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I am Doctor Rajiv Misra from IIT Patna. The topic of this lecture is Hot Data Analytics for

Real Time Streaming in loT Platform.

(Refer Slide Time: 0:24)

Content of this Lecture:

« In this lecture, we will discuss Real-time data processing
in loT edge platform with Spark Streaming and Sliding
Window Analytics.

. We will also discuss a case study based on Twitter
Sentiment Analysis using Streaming.

Spark Streaming

In this lecture, we will discuss real time data processing in loT Edge platforms with Spark
Streaming and Sliding Window Analytics, you will also discuss the case studies based on a

particular use case that is with Twitter sentiment analysis using the streaming.
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loT platform: Overview
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Hot Data Analytics

Let us give you loT platform and overview which we have already covered. So, it is a recap

that this particular 10T platform is divided into the things that is then coming the 10T platform
and after that this edge on loT Edge is being added. So, therefore, these sensors and actuators
are part of these things and when they will ingest the data it goes into the cloud through the
edge. So, the connectors which are there for data ingestion, so, data ingestion will happen
using the Kafka connector or MQTT streams, this particular data stream is put into the system

that is the cloud loT platform.

Now, then that this is the routine that is called Real Time Data Processing, if it is the hot path
data analysis, it will be performed using the stream analytics which we are now covering up.
So, for this there will be the tools which are called Kafka, which we have covered. So, this
will ingest the data for an enabling this real time data processing. So, we are going to cover
for this part, which will be performed in the cloud that is using the Spark Streaming this data
analysis will give the insight and this in turn further be used by business intelligence for the
action part.

So, therefore, finally the end use is with the consumers who will be the beneficiary for
making all the decisions which is taken by. So, therefore, there are three types of data flow
which we will cover here. The first one is called hot path data analysis. So, data streams as it
comes, it will put in the real time data processing using Spark Streaming which we will cover
besides this hot path, let me tell you about that, we are also having two more type of data

analysis that is called cold path that is a form of batch processing.



When you say batch processing that means, data will be put at the rest in one of these
database technologies. And then, using this particular data at a later point of time, we will be
performing various kind of insights and business intelligence called cold path. Warm path is
to do the small batch processing in the batches of a small part will be taken up for this

particular analysis comes in between the hot path and the cold path analysis.
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loT platform: Data Flow
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So, the topic which is kept here in this lecture is dealing with the hot path analysis. So, data is

routed to three different paths. One is called hot path or cold path or a warm path. So, hot
path data is the data that is processed as it is ingested into the system, that is the stream
analysis is to be done for hot path data. And that is to be done in the real time. So, as it gets
processed within the seconds of it is happening. So, when the message hits the hot path, it is

processed and is presented to something in the consumption layer.

So, consumption layer will consume that processed information and this is called the hot
path, the output of the hot path to the cold storage system or let us say that storage system to
make it persistent and is consumed by these API’s. So, the data which is written in the real
time, but API’s might be coding that particular data that was written an hour ago in the batch

mode for this hot path analysis.

So, the main thing about the hard part is that when you are processing the data in the real time
it is happening however, when it is consuming that might be acquiring old data that was

processed an hour ago. So, that means the processing is to be done in the real time and that



result will be displayed into the dashboard, that is the insight will be available and will be

given to the consumption layer.
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loT platform: Traditional Stream Processing
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So, let us discuss about the traditional stream processing and then we will go and discuss

more advanced versions. So, streaming data that is received from various data sources such as
live log and system telemetry data, 10T device data. So, these streaming data now is ingested
using some of these tools, which we have already covered that is Apache Kafka or Amazon
kinases. So, this particular is streaming so, that is ingested into the system and is then

processed in parallel on the cluster.

So, you can see that this particular source will give the continuous stream of data into the
system, which is then put in the process under this platform which is called a cluster. So, the
details are given to the downstream systems like HBase or Cassandra. And so, here you can
see that the results are now put in the data base like HBase, Cassandra and Kafka et cetera.
So, now, there are set of worker nodes, each of which runs one or more continuous operations
that is what is shown. So, each continuous operator processes the streaming data one record
at a time and forwards the record to the other operators in the pipeline that is the sink

operator.

So, data is received from that ingestion system via the source operators and given as the
output to the downstream systems via these sync operators. So, continuous operators are
simple and natural model however, this traditional architecture also has met challenges with

today’s trend towards larger scale and more complex real time analytics.
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Traditional Stream Processing: Limitations
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So, therefore, this traditional stream processing which we have covered in the previous slide

has the following limitations. First is that it is having the fast failure and the straggler
recovery. So, in the real time system must be able to fastly and automatically recover from
the failure and stragglers to provide the result which is challenging in the traditional system
due to the static allocation of continuous operators to the worker nodes. So, due to these

issues, this is the limitation of traditional stream processing.

The other limitation is in the form of load balancing. So, in a continuous operating system,
uneven allocation of the processing load between the worker can cause the bottlenecks and
the system need to be able to dynamically adapt to the resource allocation based on the
workload. So, therefore, load balancing is again another limitation of traditional stream

processing system.

Third one is unification of streaming batch and interactive workloads. So, in many cases, it is
also attractive to query the streaming data interactively or to combine it with a static data set
in most of the application that is called pre-computed model. But this is hard in continuous
operator system, which does not designed to the new operator for ad-hoc queries. So, this
requires a single engine that can combine both batch streaming an interactive queries and that
is unification of streaming batch and interactive workload is again a limitation of traditional

systems.

Then the fourth one is advanced analytics with the machine learning and SQL queries. So,

complex workloads requires continuous learning and updating data models or even querying



the streaming data using SQL queries however in the common abstraction across these

analytics makes the developer job much easier.

(Refer Slide Time: 9:45)

Big Streaming Data Processing

Fraud detection in bank transactions
T " — EE———— S
O ¢ EMmE ¢ e e © Ao

, e——— Hg- g
m sensor data
U Q IR

S
Cat videos in tweets
B ¥ B

Hot Data Analytics

So, let us take the example of the streaming data processing. So, let us say that the bank
transactions are continuously flowing and coming in the form of the streams and this
particular stream data need to be processed as the data is entered into the system that is called
hot path analysis. Now, similarly the sensor data now sensor data also comes in the form of a

data streams.

So, this streaming data need to be analyzed to find out the anomalies which is arising in this
particular sensor data. So, anomalies is the deviation from the specified state of the system.
So, this particular anomaly is to be detected in the streaming data in the real time. Similarly,
the tweet data is also coming in the streams. So, tweet data is also come in the streams need

to be analyzed as it is ingested into the system.
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Spark Streaming

Now, the question is how to process this streaming data? Now, this processing of the

streaming data requires to be completed within a particular time window before the next
batch of the extremes arrives in the system. So, therefore this particular processing which is
in the real time needs to scale even to the hundreds of the nodes so, that in parallel they will
be able to complete the execution of the streaming data otherwise, the application may miss

the insights which is there inside that streaming data which is ingested into the system.

Similarly, this is one aspect called scale to hundreds of the nodes. Second is that it achieves a
low latency, low latency means that this particular processing of the streaming data has to be
completed very fast. So, it has to achieve the low latency otherwise, it might miss the batch
and a new batch of the data will come and the previous batch will remain unprocessed.

Third one is to efficiently recover from the failures. So, failures in the sense if the nodes are
down even then the system has to work irrespective of the node failures. So, therefore
redundancy and all that are becoming a norm and you know that in a big data system, the
number of clusters where the nodes are maybe considered as a commodity nodes they may
fail. So, the system has to ensure that it will efficiently recover from the failures.

Fourth important thing is the requirement that sometimes it has to be integrated with the
batch and the interactive processing. So, your stream analytics or analysis has to be integrated
also with the batch and interactive processing for better insights sometimes. So, all these four

requirements is bringing up or is making the specification for streaming data analytics.



And you can see that as you have seen the first requirement that it has to be scalable,
therefore the streaming processing system, it has to be a distributed processing system where
it can be scaled to hundreds of the nodes depending upon the pace in which the data is
coming. So, this will have something called a fast data processing. So, fast data processing

requires the skills to the hundreds of the nodes here in this case.
(Refer Slide Time: 14:04)
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Now, what people have been doing so, far, let us see how these particular four requirements
will be able to solve. Let us people use it, they build two different stacks, one for the batch
and one for the streaming often both process the same data. So, existing framework cannot do
both, because either the stream processing of hundreds of megabytes with the low latency or
the batch processing of terabytes of data with a high latency do both cannot exist in the

system.
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What people have been doing?
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So, it is extremely painful to maintain two different stacks and different programming models

doubles the implementation cost so much issues are there in this mode of combining batch

and stream with the two different stacks.
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Therefore, next issue is the fault tolerant stream processing how that is being done. In the
traditional processing models so, there is a pipeline of nodes and each node maintains a
mutable states and each state records the updates the state and a new records are being sent
out. So, now maintaining the states in this fault tolerant stream processing in a traditional

mode, where the mutable state is lost if the node is failed making this stateful stream

mutable state

input i

records

input ____ES
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node 2

processing fault tolerant quite challenging in this particular case.
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Now, let us understand about the data streaming. So, data streaming is a technique for

transferring the data so, that it can be processed as a steady and continuous stream. So,
example is that streaming technologies are becoming increasingly important with the growth
of the internet. So, here you can see that the streaming sources such as the YouTube, Netflix
Twitter will give a live stream of data and without stream processing, there is no big data and

no internet of things. So, people have to now deal with this streaming system.
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Now, let us see about the Spark ecosystem. In the Spark ecosystem, you have to now see that

there is a Spark core engine and over the Spark core engine there are different libraries for

different types of application. And one such application is called Spark Streaming for



streaming data analytics, and this is also called the fast data processing. So, this particular
Spark is streaming enables the analytical and interactive applications for the live streaming
data.

Now, this particular platform which is provided by the Spark ecosystem is integrated over the
Spark core. So, the Spark is streaming that is the streaming data analytics, you can apply the
machine learning library, which is also supported in the Spark core over the Spark Streaming
and therefore, you can gain insight by applying the machine learning libraries which are built
on top of that Spark. Sometimes, using this particular Spark Streaming and the graphics you
can construct a graph computation engine and combine the data parallel in the graph parallel

operations.

Similarly, the Spark Streaming also can be converted or can be put into that format called
Spark SQL and it can be used for the structured data and various queries thereafter. So, the
core engine for the entire Spark framework provides the utilities and architecture for different

components.
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So, let us go in more detail about this component which is called the Spark Streaming
supported over the Spark core engine. So, this particular Spark Streaming this extends the
Spark for doing big data stream processing. So, this particular Spark Streaming project is
started in 2012 with alpha released in spring 2017 with Spark 0.7. Moving out of this alpha
Spark 0.9 is now used. So, the Spark Streaming has support for built in and they will
consume from Kafka, Flume, Twitter and other socket for data ingestion into the system. So,



Spark 2.x is separate technology based on the data sets called structured streaming. So, that

has a higher level of interface and is also provided to support the streaming.

(Refer Slide Time: 18:41)

What is Spark Streaming?

. Framework for large scale stream processing

- Scales to 100s of nodes \/

. Can achieve second scale latencies /~

. Integrates with Spark’s batch and interactive
processing

- Provides a simple batch-like API for implementing
complex algorithm

. Can absorb live data stre\a}ns from Kafka, Flume,
ZeroMQ, etc.

Hot Data Analytics

Now, the framework for the large scale is stream processing. Now, we required to scale to
hundreds of nodes and achieve a second scale latency and has to integrate with the Sparks
batch and interactive processing provides a simple batch like API for implementation of the
complex algorithms and can absorb the live data streams from Kafka, Flume, ZeroMQ and so

on.
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So, let us see about the Spark Streaming. So, a Spark Streaming technologies will receive the
data stream from the input source. So, that is what is shown were here, a process done in the
cluster that is called the Spark Streaming which is running under the Spark core and the
Spark core runs on the cluster, push out to the database here that is all shown.

So, therefore, it supports scalable, fault-tolerant and second-scale latencies that is the
requirements we have seen set for stream processing. So, therefore Spark Streaming engine
will now support the data ingestion from different sources, Kafka, Flume, HDFS, kinases and
Twitter. Now, this will be processed in the Spark Streaming and then it will be stored either
in HDFS, database or a dashboard.
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So, many big data application need to process the large data streams in the real time for
example, the 10T applications. So, sometimes it is also used for website monitoring, fraud

detection and ad monetization, which is happening on the fly.
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So, many important application that process large streams of live data and provides the
results in near real time. So, when we say near real time is that that means, the data comes in
the batches and the processing takes a little delay, but it is almost real time for example,
social network trend, website statistics, intrusion detection system and they require large
clusters to handle the workloads and require latencies of the few seconds in this particular

example.
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So, let us see why Spark Streaming? So, we can use the Spark Streaming to stream the real
time data from various sources like Twitter, Stock Market, Geographical Systems and some

loT data and loT and perform the powerful analytics to help the business. So, Spark



Streaming that is used to stream the real time data from various sources, where 10T is one of
that source and it will perform the powerful analytics to help the business by gaining the

insight from that particular data into the system.
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So, there is a need for the framework for this kind of analytics, that is the big data or stream
processing that can scale to hundreds of the nodes, achieve second latencies and efficiently
recover from and it has to integrate with the batch and interactive processing.
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So, let us see the Spark Streaming features. It is scaling. Scaling is easy to scale speed, it
achieves low latency, fault tolerance, integration and business analytics. So, all these are the

features of Spark Streaming.

(Refer Slide Time: 22:06)

Batch vs Stream Processing
Batch rocessing Dodedar~
« Ability-te-p oess and analystored data) @
+ Request-based, bulk evaluation and short-livead’processing

. Enabler for Retros\ae(tive, Reacti¥e and On-d\e}wa’nd Analytics

Stream Processing &

« Ability to ingest, process'and analyze data in-motion in real- or near-
real-time

. Eventor micro~bat\c)§:lriven, continuous evaluation and long-lived
processing s
« Enabler for real-time Prospective, Proactive and Predictive

Analytics for Next Best Action v »
Stream Processing + Batch Processing(= All Data Analytics

real-time (now) historical (past)

Hot Data Analytics

Now, let us consider the stream processing versus the batch processing. So, batch processing
is the ability to process the data, analyze the data at the rest that is the data is stored in the
database is and it will be retrieved the data from the database. So, the data is first stored in the
database and then it will be analyzed at a later point of time and this is called the stored data

processing or the batch data processing.

So, this batch data processing is request based, data is available or at the rest into the database
or in the storage system and whenever the request comes a bulk evaluation is to be performed
on the stored data and this particular type of processing called a batch processing is a short-

lived processing on demand or a request based.

Now, this batch processing enables for retrospective, reactive and on-demand analytics. Now,
other types of processing is called a stream processing. So, stream processing is the ability to
ingest, process and analyze the data in motion or in the real or a near real time. So, that is
called the stream processing. So, events or the micro batch driven continuous evaluation and
long-lived processing. So, stream processing is the enabler for real time prospective,
proactive and predictive analytics for the next best action. Therefore, if you combine this

stream processing and batch processing together, then it will become the all data analytics.
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Now, let us see that how you can integrate your stream processing with the batch processing.
So, many environments require the processing the same data in live streaming as well as in
the batch post processing. So, existing framework cannot do both and therefore requires a
new kind of modern applications. So, let us see there are two ways of doing the analytics.
One is that the traditional way of doing analytics structured and repeatable structure being to
store the data that is you should having the question or the queries which need to be

performed on the data.

So, therefore the hypothesis will pose the number of questions and based on these questions,

the entire analytics pipeline is designed. So, you have to start with a hypothesis then you have



to test against the selected data and analyze after the landing. So, this kind of technique is

called traditional analytics.

Whereas the next generation analytics starts with the iterative and exploratory data that is the
structure. So, data is now processed and a correlation or a linear regression is established out
of that particular pattern or data and then using this particular model later on this (())(25:00)
of explore all the data and identity correlation and analyze the data in the motion that is the

next generation analytics, which we will talk about.
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Now, existing streaming systems are storm and trident. So, these follow different kinds of
semantics. So, at least one semantics is used in the storm. So, processes each record at least
once and trident use the transaction to update the status and the processes and each record
exactly once. So, both of them have a different kind of ways.
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So, how does the Spark Streaming work? So, let us see that you have to run the streaming
computation as a series of very small and deterministic batch jobs. So, livestream jobs will
come into the system for that it divides the batches of X seconds and this particular live
stream is divided into X seconds and Spark treats these each batch of data as RDDs and
process them using RDDs. So, RDDs full form is Resilient Distributed Data. So, this is the
unit of processing into the Spark core engine. So, Spark reads each batch of the data as RDDs
and process them using RDD Operation. Finally, the process result of RDDs are returned in
the batches.

So, you can see that this is the live stream. Live stream is divided into the batches of X
seconds and each particular batch of X second is called an RDD at the rate let us say one-time
unit, this is RDD at the rate two-time unit and so on. So, this particular batches of RDDs
which is the batches of X second is given to the Spark Streaming for doing this computation.
Now, Spark Streaming in turn, this gives these batches called RDDs to the Spark and they
will process the result and give it back the results in this manner.
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How does Spark Streaming work?
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Hot Data Analytics

So, run the stream processing as the series of very small deterministic batch jobs. So, batch

sizes are half a second, latency is about 1 second and potential for combining the back end

the stream processing is possible in this platform.
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Word Count with Kafka

object WordCount
def main(args: Array[String]
val context = new StreamingContext(new SparkConf(), Seconds(1
val lines = KafkaUtils.createStream(context, ...
val words = lines.flatMap(_.split(" "
val wordCounts = words.map(x => (x,1)).reduceByKey(_+ _
wordCounts.print()_/ 2
context.start

context.awaitTermination

Hot Data Analytics

So, let us see how you can do the word count with the Kafka. So, you can see this Kafka will
ingest take the data and perform this word count program in this particular case using map

and reduce by the key.
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Any Spark Application

Hot Data Analytics

So, let us see any Spark application. It starts with the Spark driver. These tasks are sent for
processing this particular data through the Spark execution. So, the user core will run in the

driver process.
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Spark Streaming Application: Receive data

Hot Data Analytics

So, Spark Streaming application this example shows how to receive the data. So, data will be

received by the driver. Driver runs the receiver as long as it is running the task through the
executor will receive the data stream and it will divide the data blocks and give it to the other

executors to execute in this manner and keep it into the memory after the execution.
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Spark Streaming Application: Process data

Hot Data Analytics

So, this is the processing. Once the executor completes the processing the results are given to

the database and it will be stored in these particular batches.
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So, Spark Streaming architecture is the following. So, it is called the micro batch architecture
where the receiver will receive the batch blocks and these batch blocks are given to the
executors that is different servers and these different servers will do the computation and that
is shown what here. So, this particular micro batch architecture operates in the interval of
time. New batches are created at regular time intervals divides the time batch into the blocks
for parallelism. Each batch is a graph that translates into multiple job and is able to create

large size batch window as it process over the time.
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Spark Streaming Workflow

Spark Streaming workflow has four high- Ieve\g(ges The first is to stream
data from various sources. These sources can be streaming data sources like
Akka, Kafka, Flume, AWS or Parquet for real-time streaming. The second type
of sources includes HBavse/ MyéQt/PostgreSQL Elastic Search, Mongo DB and
Cassandra for static/batch streaming,

Once this happens, Spark gan sed to perform Machine Learning on the
data through its MLlib APIl. Further, Spark S@L is used to perform further
operations on this data. Finally, the streaming/output can be stored into
various data storage systems like H\B}é Cassandfa, MemsSQL, Kafka, Elastic
Search, HDFS and local file system.

iy akka

7 -l-
§€ pi ) §:D T“
» 7;" o \./
W

Hot Data Analytics

Now, Spark Streaming workflow has four high level stages. The first is to stream the data
from various sources. These particular sources can be streaming data sources like Akka,
Kafka, Flume, AWS, and so on. The second type of source includes HBase, MySQL, and so
on. Once this happens, Spark can be used to perform machine learning on the data through
the machine learning MLIib API. Further Spark SQL is used to perform further operations on
this particular data. Finally, streaming output can be stored into the various data storage

system like HBase, Cassandra and so on.

So, this is the typical overview which we have given you about the Spark Streaming
processing. So, here you can see that once the data is ingested out of this Kafka and then
through the Spark Streaming, what you can perform is the machine learning using MLIib or
with using the Spark SQL you can convert into the data frame and then use it to the further

level.
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Spark Streaming Workflow
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So, Spark Streaming workflow if you see that data from a variety of sources to the various
storage systems, it will be transformed so, Kafka, Flume, they will ingest the data and put for
the Spark Streaming and finally, the result will be put in different storage system like HDFS,
databases dashboard and so on. So, here in this particular figure, it is shown that incoming
stream of the data is divided into the batches and that will be done by the Spark Streaming
and the batches of input data will be processed by the Spark engine and the batches of the
process data will be put as a result.

So, this particular processing, which is shown what here is further detail is given. So, you can
see that discretized stream is the proper data structure which is used. So, these are the batches
are called D streams and D streams are nothing but the micro batch RDDs which are for a
particular time interval they are being chopped off or being divided into that batches of
different times. So, data of different timings is being broken up by Spark Streaming and give

to the Spark engine for doing the computation.

Now, once these D stream is given to the Spark engine, then different commands and the
operations will be applied for example, flatMap, flatMap here in this example, a line inain a
particular document is now divided or is applied using a flatMap operation and from the line
it will now it will divide into the words and the words are being extracted from the input

streams between this so, this is how the Twitter data analytics can be performed.
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Example 1 — Get hashtags from Twitter
val tweets = ssc.twitt / am( )

DStream: a sequence of RDDs representing a stream of data ‘
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So, you can see that in the tweets you can twitter stream will be nothing but in the form of D
stream that is a sequence of RDDs representing the stream of the data. And this will be
handled with the help of Twitter APIl. Now, this particular Twitter API will give the micro
batches of different time intervals and they are called tweet D streams. Tweet D streams are

stored in memory as an RDD that is immutable distributed data types.
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Example 1 - Get hashtags from Twitter

val hashTags = tu-.ec—ts.‘,;/:-j(status => getTags(status))

/\
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Now, then on this particular micro batches, the operations like flatMap will be applied. So,
flatMap will be a transformation will modify the data in one D stream to create another D

stream. So, this particular transformation will happen using this new D stream it will create



using flatMap. So, new RDDs will be created for every batch. So, this is how the stream

processing will take place.
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Example 1 - Get hashtags from Twitter

(hashTagRDD => { ... })

\id
| foreach: do whatever you want with the processed data
batch @t batch @ t+1 batch @ t+2
tweets DStream
bl o b o b b

flatMap flatMap flatMap

hashTags DStream

foreach foreach foreach

Write to a database, update analytics
Ul, do whatever you want
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So, the output of this particular transformation will be pushed to the external storage and so,
that is what is shown over here and that will be stored either on HDFS or in some any other

database.
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Java Example
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val tweets = ssc.t \/()

val hashTags = tweets.flat (status => getTags(status))
("hdfs://...")

Java

JavaDStream<Status> = ssc.twitterSt )

JavaDstream<String> hashTags = tweets.f (new Function )
CTharsslt . ™)

’ Function object ‘
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Now, this particular use case, so, this particular Spark is streaming programming can be

either done in a scalar or in the Java. So, you can see that flatMap and saving into the file,

there are three lines of core written in the scala similarly, you can write in the Java also.
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Fault-tolerance
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So, let us see about the other aspect that is the fault tolerance aspects. So, RDDs remember

the sequence of operation that it created it from the original in original fault tolerant input
data. So, these input data is now replicated in the memory like this, and when the flatMap is
applied and if any data is lost, then you know that that replication will be used to process this.
So, the batch of input data is replicated in the memory of the multiple worker node therefore,
it is fault tolerant. So, data loss due to the worker failure can be re-computed from the input
data.
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Key concepts

DStream — sequience of RDDs representing a stream of data

. Twitter, HDFS, Wa, Flume, ZeroMQ, Akka Actor,?CP
sockets

Transformations — modify data from on DStream to another
. Standard RDD operations — map, countByValue, reduce,
join, ...
. Stateful operations — window, countByValueAndWindow, ...

Output Operations — send data to external entity
. saveAsHadoopFiles — saves to HDFS
. foreach — do anything with each batch of results

Hot Data Analytics

So, these principles are already well established in the Spark core same is used for the fault

tolerance. So, let us see the key concepts which we have quickly used up let us review that.



So, D stream is a sequence of RDD is representing the stream of data such as Twitter, Kafka,
HDFS, Flume and so on. Transformation is to modify the data from D stream to another
standard RDD functions and stateful functions such as windows and count by value and a

window output operations is to send the data to the external entities such that HDFS.
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Another example is to count the hashtags. So, this particular example is shown that hashtags
are counted by the value. So, here after the flatMap, another operation is to be performed the

map and reduced by the key, which will be doing that particular count operation that is
reduced by key.
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Example 3 — Count the hashtags over last 10 mins
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So, third operation is to count the hashtag over the last 10 minutes. So, you can see that you
have to create a sliding window of 1-minute time. So, this is the 1-minute time, 1-minute
interval of a sliding window and that particular window will now shift after every 5 seconds.
So, this is called sliding window and it now, this particular hashtag counting count the
hashtag will be performed inside this particular window of 1-minute time so, sliding window
you know that it is window operation window length and sliding interval that | have already
explained. So, after 5 seconds, it will shift to another shift to the right in this manner over the
data.
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Example 3 — Counting the hashtags over last 10 mins
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Smart window-based countByValue

val tagCounts = hashtags. t (Minutes(1@), Seconds(1))

1 t t+1 t+2 t+3
hashTag
3 IcounthVall I

: e ~ Y. add the counts

from the new
subtract the batch;r\ the
. counts from window

tagCounts batch before

the window

Hot Data Analytics

So, therefore, if you see this kind of complete details, so, this is the hashtag using the sliding

window of 10 minutes it can have 1, 2, 3, 4, 4 different micro batch RDDs and after 1 second



it has to shift. So, it will count over the data in that sliding window and this will be performed

an action and after 1 second you know that it will be now shifting its values.
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Smart window-based reduce
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Arbitrary Stateful Computations

Specify function to generate new state based on
previous state and new data

. Example: Maintain per-user mood as state, and update it
with their tweets

def updateMood(newTweets, lastMood) => newMood

g5 iarls o B0 (updateMood _)
o

moods = tweetsByUser.
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So, smart window based reduce operation is being supported here in Spark Streaming and
also will be arbitrary stateful computation is also supported here, which is nothing but update

state by the key.
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Inter-mix RDD and DStream operations!

. Example: Join incoming tweets with a spam HDFS file to
filter out bad tweets

tweets.
tweetsRDD. ]

(tweetsRDD => {
in(spamHDFSFile).filter(...)

"

B
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So, arbitrary combination of batch and stream computation is shown here in this particular
example, the joint incoming tweet with the spam HDFS file to filter for this is you know that

it will be joined here with the tweet data that is the stream data.
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So, Spark Streaming, D streams and batch and RDDs are the different data type or data
structures of a Spark Streaming is being followed here in this Spark Streaming. So, input
streaming after going through Spark Streaming it will divide into the different micro batches
and these are all RDDs of different time duration and they have to be processed by the Spark

engine in the batch. So, these particular it will repeat for each batch and because we are



dealing with a Spark Streaming data the streaming has the ability to remember the previous

RDDs to some extent.
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DStreams + RDDs = Power

Online machine learning

. Continuously learn and update data models
(updateStateByKey and transform)

Combine live data streams with historical data
. Generate historical data models with Spark, etc.
. Use data models to process live data stream (transform)

CEP-style processing
. window-based operations (reduceByWindow, etc.)

Hot Data Analytics

From DStreams to Spark Jobs

Every interval, an RDD graph is computed from the DStream

graph
. For each output operation, a Spar@ion is created
For each action, a Spark job is created to compute it

DStream Graph RDD Graph

oo ... 0O 0«
+ +

ate " wbe

Hot Data Analytics

So, D streams plus RDDs will become the power of computation for doing the analytics and
you can see that from D stream to the Spark jobs, you can create the, for each interval RDD
graph is computed for D stream graph. So, this is called a D stream graph and this D stream
graph will contain all the operations which are to be performed on the micro batch RDDs,
and the output operation Spark action is created based on this particular RDDs.
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So, input source are that out of the box, the input sources which are being supported here in
Spark Streaming is Kafka, HDFS, Flume, Akka Actors, Raw TCP sockets. So, input streams
input sources, it is very easy to write a receiver for your own data source also generate your

own RDDs from the Spark and push them in the stream.
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Current Spark Streaming 1/0
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So, the current Spark Streaming input output, you can see that it is supporting various input

Dashboards

sources like Kafka, Flume, Twitter, ZeroMQ and MQTT and so on. And the basic sources are

the socket, files, akka actors and so on. Output operations are also supported over here.
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So, D stream classes are different. That is different classes for different languages are being
supported scalar, Java and D stream has 36 different values and multiple type of D streams

are supported through and separate Python API is there.
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Now D stream Spark Streaming operations are listed over here. So, all the Spark RDD

operations are applicable some available through the transform operation for example, map
flatMap, count, join that we have already seen. Spark Streaming window, operations window,
count by window, reduced by window all these operations are there Spark output operation

sources that print and so on, save as a file.
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Fault-tolerance
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So, fault tolerance, you can see here in this particular slide the batches of input data are
replicated in memory for fault tolerance. So, data loss due to the worker failure can be
recomputed from the replicated data. So, all the transformations therefore, are fault tolerant

and exactly once transformations.
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Fault-tolerance
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So, fault tolerance means receive the data, received data is replicated among multiple Spark
execution default factor is 2. So, it must product the driver program and if the driver node
running the Spark fails, then the driver must be restarted on another node requires the check
pointing directory in the Spark context. So, check pointing saves the data, save the state on a

regular basis that is typically every 5 to 10 batches of the data, a failure would have to replay



5 to 10 previous batches to recreate. The RDDs and checkpoints is done to HDFS or

equivalent streaming back pressure is enabled.
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So, performance if you see it can process up to 6 million records per second that is 6 GB per
second on 100 nodes at the sub-second latency that is shown here in this particular graph and
comparing with the other systems is also shown that is Spark Streaming that is 670 k records
per second per node is there compared to the storm is able to do only 115 k records per
second per node and commercial systems often requires 100 to 500 k records per second per

node.
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Fast fault recovery recovered from the faults and stragglers within one second that is shown

here in these performance metrics.

(Refer Slide Time: 41:50)

Real time application: Mobile Millennium Project

Traffic transit time estimation using online machine
learning on GPS observatiyrs

:

= Markov-chain Monte Carlo 3 :
simulations on GPS g 1600 &
observations £ 1200 /
2 800 4
= Very CPU intensive, requires E»
dozens of machines for useful 5 400 ',/‘
© 0

computation
0 20 40 60 80

# Nodes in Cluster
= Scales linearly with cluster size

Hot Data Analytics

So, real time applications, let us say that Mobile Millennium Project, so traffic transit time

estimation using online machine learning on a GPS observation. So, you can see here these

particular nodes in the cluster, which is also scalable and even very compute intensive CPU

intensive also requires the machine and it scales linearly with the cluster size.
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So, vision - one stack to rule them. So, you can see that the Spark Streaming supports also the

ad hoc queries and also with the help of integration with a batch processing.
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Spark program vs Spark Streaming program
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Spark Streaming program on Tyitter stream
val tweets = ssc. <Twitter username>, <Twitter password>)

val hashTags = tweets. (status => getTags(status))
("hdfs://...")

Spark program on Twitter log file

val tweets = sc. ("hdfs://...")

val hashTags = tweets. (status => getTags(status))
("hdfs://...")
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So, a Spark program versus a Spark Streaming program. So, Spark Streaming on the Twitter

data stream is shown over here and it applies the Spark Streaming function like flatMap and

on a Twitter log.
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So, advantage of unified stack here is to explore the data interactively to identify the problem

and same code the Spark for processing the large logs and use the similar code in the Spark

Streaming for the real time processing.
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So, the roadmap is that we have already covered that Spark 0.8.1 marked alpha and it is being

stable and the master fault tolerance is a manual recovery is enabled.
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Now, let us see the sliding window analytics. So, Spark Streaming, windowing capabilities

are one of the most powerful way of performing the real time analytics or a stream analytics.
So, for that, it requires the two parameters, one is the window length that is the duration of
the window. So, here you can see that this is the duration of the window and then the sliding
interval that is after what interval it has to move to the right over the stream data that window
operation. Both the parameter must be in the multiple of batch intervals. So, a window creates

a new D stream with a larger batch size.

So, here you can see that the original stream of the data is divided into the micro batches,
time 1, time 2, time 3, time 5 and over which you have to now define your window

operations windowing capabilities, so it is windowed D stream, you start getting as far as the



operation which you perform at time 3 and then this particular time interval will shift it and

you will get the next particular result after this. This is called windowed D streams.

(Refer Slide Time: 44:33)

Spark Window Functions

Spark Window Functions for DataFrames?d saL

Introduced in Spark 1.4, Spark window functions improved the expressiveness of
Spark DataFrames and Spark SJZ( With window functjefis, you can easily calculate a
% or cumulative sum, or reference a value in a previous row of a
table. Window functions allow you to do many common calculations with
Da\taFra\gfes, witlm}z{resort to RDD manipulation. e

Aggreﬁtes, UDFs vs. Windowf)réions

Window functions are complementaryJw’ existing DataFrame operations:
aggregates, such as su nd avg, and UDFs. To review, aggregates calculate one
result, a sum or average, for each group of rows, whereas UDFs calculate one result
for each row based on only data in that row. In contrast, window functions calculate
one result for each row based on a window of rows. For example, in a moving
average, you calculate for each row the average of the rows surrounding the current
row; this can be done with window functions.

Hot Data Analytics

So, Spark window functions for data frames and SQL is introduced in Spark 1.4, Spark

window operations improved the expressiveness of Spark data frame and Spark SQL. So,
with the window functions, you can easily calculate the moving average and cumulative sum
or reference value in the previous row of the table. And the window function allows you to do
many common calculations with the data frames without having to resort to RDD mapping.
So, there are different functions which are supported in this window functions called

aggregate UDF versus window functions.

So, window functions are complementary to the existing data frames, Operation aggregates
sum as sum and average and UDF. To review the aggregate calculates a result and some or
average for each group of the rows, where UDF calculates one result for each row on only the
data in that row. So, therefore in contrast window functions calculate one result for each row
based on the windows of the row. So, in the moving average you calculate each row the

average of the rows surrounding the current row this can be done using the window function.



(Refer Slide Time: 45:44)

Moving Average Example

Let us dive right into the moving average example. In this example
dataset, there are two customers wha have spent different amounts

ot (i eaca- S

// Building the customer DataFrame. All examples are written in
Scala with Spark 1.6.1, but the same can be done in Python or SQL.
val customers = sc.parallelize(List(("Alice', "2016-05-01", 50.00),/
("Alice", "2016-05-03", 45.00),~
("Alice", "2016-05-04", 55.00),
/ ("Bob", "2016-05-01", 25.00), <
?(”Bob", "2016-05-04", 29.00), 7
("Bob", "2016-05-06", 27.00))).*

toDF("name", "ddte", "amountbpent”)

Hot Data Analytics

So, let us dive into the into the moving average example. In this example, the data set there

are two different customers who have spent different amounts of money each day. So,
building the customer data frame, all the examples are written in scalar. So, here you can see
that the customers one is the Alice and the other one is called Bob. So, these two customers
have spent different amounts of money each day. So, you can see that Alice is spending 50,
45, 55. Bob is spending 25, 29, 27. So, the date and the amount is spent is given in the data

set.

(Refer Slide Time: 46:22)

Moving Average Example

// Import the window functions.
import org.apache.spark.sql.expressions.Window

import org.apache.spark.sqgl.functions._

// Create a window spec.

val wSpecl = /

Window.partitionBy("name").orderBy("date").rowsBetween(-1, 1)

In this window spec, the data is partitioned by customer. Each

customer’s data is ordered by date. And, the window frame is

defined as starting from -1 (one row before the current row) and

ending at 1 (one row after the current row), for a total of 3 rows in
. ge . R e—.

the sliding window.

Hot Data Analytics

Now, as far as moving average example, you have to create the window that is window

partition by name and the date and the row between minus 1 and 1. So, in this window the



data is partitioned by the customers and each customer data is ordered by the date. So,
window frame is then defined starting from minus 1 that is one row before the current row
and ending at 1 that is one row after the current row and for a total of three rows in the sliding

window.

(Refer Slide Time: 46:52)

Moving Average Example

// Calculate the moving average
customers.withColumn( "movingAvg",
avg(customers("amountSpent")).over(wSpecl) ).show()

This code adds a new column, “movingAvg”, by applying the avg
function on the sliding windovg/défined in the window spec:

name date amountSpent | movingAvg
Alice ) [ 5/1/2016 | 50 475 /
Alice [ [5m32016 [ 45 50
Alice | |5/4/2016 | 55 50
Bob 512016 [ 25 27
Bob 5/412016 [ 29 27
Bob 5612016 [ 27 28

Hot Data Analytics

So, let us see that this particular moving average therefore, will create using the data frame by
applying the average functions on the sliding window define in the window a specification.
So, just see that three different users so, you can see that sliding window operations is being
established here with the moving average of Alice 47.5, then 50, then 50 and 27, 27 and 28.

(Refer Slide Time: 47:23)

Window function and Window Spec definition

As shown in the above example, there are two parts to applying a window function: (1)
specifying the window func(lg(such as avgin the q}a‘éple, and (2) specifying the
window spec, or wSpecl in the eyfnple. For (1), you can find a full list of the window
functions here:
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.function
s$

You can use functions listed under “Aggregate Functions” and “Window Functions”.

For (2) specifying a window spec, there are three components: partition by, order by, and
frame.

1. “Partition by” defines how the data is grouped; in the above example, it was by
customer. You have to specify a reasonable grouping because all data within a group will
be collected to the same machine. Ideally, the DataFrame has already been partitioned by
the desired grouping.

2. “Order by” defines how rows are ordered within a group; in the above example, it
was by date.

3. “Frame” defines the boundaries of the window with respect to the current row; in the
above example, the window ranged between the previous row and the next row.

Hot Data Analytics




So, as shown in the above example, two parts to applying the window functions specify the
window functions such as the average in the example and specify the window specifications

for in the example you can find out all these details in further examples.

(Refer Slide Time: 47:40)

Cumulative Sum

Next, let us calculate the cumulative sum of the amount spent per customer.
// Window spec: the frame ranges from the beginning (Long.MinValue) to
the current row (0).

val wSpec2 =
Window.partitionBy("name").orderBy("date").rowsBetween(Long.MinValue, 0)

// Create a new column which calculates the sum over the defined window
frame.

customers.withColumn( "cumSum”,
sum(customers("amountSpent")).over(wSpec2) ).show()

name date amouni3pent | cumSum
Alice 5112016 [ 50 V' 50"
Alice 5/32016 [ 45V, 9% v
Alice 5/4/2016 |55 V 150 Vv
Bob V [512016 [25 vV 25
Bob 5/4/2016 | 29 54./ ©
Bob 5/6/2016 | 27 81 ¢

Hot Data Analytics

So, cumulative sum is another statistics which you can or another function you can perform
in the sliding window over the same data set. So, cumulative, you can see that it will take
data 50. And the next data when it comes it will do the cumulative sum and then finally,
when 55 is added then it will add and for the next user when 25 is the amount which is spent
with this only and when the next chunk it will be cumulative addition is done and finally, all

that details are given over here.
(Refer Slide Time: 48:17)

Data from previous row

In the next example, we want to see the amount spefit by the customer
in their previous visit.

// Window spec. No need to specify a frame in this case.
val wSpec3 = Window.partitionBy("name").orderBy("date")

// Use the lag function to look backwards by one row.
customers.withColumn("prevAmountSpent"”,
lag(customers("amountSpent"), 1).over(wSpec3) ).show()

name date amountSpent prevAmountSpent
Alice 5/1/2016 | 50 nul ¥

Alice 5/3/2016 | 45 50 V

Alice 5/4/12016 | 55 45 vV

Bob 5112016 | 25 null

Bob 5/4/2016 | 29 25

Bob 5/6/2016 | 27 29

Hot Data Analytics



=

+ In this example, we want to know the order of a customer’s
visit (whether this is their first, second, or W visit).

// The rank function returns what we want.
customers.withColumn( "rank", rank().over(wS;\)yﬁ ).show()

name date amountSpent | rank
Alice 5/1/2016 50 1
Alice 5/3/2016 45 2
Alice 5/4/2016 55 3
Bob 5/1/2016 25 1
Bob 5/4/2016 29 2
Bob 5/6/2016 27 3

Hot Data Analytics

So, in the next example, you see that the amount is spent by the customer in their previous
visit is automatically previous amount spent. So, with the 50 previous is not there then it will
be null and for every data you see that previous values are given. So, this is our these are
some of the operations which are there and then you can also do a ranking in this example,
we want to show that the order of customers visit whether it is first second or third the rank
function returns what you want over the window specifications. So, you rank this particular

way in which the data is coming.

(Refer Slide Time: 48:57)

Case Study: Twitter Sentiment

Analysis with Spark Streaming

Hot Data Analytics



Case Study: Twitter Sentiment Analysis

Trending Topics can be used to create campaigns and attract
larger audience. Sentiment Analytics helps in crisis management,
service adjusting and target marketinﬁ./15

Sentiment refers to the emotion b??md a social media mention
online.

Sentiment Analysis is categorising the tweets related to particular
topic and performing data mining using Sentiment Automation
Analytics Tools.

We will be performing Twitter Sentiment Analysis as an Use Case
or Spark Streaming.

rure

Hot Data Analytics

So, let us see about the Twitter sentiment analysis using Spark Streaming. So, Twitter

sentiment analysis is to do a trending topic can be used to create the campaign and attract the
larger audience. So, sentiment analytics, helps in crisis management, and so on. Sentiments
refers to the emotion behind the social media mentioned online and semantic sentiment
analysis is categorizing the tweets related to a particular topic performing data mining and so

on.

(Refer Slide Time: 49:30)

Problem Statement

To design a Twitter Sentiment Analysis System where we
populate real-time sentiments for crisis management, service
adjusting and target marketing.

Sentiment Analysis is used to:
Predict the success of a movie /
Predict political campaign success
Decide whether to invest in a certain company
Targeted advertising
Review products and services

Hot Data Analytics

So, it can be done with this particular so, to design the Twitter sentiment analysis where you
populate the real time sentiments for the crisis management and service adjustment and for
the target marketing. So, Twitter so, sentiment analysis is used to predict the success of a

movie predict the political campaign success and so on.



(Refer Slide Time: 49:52)

Importing Packages

import org.apache.spark.strea
import org

import org t »
import org

import org

import org.ap x
import org

import org

import

import =

import

import ¢ X
import scala.io.Sourc

import scala.collection.mutable.HashMap
import java.io.File

Hot Data Analytics

Hot Data Analytics

DStream Transformation

val sparkConf

val ssc
val strea

val tags = st

Hot Data Analytics



So, to do this, let us build the environment and then Twitter token authorization and then D

stream transformation is being carried out.

(Refer Slide Time: 50:02)
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Sentiment for Trump

maprscala It S earth.scala

>
Keyword

Positive
Neutral

Negative
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And this is the result of this particular sentiment for the product Trump which is shown over

here.
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Applying Sentiment Analysis

- As we have seen from our Sentiment Analysis demonstration,
we can extract sentiments of particular topics just like we did
for ‘Trump’. Similarly, Sentiment Analytics can be used in crisis
management, service adjusting and target marketing by
companies around the world.

Companies using Spark Streaming for Sentiment Analysis have
applied the same approach to achieve the following:

1. Enhancing the customer experience
2. Gaining competitive advantage

3. Gaining Business Intelligence

a. Revitalizing a losing brand

Hot Data Analytics

And applying the sentiment analysis, as we have seen from the sentiment analysis
demonstration that we can extract the sentiments of a particular topic. For example, it is a
Trump similarly the sentiment analytics can be used for the crisis management and so on. So,
companies using the Spark Streaming for sentiment analysis have applied the same approach
to the following enhancing the customer experience, gaining the competitive advantage,

gaining the business intelligent, revitalizing a losing band.

(Refer Slide Time: 50:41)

Conclusion

Stream processing framework thatis ... _ V\okf J“}“\"W

N
HAana

- Scalable to large clusters - (ol A
- Achieves second-scale latencies = 9‘,\:“91- Jare

- Has simple programming model
- Integrates with batch & interactive workloads

- Ensures efficient fault-tolerance in stateful
computations

So, let us conclude this particular lecture here. So, we have seen the stream processing
framework, which is for hot data analytics, hot data path analytics, which is also called as a

real time analytics or the streaming analytics. It is also called the fast data processing. So,



stream processing frameworks, like Spark Streaming, we have seen an important way of
doing these streaming analytics that is called windowing-based methods, we have seen, what
we have seen is that this particular method to do this stream processing within a particular
time and need to be scaled.

Therefore, there is a proper framework which is required to do this kind of stream processing
which is scalable to a large number of cluster. We have also seen that the methods that is in
the form of scale, we have seen that it can achieve seconds scale latencies and also has a
simple programming model such as a scala and Java we have seen. Also, we have seen how
to integrate with the batch and the interactive workloads for better insight when doing this
particular real time analytics. It also ensures efficient fault tolerance in a stateful

computation. Thank you.



