easily calculate the moving average and cumulative sum

or reference value in the previous row of the table. And the window function allows you to do

many common calculations with the data frames without having to resort to RDD mapping.

So, there are different functions which are supported in this window functions called

aggregate UDF versus window functions.

So, window functions are complementary to the existing data frames, Operation aggregates

sum as sum and average and UDF. To review the aggregate calculates a result and some or

average for each group of the rows, where UDF calculates one result for each row on only the

data in that row. So, therefore in contrast window functions calculate one result for each row

based on the windows of the row. So, in the moving average you calculate each row the

average of the rows surrounding the current row this can be done using the window function.

(Refer Slide Time: 45:44)

So, let us dive into the into the moving average example. In this example, the data set there

are two different customers who have spent different amounts of money each day. So,

building the customer data frame, all the examples are written in scalar. So, here you can see

that the customers one is the Alice and the other one is called Bob. So, these two customers

have spent different amounts of money each day. So, you can see that Alice is spending 50,

45, 55. Bob is spending 25, 29, 27. So, the date and the amount is spent is given in the data

set.

(Refer Slide Time: 46:22)

Now, as far as moving average example, you have to create the window that is window

partition by name and the date and the row between minus 1 and 1. So, in this window the

data is partitioned by the customers and each customer data is ordered by the date. So,

window frame is then defined starting from minus 1 that is one row before the current row

and ending at 1 that is one row after the current row and for a total of three rows in the sliding

window.

(Refer Slide Time: 46:52)

So, let us see that this particular moving average therefore, will create using the data frame by

applying the average functions on the sliding window define in the window a specification.

So, just see that three different users so, you can see that sliding window operations is being

established here with the moving average of Alice 47.5, then 50, then 50 and 27, 27 and 28.

(Refer Slide Time: 47:23)

So, as shown in the above example, two parts to applying the window functions specify the

window functions such as the average in the example and specify the window specifications

for in the example you can find out all these details in further examples.

(Refer Slide Time: 47:40)

So, cumulative sum is another statistics which you can or another function you can perform

in the sliding window over the same data set. So, cumulative, you can see that it will take

data 50. And the next data when it comes it will do the cumulative sum and then finally,

when 55 is added then it will add and for the next user when 25 is the amount which is spent

with this only and when the next chunk it will be cumulative addition is done and finally, all

that details are given over here.

(Refer Slide Time: 48:17)

So, in the next example, you see that the amount is spent by the customer in their previous

visit is automatically previous amount spent. So, with the 50 previous is not there then it will

be null and for every data you see that previous values are given. So, this is our these are

some of the operations which are there and then you can also do a ranking in this example,

we want to show that the order of customers visit whether it is first second or third the rank

function returns what you want over the window specifications. So, you rank this particular

way in which the data is coming.

(Refer Slide Time: 48:57)

So, let us see about the Twitter sentiment analysis using Spark Streaming. So, Twitter

sentiment analysis is to do a trending topic can be used to create the campaign and attract the

larger audience. So, sentiment analytics, helps in crisis management, and so on. Sentiments

refers to the emotion behind the social media mentioned online and semantic sentiment

analysis is categorizing the tweets related to a particular topic performing data mining and so

on.

(Refer Slide Time: 49:30)

So, it can be done with this particular so, to design the Twitter sentiment analysis where you

populate the real time sentiments for the crisis management and service adjustment and for

the target marketing. So, Twitter so, sentiment analysis is used to predict the success of a

movie predict the political campaign success and so on.

(Refer Slide Time: 49:52)

So, to do this, let us build the environment and then Twitter token authorization and then D

stream transformation is being carried out.

(Refer Slide Time: 50:02)

And this is the result of this particular sentiment for the product Trump which is shown over

here.

(Refer Slide Time: 50:10)

And applying the sentiment analysis, as we have seen from the sentiment analysis

demonstration that we can extract the sentiments of a particular topic. For example, it is a

Trump similarly the sentiment analytics can be used for the crisis management and so on. So,

companies using the Spark Streaming for sentiment analysis have applied the same approach

to the following enhancing the customer experience, gaining the competitive advantage,

gaining the business intelligent, revitalizing a losing band.

(Refer Slide Time: 50:41)

So, let us conclude this particular lecture here. So, we have seen the stream processing

framework, which is for hot data analytics, hot data path analytics, which is also called as a

real time analytics or the streaming analytics. It is also called the fast data processing. So,

stream processing frameworks, like Spark Streaming, we have seen an important way of

doing these streaming analytics that is called windowing-based methods, we have seen, what

we have seen is that this particular method to do this stream processing within a particular

time and need to be scaled.

Therefore, there is a proper framework which is required to do this kind of stream processing

which is scalable to a large number of cluster. We have also seen that the methods that is in

the form of scale, we have seen that it can achieve seconds scale latencies and also has a

simple programming model such as a scala and Java we have seen. Also, we have seen how

to integrate with the batch and the interactive workloads for better insight when doing this

particular real time analytics. It also ensures efficient fault tolerance in a stateful

computation. Thank you.

